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1 Introduction

We have proposed a modified Friedmann equation [1–3] which changes the late time cosmology,
such that one does not need a cosmological constant to explain the present day acceleration of
our Universe. While it is our hope that this modified Friedmann equation can eventually be
derived from an underlying microscopic theory [4–7], we will here treat it as a phenomenological
model that we can obtain in a simple way from the standard Friedmann equation.1

Our starting point is the Hartle-Hawking minisuperspace action, which after the rotation
of the conformal factor can be written as

S =
∫
dt

(
βv̇2

2Nv + λNv

)
. (1.1)

Before rotating to Euclidean spacetime and the rotation of the conformal factor, this action
is just the standard minisuperspace action

S =
∫
dt

(
− βv̇2

2Nv − λNv
)
, (1.2)

written using the metric

ds2 = −N2(t)dt2 + a2(t)dΩd, dΩd =
d∑

i=1
dx2

i . (1.3)

In (1.1) and (1.2) we are using units where c = ℏ = 1 and the constant β = (d− 1)/d, where
d is the dimension of space. We have used

v(t) = 1
κ
ad(t), κ = 8πG, G = the gravitational constant. (1.4)

1It should be noted that ideas somewhat related to the ones presented here and in [1–7] have also been
advocated in [8].
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1
as variable rather than the scale factor a(t). v(t) is proportional to the spatial d-volume at
time t and below we will just call it the d-volume. For the Hubble parameter H(t) we then
have

H(t) ≡ ȧ

a
= 1
d

v̇

v
. (1.5)

The reason we prefer to use v(t) instead of a(t) is that the minisuperspace action (1.1)–(1.2)
is then valid in all space dimensions d > 1. Finally λ denotes the cosmological constant.
Presently we will ignore matter, only assume a cosmological constant term. Below we will
include matter in our considerations.

It should be noted that (1.1) also appears as the leading term in an effective action in
a model of four-dimensional quantum gravity known as Causal Dynamical Triangulations
(CDT). In that case one is not assuming a minisuperspace reduction, but performs the path
integral over all degrees of freedom except v(t). Thus (1.1) might be more general than
suggested by the minisuperspace reduction. This CDT result is a numerical result, obtained
via Monte Carlo Simulations of the CDT lattice gravity model where one identifies G/ε2 and
λε4 with the corresponding dimensionless lattice coupling constants, ε denoting the length
of the lattice links, i.e. the UV lattice cut-off (see [9, 10], and [11, 12] for reviews). Quite
remarkably, for CDT in d = 1, (1.1) can be derived analytically (with β ̸= 0), and it is
an effective action coming entirely from the path integral measure [13], since the classical
Einstein action is a topological invariant in the case of d = 1.

The classical Hamiltonian corresponding to (1.2) is2

H(v, p) = Nv

(
− p

2

2β + λ

)
, (1.6)

where p denotes the momentum conjugate to v. In the following we will be interested in
d = 3, i.e. 2β = 4/3.

A classical solution corresponding to the action (1.2) is the de Sitter spacetime3

v(t) = v(t0) e
√

3λ(t−t0). (1.7)

We now want to go beyond this classical picture, but staying as close as possible to the
minisuperspace picture, by trying to include the possibility that our Universe can absorb
other universes, which we denote baby universes even if they are not necessarily small.

2 Expansion by merging with other universes

Since we will allow for other universes to merge with our Universe, we are really discussing a
multi-universe theory and like in a many-particle theory it is natural to introduce creation
and annihilation operators Ψ†(v) and Ψ(v) for single universes of spatial volume v. In a
full theory of four-dimensional quantum gravity the spatial volume alone will of course not

2Since there is no time derivative of N(t) in (1.2), we should strictly speaking treat it as a constraint system
and we can choose as a Hamiltonian Hu = H+u(t)PN , where PN is the momentum conjugate to N , and impose
the constraint PN = 0 in phase space. This leads to H = 0 on the constraint surface as a consistent secondary
constraint and Ṅ = u(t), expressing the invariance with respect to time reparametrization. In the following we
will use this invariance to choose N constant (N = 1), and then consider “on shell” solutions H = 0.

3Note that the solution of H(v, p) = 0 corresponding to an expanding universe has p = −
√

λ < 0. The
reason for the somewhat counter-intuitive negative values of p is the negative sign of the “kinetic” terms in (1.2)
and (1.6).
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1
provide a complete characterization of a state at a given time t. As mentioned we will here
make the drastic simplification to work in a minisuperspace approximation where the spatial
universe is characterized entirely by the spatial volume v. Thus, denote the quantum state
of a spatial universe with volume v by |v⟩. We consider now the multi-universe Fock space
constructed from such single universe states and denote the Fock vacuum state by |0⟩. Then

[Ψ(v),Ψ†(v′)] = δ(v − v′), Ψ†(v)|0⟩ = |v⟩, Ψ(v)|0⟩ = 0. (2.1)

In this way the (minisuperspace) quantum Hamiltonian that includes the creation and
destruction of universes can be written as [14]

