• Darwin Speaks

  • Appearance of the Hominids

  • Some Principles of Epistemology


One evening in 1871, an association of learned British gentlemen, the Red Lions, gathered in Edinburgh, Scotland, to feed happily together and entertain each other with humorous songs and speeches. Lord Neaves, known well for his witty lyrics, stood up before the assembled Lions and sang twelve stanzas he had composed on "The Origin of Species a la Darwin."


Among them:

An Ape with a pliable thumb and big brain,
When the gift of gab he had managed to gain,
As Lord of Creation established his reign
Which Nobody can Deny!

His listeners responded, as customary among the Red Lions, by gently roaring and wagging their coattails.

Just a dozen years after Charles Darwin published The Origin of Species in 1859, growing numbers of scientists and other educated persons considered it impossible, indeed laughable, to suppose that humans were anything other than the modified descendants of an ancestral line of apelike creatures.


In The Origin of Species itself, Darwin touched but briefly on the question of human beginnings, noting in the final pages only that "Light will be thrown on the origin of man and his history." Yet despite Darwin's caution, it was clear that he did not see humanity as an exception to his theory that one species evolves from another.

It was not until 1871 that Darwin came out with a book (Descent of Man) expressing his detailed views on human evolution.


Explaining his delay, Darwin wrote:

"During many years I collected notes on the origin or descent of man, without any intention of publishing on the subject, but rather with the determination not to publish, as I thought that I should thus only add to the prejudices against my views. It seemed to me sufficient to indicate, in the first edition of my 'Origin of Species,' that by this work 'light would be thrown on the origin of man and his history;' and this implies that man must be included with other organic beings in any general conclusion respecting his manner of appearance on this earth."

In Descent of Man, Darwin explicitly denied any special status for the human species.

"We thus learn," he said, "that man is descended from a hairy, tailed quadruped, probably arboreal in its habits, and an inhabitant of the Old World."

It was a bold statement, yet one lacking the most convincing kind of proof—fossils of species transitional between the ancient apes and modern humans.

Aside from two poorly dated Neanderthal skulls from Germany and Gibraltar, and a few other little-reported finds of modern morphology, there were no discoveries of hominid fossil remains. This fact soon became ammunition to those who were revolted by Darwin's suggestion that humans had apelike ancestors. Where, they asked, were the fossils to prove it?

Today, however, almost without exception, modern paleoanthropologists believe that they have fulfilled the expectations of Darwin by positive discoveries of fossil human ancestors in Africa, Asia, and elsewhere.

In this book, we take the modern system of geological ages (Table 1.1) for granted. We use it as a fixed frame of reference for our study of the history of ancient humans and near humans. This is for convenience. We acknowledge that our findings might require serious reconsideration of the geological time scale.

According to modern views, the first apelike beings appeared in the Oligocene period, which began about 38 million years ago. The first apes thought to be on the line to humans appeared in the Miocene, which extends from 5 to 25 million years ago. These include Dryopithecus.

Then came the Pliocene period. During the Pliocene, the first hominids, or erect-walking humanlike primates, are said to appear in the fossil record. The earliest known hominid is Australopithecus, the southern ape, and is dated back as far as 4 million years, in the Pliocene.

This near human, say scientists, stood between 4 and 5 feet tall and had a cranial capacity of between 300 and 600 cubic centimeters (cc). From the neck down, Australopithecus is said to have been very similar to modern humans, whereas the head displayed some apelike and some human features.

One branch of Australopithecus is thought to have given rise to Homo habilis around 2 million years ago, at the beginning of the Pleistocene period. Homo habilis appears similar to Australopithecus except that his cranial capacity is said to have been larger, between 600 and 750 cc.

Homo habilis is thought to have given rise to Homo erectus (the species that includes Java man and Beijing man) around 1.5 million years ago. Homo erectus is said to have stood between 5 and 6 feet tall and had a cranial capacity varying between 700 and 1,300 cc. Most paleoanthropologists now believe that from the neck down, Homo erectus was, like Australopithecus and Homo habilis, almost the same as modern humans. The forehead, however, sloped back from behind massive brow ridges, the jaws and teeth were large, and the lower jaw lacked a chin. It is believed that Homo erectus lived in Africa, Asia, and Europe until about 200,000 years ago.

Paleoanthropologists believe that anatomically modern humans (Homo sapiens sapiens) emerged gradually from Homo erectus. Somewhere around 300,000 or 400,000 years ago, the first early Homo sapiens or archaic Homo sapiens are said to have appeared. They are described as having a cranial capacity almost as large as that of modern humans, yet still manifesting to a lesser degree some of the characteristics of Homo erectus, such as the thick skull, receding forehead, and large brow ridges.


Examples of this category are the finds from Swanscombe in England, Steinheim in Germany, and Fontechevade and Arago in France. Because these skulls also possess, to some degree, Neanderthal characteristics, they are also classified as pre-Neanderthal types. Most authorities now postulate that both anatomically modern humans and the classic Western European Neanderthals evolved from the pre-Neanderthal or early Homo sapiens types of hominids.