Ĥ = Ĥ(0) − g
∫
dv1

∫
dv2 Ψ†(v1)Ψ†(v2) (v1 + v2)Ψ(v1 + v2) (2.2)

− g
∫
dv1

∫
dv2 Ψ†(v1 + v2) v2Ψ(v2) v1Ψ(v1)−

∫
dv

v
ρ(v)Ψ†(v), ρ(v) = δ(v)

Ĥ(0) =
∫ ∞

0

dv

v
Ψ†(v)Ĥ(0) vΨ(v), Ĥ(0) = v

(
−3

4
d2

dv2 + λ

)
(2.3)

Ĥ(0) describes the quantum Hamiltonian corresponding to the action (1.1) (with β = 2/3)
and describes the propagation of a single universe, while the two cubic terms describe the
splitting of a universe into two and the merging of two universes into one, respectively. Finally,
the last term implies that a universe can be created from the Fock vacuum |0⟩ provided the
spatial volume is zero. If it was not for this term Ĥ|0⟩ = 0, and the Fock vacuum would be
stable. Again, in our minisuperspace approximation we do not attempt to describe how such
a merging or splitting realistically takes place, the only thing which has our interest is how
the volume of space can be influenced by such merging or splitting processes, and for this the
minisuperspace model might give us some interesting hints.

Even the minisuperspace Hamiltonian Ĥ is too complicated to be solved in general. A
universe can successively split in many, be joined by many and a part that splits off can
later rejoin, thereby changing the topology of spacetime. Since the Hamiltonian is essentially
dimension independent (all dimension dependence is absorbed in the coupling constants κ, λ
and g), what we are describing is the so-called string field theory of two-dimensional CDT [14].
For this string field theory there exists a truncation that can be solved analytically [15],4
called generalized CDT (GDCT), and that at the same time has our main interest from a
cosmological point of view. It follows the evolution of a universe (let us call it “our” Universe)
in time. During this evolution it can merge with other universes (denoted baby universes),
created at times ti with spatial volumes vi(ti) = 0 (see figure 1). We will assume these
universes have the same coupling constants as our Universe. The effective Hamiltonian,
the so-called inclusive Hamiltonian, first introduced in [18], governing the evolution of the
Universe, is obtained from the path integral by integrating over the times ti and summing over
the number of baby universes merging with our Universe. In the path integral, the various
baby universes, characterized at a given time t by spatial volumes vi(t), can themselves be
merged with other baby universes. One integrates over all possible vi(t), not necessarily
related to solutions of any classical equations.

Let us describe in some detail how such an inclusive Hamiltonian can be obtained from Ĥ.
The simplest way to incorporate an absorption of baby universes into the propagation of our

4Surprisingly, some CDT string field amplitudes can actually be calculated non-perturbatively to all order
in the genus expansion, see [16, 17].
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Figure 1. Our Universe (blue), represented as one-dimensional circles, propagating in time, with baby
universes (red) merging and increasing the spatial volume.

Universe is to replace the quantum field Ψ(v), representing the disappearance of a universe
of spatial volume v when it is absorbed by our Universe, by a classical field ψ(v). Thus we
make the following replacement in the third term on the r.h.s. of eq. (2.2)

Ψ†(v1 + v2)Ψ(v1)Ψ(v2)→ Ψ†(v1 + v2)ψ(v1)Ψ(v2) + Ψ†(v1 + v2)Ψ(v1)ψ(v2) (2.4)

The terms on the r.h.s. of eq. (2.4) contribute to the propagation of our Universe since they
are of the form Ψ†(v1)

(
·
)
Ψ(v2), but contrary to the terms in Ĥ0 they are non-local in v. By

Taylor expanding Ψ†(v + w) around v, this non-locality can be expanded as a power series in
the non-local operator (d/dv)−1. After some algebra this leads to∫

dvdwΨ†(v + w)wψ(w) vΨ(v) =
∫
dvΨ†(v)F

(
d

dv

)
vΨ(v), (2.5)

where F (p) is the Laplace transform of ϕ(v) = vψ(v):

ϕ(v) = ϕ0 + ϕ1v + ϕ2v
2 + · · · , F (p) =

∫ ∞

0
dv e−p vϕ(v) = Γ(1)ϕ0

p
+ Γ(2)ϕ1

p2 + · · · (2.6)

Thus Ĥ0 from (2.3) will be replaced by the inclusive Hamiltonian

Ĥinc = Ĥ0 − 2gF
(
d

dv

)
v (2.7)

In GCDT F (p) is determined by the self-consistency requirement that our Universe, modified
by the impact ϕ(v) of baby universes, should be identical to the baby universes it absorbs.
We refer to [15] (or to the Lecture Notes [19, 20]) for the details of this determination.5

5The only difference compared the derivation in [15] is that the sign of g appearing in (2.9) and (2.8) will
be different from the sign appearing in [15], the reason being that we consider the absorption rather than the
emission of baby universes. In earlier articles discussing a modified Friedmann equation ([1, 2]) we used the
notation from [15], but with negative g, which effectively meant that we were considering absorption rather
than emission of baby universes, like here.
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1
Finally, rotating back from the Hartle-Hawking metric to Lorentzian signature, as when going
from (1.1) to (1.2) and replacing6 the −id/dv by the classical momentum p conjugate to v we
obtain the following semiclassical Hamiltonian

H = v

(
−3

4
(
p2 + λ− 2gF (p)

))
= 3

4v
(

(p+ α)
√

(p− α)2 + 2g
α

)
, (2.8)

where α satisfies the equation7

α3 − 4
3λα− g = 0. (2.9)

It is seen that if g = 0 one obtains precisely the H in (1.6) (with N = 1). A solution to the
“on shell” Hamiltonian equations is

v(t) = v(t0) e
3
2 Σ(t−t0), Σ =

√
α2 + g

2α. (2.10)

Again, if we choose g = 0 we obtain the de Sitter solution (1.7). Increasing g will increase the
expansion rate of the universe, the intuition behind this being illustrated in figure 1, and we
can actually take the cosmological constant λ = 0 and still obtain an expanding universe:

v(t) = v(t0) e
√

27
8 g1/3(t−t0). (2.11)

Thus we have the same classical de Sitter solution as (1.7) provided

g2/3 = 8
9 λ, (2.12)

but the origin of this exponential expansion is now not a cosmological constant but instead
the “bombardment” of our Universe by baby universes.

3 Including matter

Until now we have considered our Universe, but without matter. We will now include matter
in the most simple way, as a matter density ρm(v) in the Hamiltonian (2.8).8 In addition we
will only consider relatively late times in the evolution of our universe, namely the period after
the time of last scattering (tLS), where matter to a good approximation can be considered as
dust that exerts zero pressure. Thus the Hamiltonian has the form

H[v, p] = v (−f(p) + κρm(v) ), vρm(v) = v0ρm(v0), (3.1)

where v0 and ρm(v0) denote the values at the present time t0 and where we will later consider
three different choices of f(p). Before that, let us discuss the solution of the eoms for arbitrary

6The rotation from the Hartle-Hawking metric to the Lorentzian metric involves a double analytic con-
tinuation, namely both in time and also a conformal factor rotation, which in the minisuperspace metric
parametrization becomes v → −iv.

7In the case of g = 0 we choose the solution α =
√

λ > 0. In this case, as remarked in footnote 3, p = −α < 0
and

√
(p − α)2 = α − p. Since we consider g ≥ 0, the solution α > 0 will only increase with increasing g and

H = 0 leads to p = −α < 0.
8The inclusion of matter in this way introduces an asymmetry between the baby universes and our Universe,

in the sense that we do not include such a matter term in the evolution of the baby universes.
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1
f(p) in (3.1). The eoms simplify since vρm(v) is constant.

v̇ = ∂H
∂p

= −vf ′(p), i.e. 3 ȧ
a

= v̇

v
= −f ′(p) (3.2)

ṗ = −∂H
∂v

= f(p), i.e. t− tLS =
∫ p

pLS

d p

f(p) (3.3)

By construction any solution to (3.2)–(3.3) will satisfy H = const, and we are interested in
the “on-shell” solutions H = 0, which by (3.1) implies that

f(p) = κρm(v) = κρm(v0)v0
v

= f(p0)v0
v

= f(p0)(1 + z)3, (3.4)

where p0 denotes the value of p at present time t0 and z denotes the redshift at time t, i.e.

z(t) + 1 = a(t0)
a(t) =

(
v(t0)
v(t)

)1/3
. (3.5)

Eq. (3.4) is the generalized Friedmann when eq. (3.2) is used to express p in terms of ȧ/a.
Using p as a parameter instead of t (the relation between the two parameters is defined by

eq. (3.3)) we can immediately write parametric expressions for a number of relevant functions
expressed in terms of f(p). Let us define these. The redshift z(t) or z(p) is

z = a(t0)
a(t) − 1 =

(
f(p)
f(p0)

) 1
3
− 1. (3.6)

The Hubble parameter H(t) or H(p) is defined as (see also eq. (1.5))

H = ȧ(t)
a(t) = −1

3 f
′(p). (3.7)

The formal density ρf (t) or ρf (p) related to the function f(p) is obtained by writing the
generalized Friedmann equation (3.4) as(

ȧ(t)
a(t)

)2
= κρm(v)

3 + κρf (v)
3 (3.8)

from which we deduce (using the eoms)

κρf (p) = 1
3
(
f ′(p)

)2 − f(p). (3.9)

κ
dρf

dt
= f(p)f ′(p)

(2
3f

′′(p)− 1
)
. (3.10)

We define the formal pressure Pf related to ρf by the energy conservation equation

d

dt
(vρf ) + Pf

d

dt
v = 0. (3.11)

This leads to
Pf = f(p)

(2
3f

′′(p)− 1
)
− ρf (v) (3.12)
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1
and the formal equation of state parameter wf is defined (for ρf ̸= 0) by

wf = Pf

ρf
=
f(p)

(
2
3f

′′(p)− 1
)

1
3
(
f ′(p)

)2 − f(p)
− 1 (3.13)

The definitions of ρf and Pf ensure that our eoms can be written in the standard GR form,
expressed in terms of a, ρm, ρf and P .