In the early part of the twentieth century, some scientists advocated the view that the Neanderthals of the last glacial period, known as the classic Western European Neanderthals, were the direct ancestors of modern human beings. They had brains larger than those of Homo sapiens sapiens. Their faces and jaws were much larger, and their foreheads were lower, sloping back from behind large brow ridges. Neanderthal remains are found in Pleistocene deposits ranging from 30,000 to 150,000 years old.


However, the discovery of early Homo sapiens in deposits far older than 150,000 years effectively removed the classic Western European Neanderthals from the direct line of descent leading from Homo erectus to modern humans.

The type of human known as Cro-Magnon appeared in Europe approximately 30,000 years ago, and they were anatomically modern. Scientists used to say that anatomically modern Homo sapiens sapiens first appeared around 40,000 years ago, but now many authorities, in light of discoveries in South Africa and elsewhere, say that they appeared 100,000 or more years ago.

The cranial capacity of modern humans varies from 1,000 cc to 2,000 cc, the average being around 1,350 cc. As can be readily observed today among modern humans, there is no correlation between brain size and intelligence. There are highly intelligent people with 1,000 cc brains and morons with 2,000 cc brains.

Exactly where, when, or how Australopithecus gave rise to Homo habilis, or Homo habilis gave rise to Homo erectus, or Homo erectus gave rise to modern humans is not explained in present accounts of human origins. However, most paleoanthropologists agree that only anatomically modern humans came to the New World. The earlier stages of evolution, from Australopithecus on up, are all said to have taken place in the Old World. The first arrival of human beings in the New World is generally said to have occurred some 12,000 years ago, with some scientists willing to grant a Late Pleistocene date of 25,000 years.

Even today there are many gaps in the presumed record of human descent. For example, there is an almost total absence of fossils linking the Miocene apes such as Dryopithecus with the Pliocene ancestors of modern apes and humans, especially within the span of time between 4 and 8 million years ago.

Perhaps it is true that fossils will someday be found that fill in the gaps. Yet, and this is extremely important, there is no reason to suppose that the fossils that turn up will be supportive of evolutionary theory. What if, for example, fossils of anatomically modern humans turned up in strata older than those in which Dryopithecus were found? Even if anatomically modern humans were found to have lived a million years ago, 4 million years after the Late Miocene disappearance of Dryopithecus, that would be enough to throw out the current accounts of the origin of humankind.

In fact, such evidence has already been found, but it has since been suppressed or conveniently forgotten. Much of it came to light in the decades immediately after Darwin published The Origin of Species, before which there had been no notable finds except Neanderthal man. In the first years of Darwinism, there was no clearly established story of human descent to be defended, and professional scientists made and reported many discoveries that now would never make it into the pages of any journal more academically respectable than the National Enquirer.

Most of these fossils and artifacts were unearthed before the discovery by Eugene Dubois of Java man, the first proto-human hominid between Dryopithecus and modern humans. Java man was found in Middle Pleistocene deposits generally given an age of 800,000 years. The discovery became a benchmark. Henceforth, scientists would not expect to find fossils or artifacts of anatomically modern humans in deposits of equal or greater age.


If they did, they (or someone wiser) concluded that this was impossible and found some way to discredit the find as a mistake, an illusion, or a hoax. Before Java man, however, reputable nineteenth-century scientists found a number of examples of anatomically modern human skeletal remains in very ancient strata.


And they also found large numbers of stone tools of various types, as well as animal bones bearing signs of human action.



Before beginning our survey of rejected and accepted paleoanthropological evidence, we shall outline a few epistemological rules that we have tried to follow. Epistemology is defined in Webster's New World Dictionary as "the study or theory of the origin, nature, methods, and limits of knowledge." When engaged in the study of scientific evidence, it is important to keep the nature, methods, and limits of knowledge in mind; otherwise one is prone to fall into illusion.

Paleoanthropological evidence has certain key limitations that should be pointed out. First, the observations that go into paleoanthropological facts tend to involve rare discoveries that cannot be duplicated at will. For example, some scientists in this field have built great reputations on the basis of a few famous discoveries, and others, the vast majority, have spent their whole careers without making a single significant find.

Second, once a discovery is made, key elements of the evidence are destroyed, and knowledge of these elements depends solely on the testimony of the discoverers. For example, one of the most important aspects of a fossil is its stratigraphic position. However, once the fossil is removed from the earth, the direct evidence indicating its position is destroyed, and we simply have to depend on the excavator's testimony as to where he or she found it. Of course, one may argue that chemical or other features of the fossil may indicate its place of origin. This is true in some cases but not in others. And in making such judgments, we also have to depend on reports concerning the chemical and other physical properties of the strata in which the fossil was allegedly found.

Persons making important discoveries sometimes cannot find their way back to the sites of those discoveries. After a few years, the sites are almost inevitably destroyed, perhaps by erosion, by complete paleoanthropological excavation, or by commercial developments (involving quarrying, building construction, and so forth). Even modern excavations involving meticulous recording of details destroy the very evidence they are recording, leaving one with nothing but written testimony to back up many key assertions. And many important discoveries, even today, involve very scanty recording of key details.