Finally, we will need the standard definitions of some cosmological distances. DH is
defined as the inverse Hubble parameter

DH = 1
H

= − 3
f ′(p) (3.14)

while

DM =
∫ z

0

dz′

H(z′) =
∫ t0

t
dt′

a(t0)
a(t) =

∫ p

p0

dp

f(p0)

(
f(p0)
f(p)

)2/3
(3.15)

and
DV = 3

√
zDHD2

M , (3.16)

represents a kind of average of the various distances and the so-called angular diameter is
often defined as

θ = rs

DV
, (3.17)

where rs is the co-moving sound horizon at tdrag. θ is an important variable, e.g. in the
observations of baryon acoustic oscillations (BAO). Since the physics associated with these
oscillations takes place before tLS and thus tdrag < tLS, rs will be independent of the functions
f we consider, for reasons to be discussed below.

In these formulas the coupling constants κ, λ and g are so far arbitrary, and so are t0
and tLS (or equivalently, via (3.3)) p0 and pLS). If we from observations are given H0, the
Hubble parameter at present time t0, and zLS,9 the redshift at the time of last scattering tLS,
we can determine p0 and pLS:

f ′(p0) = −3H0, f(pLS) = f(p0)(1 + zLS)3. (3.18)

This finally leads to the determination of t0 − tLS by eq. (3.3). We need more (experimental)
input to determine the coupling constants that enter in f(p). We will discuss this in the
next section.

Let us now consider the three choices of f(p) in (3.1), where f(p) is given by (2.8). The
first choice corresponds to g = 0, λ > 0:

fds(p) = 3
4 p

2 − λ. (3.19)

This is of course just the f(p) associated with the standard de Sitter Hamiltonian (1.6). We
include this choice in order to compare the late time cosmology of the standard ΛCDM model

9Of course, what is given by observations is the temperature T (t0) of the CMB. T (tLS) can be calculated
by atomic physics and is to a large extent independent of the cosmological model, as is also the statement that
T (tLS)/T (t0) = a(t0)/a(tLS) = 1 + zLS.
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1
with the results from our new cosmological models. The second choice corresponds to λ = 0
and g > 0. Thus

fgcdt(p) = 3
4 (p+ α)

√
(p− α)2 + 2α2, α = g1/3. (3.20)

This is our model where baby universes of any size v can merge with our Universe. The third
choice is motivated by expanding fgcdt(p) in powers of α/p:

fgcdt(p) = 3
4

(
p2 + α2

(
2α
p

+O

(
α2

p2

)))
(3.21)

At early times, v(t) becomes small and according to (3.1) ρ(v(t)) will be large. ThusH(v, p) = 0
implies that |p| is large at early times (i.e. times larger than but close to tLS). In addition
we expect that in our Universe g is small according to (2.12). Thus we expect that keeping
only the first term in the expansion (3.21) is a good approximation except at quite late times
where the exponential expansion will dominate and where |p| is close to g1/3, and this was one
of the reasons we in earlier work considered this approximation, which when inserted in (3.4)
led to what we denoted the modified Friedmann equation. We thus define this f(p) as follows

fmod(p) = 3
4

(
p2 + 2g

p

)
. (3.22)

The last term in (3.22) is effectively a time dependent cosmological constant. At very late
time, when the matter term ρ(v) ∝ 1/v plays no role, the modified Friedmann equation
implies that p = −(2g)1/3 and the term acts precisely as a cosmological constant, as already
shown in (2.11), and in analogy with the −λ term in (3.19). However, for smaller t, |p| will
increase, as discussed above, and the last term in (3.22) will be less important.

The three functions fds, fmod and fmod are so simple that even the integrals appearing
in (3.3) and (3.15) can be expressed as known analytic functions and in this sense the models
are fully solvable. In an appendix we present some details and point out a curious symmetry
of the fmod-model.

Returning to the expansion (2.6) that defined the inclusive Hamiltonian, it is seen that
the approximation (3.22) corresponds to ϕ(v) = ϕ0 + O(v), i.e. to the absorption of baby
universes of infinitesimal size (which is one reason we introduced the word “baby universe”
for the universes absorbed by our Universe). The absorption of such small baby universes can
only result in a change of the spatial volume if infinitely many are absorbed per unit time
and unit spatial volume.

4 Comparison of the different models

In the three models we introduced above there are two coupling constants. The gravitational
coupling constant κ is fixed by local experiments and we will not discuss it any further. fds(p)
has the cosmological coupling constant λ as a parameter, while fmod(p) and fgcdt(p) have the
universe-merging coupling constant g as parameter. λ or g are actually determined already
from the values H0 and zLS mentioned above provided we can assume they play no role for
t < tLS. We know this is true for λ in the ΛCDM model and from (2.12), which is of course
not exactly true when we add matter to the model, we nevertheless expect that it is also true
for g in the other models. This implies that

f(p) ≈ 3
4 p

2 for 0 < t < tLS. (4.1)
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1
That being the case, we can calculate tLS as well as the relation between tLS and pLS without
reference to the specific models. For the purpose of illustration, assume (incorrectly) that we
can ignore the radiation density ρr(t) all the way down to t ≈ 0. Eq. (3.3) then leads to

tLS =
∫ pLS

−∞

dp
3
4 p

2 = −4
3

1
pLS

. (4.2)

Eqs. (3.18) determine our coupling constant since the first equation determines p0 and the
last equation (the generalized Friedmann equation at tLS) can be written as

f(p0) = 3 p2
LS

4 (1 + zLS)3 (4.3)

So given tLS, and thus pLS, we can determine either λ from fds(p), or g from fmod(p) or fgcdt(p).
The tLS used in cosmology is obtained by also including the radiation density. In this

case we obtain an additional term in eq. (3.3) from ∂H/∂v and

tLS =
∫ pLS

−∞

dp
3
4 p

2 + 1
3 κρr(v(p))

,
3
4 p

2 = κρm(v) + κρr(v). (4.4)

This tLS is smaller than the one given in (4.2) and leads to a somewhat different pLS, which
we should use in (4.3) to determine the coupling constants. We can effectively compensate for
the smaller tLS by shifting the origin of time.

Having determined the coupling constants we can now compare the different models
for given H0 and zLS. While zLS is fixed (almost) model independent to 1090, there are
presently two values of H0 that do not agree within 5σ (a fact that is denoted the H0 tension).
One value is deduced from “local” measurements, using various space candle techniques [21].
We denote it HSC

0 . This value (HSC
0 = 73.04 ± 1.04 km/s/Mpc) is almost independent of

cosmological models. The other value is deduced from the CMB data created at tLS. It is
using cosmological models in a number of ways, among those to extrapolate to present time t0.
This value [22] (HCMB

0 = 67.4± 0.5 km/s/Mpc), which we denote HCMB
0 , is model dependent

and the value usually referred to is based on the ΛCDM model.
When comparing our two models with the ΛCDM model we will only use the CMB data

to determine T0, the temperature of the microwave background radiation at the present time.
We have not attempted to use the wealth of information contained in the CMB temperature
fluctuations since it requires the use of metric perturbations and it is presently not clear
how to incorporate such perturbations in our extended models. We will simply present some
of the variables we listed in the previous section, namely H(z), DV (z) and wf (z), and t0,
calculated for the three cosmological models, in two cases, namely for (HSC

0 , zLS) (case A)
and for (HCMB

0 , zLS) (case B). For H(z) and DV (z) we can also compare with measurements
from which one can extract these observables for relatively low values of z.

In figure 2 we have shown a(z)H(z) = H(z)/(1+z) in case A and B for the three models.
It is seen that in case A the fgcdt and the fmod models fit the data better than the fds model
(the ΛCDM model), while in case B the opposite is the case. Of course we do not know yet
whether HSC

0 or HCMB
0 is the correct H0 value, but if HSC

0 turns out to be the correct value
the fgcdt and the fmod models seems a better choice for the data presented here. Of course
there are many other data to take into account if one wants to make a multi-parameter fit,
but as already remarked most these data should be matched to the cosmological model using
perturbation expansions not yet available for the fgcdt and fmod models. In table 1 we have
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Figure 2. a(z)H(z) = H(z)/(1 + z) shown for the three models for H0 = 73.0 (case A). We have
included in red the error bars around this point, corresponding to z = 0, but the curves all start at
73.0. The orange curve corresponds to fds, the red curve to fgcdt and the blue curve to fmod. In case
B the three models all start at H0 = 67.4, the value suggested by the Planck Collaboration. The green
curve corresponds to fds, the dashed red curve to fgcdt and the dashed blue curve to fmod. Inserted in
red are data from 0 < z < 3: the first three points from the baryon acoustic oscillation data [24], the
next from quasars [25] and the last two data points from Ly-α measuments [26, 27].

χ2
red(ds) χ2

red(gcdt) χ2
red(mod)

case A 3.5 1.5 1.8
case B 1.2 1.7 5.6

Table 1. The reduced χ2 values obtained from figure 2.

χ2
red(ds) χ2

red(gcdt) χ2
red(mod)

case A 4.7 2.1 1.0
case B 1.6 4.1 13.7

Table 2. The reduced χ2 values obtained from figure 3.

listed the reduced χ2 values just calculated from the data and the corresponding error bars
shown in figure 2 in Case A and B.

Figure 3 shows DV (z)/rs for the fds, fgcdt and fmod models, normalized by
(DV (z)/rs)CMB, i.e. the DV (z)/rs for the fds model in case B. We see here the same trend as
in figure 2: the fgcdt and the fmod models fit the data better in case A, while the fds-model
fits better in case B. In table 2 we list the reduced χ2 values obtained from figure 3.