Thus a person desiring to verify paleoanthropological reports will find it very difficult to gain access to the real facts, even if he or she is able to travel to the site of a discovery. And, of course, limitations of time and money make it impossible to personally examine more than a small percentage of the totality of important paleoanthropological sites.

A third problem is that the facts of paleoanthropology are seldom (if ever) simple. A scientist may testify that the fossils were clearly weathering out of a certain Early Pleistocene layer. But this apparently simple statement may depend on many observations and arguments involving geological faulting, the possibility of slumping, the presence or absence of a layer of hillwash, the presence of a refilled gully, and so on. If one consults the testimony of another person present at the site, one may find that he or she discusses many important details not mentioned by the first witness.

Different observers sometimes contradict one another, and their senses and memories are imperfect. Thus, an observer at a given site may see certain things, but miss other important things. Some of these things might be seen by other observers, but this could turn out to be impossible because the site has become inaccessible.

Then there is the problem of cheating. This can occur on the level of systematic fraud, as in the Piltdown case. As we shall see, to get to the bottom of this kind of cheating one requires the investigative abilities of a super Sherlock Holmes plus all the facilities of a modern forensic laboratory. Unfortunately, there are always strong motives for deliberate or unconscious fraud, since fame and glory await the person who succeeds in finding a human ancestor.

Cheating can also occur on the level of simply omitting to report observations that do not agree with one's desired conclusions. As we will see in the course of this book, investigators have sometimes observed artifacts in certain strata, but never reported this because they did not believe the artifacts could possibly be of that age. It is very difficult to avoid this, because our senses are imperfect, and if we see something that seems impossible, then it is natural to suppose that we may be mistaken. Indeed, this may very well be the case. Cheating by neglecting to mention important observations is simply a limitation of human nature that, unfortunately, can have a deleterious impact on the empirical process.

The drawbacks of paleoanthropological facts are not limited to excavations of objects. Similar drawbacks are also found in modern chemical or radiometric dating studies. For example, a carbon 14 date might seem to involve a straightforward procedure that reliably yields a number—the age of an object. But actual dating studies often turn out to involve complex considerations regarding the identity of samples, and their history and possible contamination. They may involve the rejection of some preliminary calculated dates and the acceptance of others on the basis of complex arguments that are seldom explicitly published. Here also the facts can be complex, incomplete, and largely inaccessible.

The conclusion we draw from these limitations of paleoanthropological facts is that in this field of study we are largely limited to the comparative study of reports. Although hard evidence does exist in the form of fossils and artifacts in museums, most of the key evidence that gives importance to these objects exists only in written form.

Since the information conveyed by paleoanthropological reports tends to be incomplete, and since even the simplest paleoanthropological facts tend to involve complex, irresolvable issues, it is difficult to arrive at solid conclusions about reality in this field. What then can we do? We suggest that one important thing we can do is compare the quality of different reports. Although we do not have access to the real facts, we can directly study different reports and objectively compare them.

A collection of reports dealing with certain discoveries can be evaluated on the basis of the thoroughness of the reported investigation and the logic and consistency of the arguments presented. One can consider whether or not various skeptical counterarguments to a given theory have been raised and answered. Since reported observations must always be taken on faith in some respect, one can also inquire into the qualifications of the observers.

We propose that if two collections of reports appear to be equally reliable on the basis of these criteria, then they should be treated equally. Both sets might be accepted, both might be rejected, or both might be regarded as having an uncertain status. It would be wrong, however, to accept one set of reports while rejecting the other, and it would be especially wrong to accept one set as proof of a given theory while suppressing the other set, and thus rendering it inaccessible to future students.

We apply this approach to two particular sets of reports. The first set consists of reports of anomalously old artifacts and human skeletal remains, most of which were discovered in the late nineteenth and early twentieth centuries. These reports are discussed in Part I of this book. The second set consists of reports of artifacts and skeletal remains that are accepted as evidence in support of current theories of human evolution. These reports range in date from the late nineteenth century to the 1980s, and they are discussed in Part II. Due to the natural interconnections between different discoveries, some anomalous discoveries are also discussed in Part II.

Our thesis is that in spite of the various advances in paleoanthropological science in the twentieth century there is an essential equivalence in quality between these two sets of reports. We therefore suggest that it is not appropriate to accept one set and reject the other. This has serious implications for the modern theory of human evolution. If we reject the first set of reports (the anomalies) and, to be consistent, also reject the second set (evidence currently accepted), then the theory of human evolution is deprived of a good part of its observational foundation.


But if we accept the first set of reports, then we must accept the existence of intelligent, tool-making beings in geological periods as remote as the Miocene, or even the Eocene. If we accept the skeletal evidence presented in these reports, we must go further and accept the existence of anatomically modern human beings in these remote periods.


This not only contradicts the modern theory of human evolution, but it also casts grave doubt on our whole picture of the evolution of mammalian life in the Cenozoic era.


Back to Contents