In figure 4 we display wf (z) for the three models. Of course wfds(z) = −1. The two other
models have negative wf (z) < −1. In standard cosmology this is a sign that some unphysical
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Figure 3. The three curves starting at value 1 for z = 0 are curves of (Df
V (z)/rs)/(Dfds

V (z)/rs)CMB for
the models with f = fgcdt (red, dotted), fmod (blue, dotted) and fds (green), all for the chosen value
H0 = HCMB

0 (case B). The last curve is of course 1, except for the error bars reflecting the uncertainty
of HCMB

0 . The three curves starting at value 0.94 for z = 0 are the curves for f = fgcdt (red), fmod
(blue) and fds (orange), all for H0 = HSC

0 (case A), and again normalized by (Dfds
V (z)/rs)CMB. The

data points and error bars are obtained from various BAO surveys (see [3] for a detailed table).

degrees of freedom have been added to the system. However, here one cannot conclude that,
since merging with baby universe seems more like having a time dependent cosmological
constant, but without the problem that a time dependent cosmological constant will break
the invariance of the model under time-reparametrization. Allowing a time dependence of the
cosmological “constant”: λ→ λ(t), changes wfds :

wfds(z) = −1→ wf̃ds
= −1− 1

3H(t)
λ̇(t)
λ(t) . (4.5)

Thus, if λ(t) is growing with time, assuming the universe is expanding (i.e. H(t) > 0), it
follows that wf̃ds

(t) < −1. If we consider the fmod model then λ(t) is replaced by −3g/2p,
and effectively it acts in the same way: for small t → 0 p(t) → −∞ while for t → ∞
p(t)→ −(2g)1/3. In fact using (3.13) it follows immediately that wfmod(z) goes monotonically
from −3/2 at z =∞ (t = 0), to −1 for z = −1 (t =∞), as also illustrated in figure 4.

The Planck data, combined with BAO as well as supernovae type Ia data, is consistent
with the ΛCDM model with a value H0 = 67.4 ± 0.5. The consistency is corroborated by
treating w in the dark energy equation of state p = wρ as a parameter, the value of which is
then determined to be w = −1.03±0.03 [22]. However, w is not well determined by the Planck
data alone (w = −1.56± 0.5, ([22], table 4)). If one allows for a more general time dependent
w(z) extension of the ΛCDM model, the picture is the same, but even including BAO as well
as supernovae type Ia data the best fit will produce a curve which is both consistent with the
w(z) curve for our gcdt-model as well as consistent with the pure ΛCDM model within error
bars (figure 5, [23]). One trend to observe in the analysis presented in [23] (see figure 3, 4
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Figure 4. wf (z) for the three models. The orange curve is wfds = −1, which is true for any value of
H0. The red curves are for the fgcdt-model, dotted curve for HSC

0 (case A) and full curve for HCMB
0

(case B). The blue curves are for the fmod-model, dotted curve for HSC
0 (case A) and full curve for

HCMB
0 (case B). For z → −1 (t→∞) wf (z)→ −1.

t0(ds) t0(gcdt) t0(mod)
case A 13.3 Gyr 13.5 Gyr 13.9 Gyr
case B 13.8 Gyr 14.0 Gyr 14.4 Gyr

Table 3. The values of t0 for the three models in cases A and B.

and 6) is that larger values of H0 correlate with smaller values of w(z). If H0 is in the range
72–74 km/s/Mpc, as is the case for the best fits to our models, one obtains in the Planck
collaboration analysis of the extended ΛCDM models, values of w(z) that are typically in the
range predicted by our models. In this sense our w(z) is compatible with the Planck w(z).

Finally, in table 3 we list the various values of t0 in the six cases discussed. In case
A t0(ds) = 13.3 Gyr and t0(gcdt) = 13.5 Gyr seem uncomfortable short and in case B
t0(mod) = 14.4 Gyr is probably too long. However, had we started out with a H0 in between
HSC

0 and HCMB
0 we can obtain values of both t0(mod) and t0(gcdt) that are comfortable in

agreement with the age of the universe as determined from the oldest stars. In particular
for the fgcdt-model, just looking at the data in figures 2 and 3 it is clear that if we tried to
determine the best value of H0 for the model from the data (including now the observed HSC

0
as a data point), the optimal value of H0 would precisely be between HSC

0 and HCMB
0 . In

table 4 we have listed values of H0 obtained for the three model by minimizing the χ2 for the
data shown in figure 2, together with the corresponding (minimal) value of the reduced χ2,
gt30 and g/Λ3/2, where we for Λ have used the value corresponding to the fds-model with the
H0 listed in table 4. The fgcdt- and fmod-models are doing slightly better than the fds-model,
but the error bars in figure 2 are too large to obtain any precision determination of H0 in this
way. The same is even more true if one had used the data in figure 3 to determine the “best
value” of H0 for the three models. In figure 5 we have shown the equivalent of figure 3, using
the values of H0 from table 4.

While we have some choice for different models for absorption of baby universes, once
H0 is fixed the values of observables like H(z), DV (z) and fm(z)σ8(z) are fixed for each such
model. If, for some reason we decide that a specific value of H0 is trustworthy the values
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fds-model fgcdt-model fmod-model

H0 71.2 72.2 73.9
χ2

red 2.4 1.2 1.4
t0 13.5 Gyr 13.6 Gyr 13.8 Gyr
gt30 2.983 1.224

g/Λ3/2 0.971 0.380

Table 4. The best values of H0 for the three models together with the corresponding parameters.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z55

60

65

70

75

80
a H

Figure 5. The graphs for H(z)/(1+z) for the three models using the values of H0 from table 4. Orange
graph corresponds to fds-model, blue graph to the fmod-model and red graph to the fgcdt-model.

of these observables can then be viewed as predictions for a given model. It was in this
spirit we presented the data from the observed H(z) and DV (z) for case A and B in figure 2
and figure 3 and the corresponding tables 1 and 2. Another “local” variable is the density
fluctuations of matter for z < 2. Presently the error bars on these data are too large for being
used in a simple analysis like done above in figure 2 and figure 3 (see [3] for an attempt).
However, this will most likely change dramatically with the new observations to be obtained
by the Euclid satellite.

5 Discussion

Let us start by emphasizing the extreme simplicity of the models considered. It is based on
the Hamiltonian

H = Nv
(
− f(p) + κρm(v)

)
, ρm(v)v = ρm(v0)v0, (5.1)

and the corresponding eoms are

f(p) = κρm(v), v̇

v
= −f ′(p), ṗ = f(p). (5.2)
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Thus, (for suitable f), if the universe starts out with a small spatial volume v(t) for small t,
ρm(v(t)) is large and the first equation implies that −p is large. The second equation then
implies that the expansion is fast, and the last equation that −p increases, i.e. |p| decreases,
which again implies that the rate of expansion per unit volume v̇/v decreases. Eventually,
if v(t) continues to grow to infinity, ρm(v) goes to zero. Thus f(p) goes to zero, i.e. p goes
to a constant. The middle equation then implies that v(t) approaches an pure exponential
expansion. As we have argued, assuming the absorption of baby universes this exponential
expansion is very natural if the chance of such an absorption per unit time is proportional to
the spatial volume. Therefore, there is no need to introduce a cosmological constant (“negative
gravity”) by hand: the gravitational force indeed wants to limit the expansion of the universe,
but this is counteracted by the “bombardment” of our Universe by baby universes.

The model we have suggested is of course quite primitive and unrealistic, but taking two
limits, one where only universes with infinitesimal spatial volumes are absorbed, the fmod
model, and one where universes of any size can be absorbed and where our Universe and the
other universes are on equal footing, the fgcdt model, show that the models are reasonable
insensitive to the detailed distribution of baby universe sizes. One can therefore hope that
they reflect the results one would obtain from more realistic models.

We have presented our model as a “late time” cosmological model and in the present
formulation it has nothing to say about the universe for t < tLS. Viewed as such a late time
cosmological model it is interesting that it favors the local measured value HSC

0 somewhat
compared to the value HCMB

0 . However, in view of the simplicity of the model, we will not
press this as an important point. Let us rather discuss if this multi-universe scenario has a
chance to answer some of the early-time questions in cosmology.

We have nothing to add about inflation as it is presented in various models. However, the
fact that the universe has expanded from, say, a Planckian size to 10−5m in a very short time,
invites the suggestion that this expansion was caused by a collision with a larger universe,
i.e. that it was really our Universe which was absorbed in another “parent” universe. Since
we have presently no detailed description of the absorption process, it is difficult to judge if
such a scenario could take place in a way that would actually solve the problems inflation
was designed to solve, but one interesting aspect of such a scenario is that there is no need
for an inflaton field.

While a continuous absorption of microscopic baby universes probably can be accom-
modated in a non-disruptive way in our Universe, it is less clear what happens if the “baby”
universe is not small, since we have not suggested an actual mechanism for such absorption.
Maybe the least disruptive situation would be one where the absorption happened inside a
black hole. The unknown mechanism of absorption could maybe favor such a scenario when
the sizes of the baby universes are not infinitesimal. Recall that a Reissner-Nordström black
hole actually connects to different universes. We are not seriously suggesting such a black hole
scenario, but we mention it to point out that there is room for a lot of interesting considerations.
Ultimately, any realistic model should be specific about how the absorption occurs.

The present value of the cosmological constant λ in the ΛCDM model is according to
some viewpoints embarrassingly small. According to (2.12), λ being small when expressed in
Planck units (κ = 1) also implies that g is small. Historically, before observations pointed to
a small λ in the ΛCDM model, many people favored λ = 0 as a result of some underlying
mechanism not yet fully understood, e.g. Coleman’s mechanism [31]. We might still need
such a mechanism to explain why a λ coming from the zero-point fluctuations of quantum
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fields will not create a large λ.10 However, it might be easier to explain why λ is exactly zero
than to explain why it is unnaturally small. If λ = 0 can be proven, we could then still have
an exponentially expanding universe caused by baby universe absorption.

Like λ, g appears in our model just as a coupling constant, reflecting in some way the
“density” of the baby universes “surrounding” our Universe. By comparing our model to
observations g has to be small. However, it is a coupling constant in a larger multiverse theory
that we have not yet been able to solve. This leaves the hope that a consistent solution of
this larger theory might determine g. We have started the program to unveil this theory [4–7],
but it is still work in progress.
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A Analytic results for the three models

In this appendix we list some of the analytical results for the three models defined by fds, fgcdt
and fmod, respectively. As remarked above we have already analytic parametric representations
of all the observables considered, using κp as parameter. Here we will provide the explicit
expressions and also provide some of them as analytic functions of time t.

A.1 The fds-model
fds(p) is given (3.19). From (3.3) we can find t as a function of p:

t =
∫ p

−∞

dp′

fds(p′) = − 2√
3λ

tanh−1
(

2
√
λ√
3

1
p

)
(A.1)

p = −2
√
λ√
3

coth
(√

3λ
2 t

)
. (A.2)

fds(p) = λ

sinh2
(√

3λ
2 t

) , i.e v(t) = κρm0v0
λ

sinh2
(√

3λ
2 t

)
(A.3)

The only non-trivial function is DM defined by eq. (3.15). The integral can be expressed by
hypergeometric functions and one representation is

DM = 6√
3λ

(
λ

κρm0

)1/3
sinh1/3

(√
3λ
2 t′

)
2F1

[
1
6 ,

1
2; 7

6;− sinh2
(√

3λ
2 t′

)]∣∣∣∣∣
t0

t

(A.4)

= 6√
3λ

(
λ

κρm0

)1/3 ( λ

fds(p′)
)1/6

2F1

[1
6 ,

1
2; 7

6;− λ

fds(p′)

]∣∣∣∣p0

p

(A.5)

10There are other viewpoints where the value of λ is claimed to be natural (or at least not embarrassingly
small) in a quantum field context when one uses renormalization group arguments [28, 29] (see [30] for a review).

– 15 –



1
where

λ

κρm0
= λ

fds(p0) = sinh2
(√

3λ
2 t0

)
. (A.6)

A.2 The fgcdt-model

fgcdt(p) is given by (3.20). From (3.3) we can find t as a function of p:

t =
∫ p

−∞

dp′

fgcdt(p′) = 4
3
√

6α

tanh−1


√

2
3(−p+ 2α)√

(p− α)2 + 2α2

− tanh−1
(√

2
3

) (A.7)

Definining tc by

3
√

6α
4 tc = tanh−1

(√
2
3

)
= cosh−1√3 = sinh−1√2, (A.8)

we can invert (A.7) to find:

p = −α
sinh 3

√
6 α
4 (t+ tc) + 2

√
2

sinh 3
√

6 α
4 (t+ tc)−

√
2

(A.9)

fgcdt(p) = 9
√

3α2

2
cosh 3

√
6 α
4 (t+ tc)(

sinh 3
√

6 α
4 (t+ tc)−

√
2
)2 (A.10)

Again the only non-trivial function is DM defined by eq. (3.15). In this case the integral in
eq. (3.15) is a generalized hypergeometric functions, a so-called Appell-F1 function:

DM = 1
fgcdt(p0)1/3

(
p′ + α

6α2

)1/3
F1

(1
3 ,

1
3 ,

1
3 ,

4
3;x+(p′), x−(p′)

)∣∣∣∣p0

p
(A.11)

where

fgcdt(p0) = κρm0, x±(p) = 2± i
√

2
3α (p+ α). (A.12)

A.3 The fmod-model

fmod(p) is given by (3.21). From (3.3) we can find t as a function of p:

t =
∫ p

−∞

dp′

fmod(p′) = 4
3
√

3 a

(
arctan 2p− a√

3 a
+ 1

2
√

3
log (p− a)2 + ap

(p+ a)2 + π

2

)
(A.13)

where
a = 21/3α, t→ 0 for p→ −∞, t→∞ for p→ −a. (A.14)

Again we can express DM , defined by the integrals in eq. (3.15), in terms of hypergeometric
functions. One representation is:

DM = 3
5

(2
3

)2/3 1
α2f(p0)1/3 (p′)5/3

2F1

(
5
9 ,

2
3; 14

9 ;−(p′)3

2α3

)∣∣∣∣∣
p0

p

. (A.15)
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A.4 Duality in the fmod-model
We end by observing that we have a kind of duality in the fmod-model. Define a (modified)
Hubble parameter by h(t) = v̇/v = 3ȧ/a = 3H(t), where H(t) is the usual Hubble parameter.
We then have the equations:

3
4

(
p2 + 2α3

p

)
= κρm(v), h(v) = −3

4

(
2p− 2α3

p2

)
. (A.16)

These equations are invariant under the replacement

p ←→ −γ
α

α3

p
, κρm ←→

α

γ
h, γ = 21/3. (A.17)

The mapping p→ −γα2/p has some similarity with a T -duality map in string theory.
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