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1 Introduction

The entropy of many classes of brane systems can be counted using perturbative String Theory
in a regime of parameters in which gravity is turned off. The result matches the entropy of
the black hole with the same charges in the regime of parameters in which gravity is turned
on. This gives spectacular matches, both for the D1-D5 system [1, 2], for M5-M5-M5-P black
holes [3], and also for Type IIA F1-NS5-P black holes [4].

These entropy-matching computations rest on the fact that the counting of index states
essentially does not change1 as couplings are varied from perturbative string states to black-
hole microstructure. Such an approach fails to address the hugely important issue of what
happens to particular individual microstates as one turns gravity on, and precisely what
the microstate structure “looks like” at finite GNewton? An alternative formulation of this
question is: what distinguishes different black-hole microstates from each other in the regime
of parameters where the classical black hole exists. There are strong arguments, coming from
quantum information theory, that individual microstates should differ from each other and
from the classical black-hole solution at the scale of the horizon [5, 6]. Indeed, several very
large classes of microstate geometry solutions, dual to some families of pure states of the CFT
that counts the black hole entropy, have been constructed, both for supersymmetric black
holes [7–22], and also, in fundamentally different approaches, for non-extremal ones [23–25]
and [26–39].

Tracking the D1-D5 microstates from weak to strong coupling is challenging, since the
momentum is carried by bi-fundamental strings whose back-reaction is only known at the
most rudimentary level. The construction of superstrata [7–22] largely rests on collective
string excitations in the untwisted sectors of the D1-D5 CFT. While these solutions describe a
significant sector of the black-hole microstructure, they fall parametrically short of capturing
the black-hole entropy [40, 41]. To obtain a geometric description of generic microstructure
one must capture coherent combinations of twisted-sector states of the CFT, and this seems to
be easier in the Type IIA F1-NS5-P formulation of the brane system that leads to a black hole.

In this formulation, the momentum is carried by little strings, which live on the NS5
world-volume. These little strings have a very simple geometric description: when uplifting the
F1-NS5 system to M theory, each F1 uplifts to an M2 wrapping the M-theory direction. This
M2 can break into N5 strips (which correspond to the little strings on the NS5 world-volume)
which carry momentum independently. The N1N5 resulting little strings form a complicated
maze of intersecting M2 and M5 branes carrying momentum and whose entropy (upon taking
into consideration fermionic partners) matches exactly that of the F1-NS5-P black hole. The
beauty of this characterization of the microstructure is that it lends itself to a geometric
description of the coherent states in terms of supergravity.

Since the momentum of such a “supermaze” is carried by waves on the little strings, the
microstates of the black hole have coherent expression as momentum carried by components
of a fractionated M2-M5 system. One can thus explore such structures in the regime of
parameters where gravity is large and the classical black hole solution is valid. As we have seen
in [42], upon taking into account brane-brane interaction, the supermaze has 16 supercharges

1There can be jumps under “wall-crossing” but these are sub-leading.
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locally, but only 4 supercharges globally. This is a property shared by all brane systems
whose supergravity back-reaction gives a smooth horizonless solution [43], which makes us
confident that the fully back-reacted supergravity solution sourced by the supermaze will
not have a horizon. If the supergravity formulation of the supermaze turns out as we expect
it will, it would finally provide a proof of the fuzzball conjecture.

The purpose of this paper is to make a crucial first step in developing the supergravity
formulation of the supermaze. As one would expect, the supergravity solutions for generic
intersecting branes are extremely complicated. Moreover, supergravity solutions for various
intersecting branes have been extensively studied in the past. We start by pulling together, and
unifying, earlier literature on the intersecting-brane solutions relevant to the supermaze. We
obtain the supergravity equations governing supermaze solutions, and show how a “near-brane”
limit is related to a certain class of warped AdS3×S3×S3 solutions constructed in [44].

There are several stages in this construction, and several technical tools we will develop.
The first is to construct the solution corresponding to the supermaze without momentum.
We will do this from first principles in section 2, and relate our equations and solutions to the
construction in [45]. We also show that, if one imposes spherical (SO(4)× SO(4)) symmetry,
then our equations capture all the 1

4 -BPS M2-M5 solutions. This is described in section 2.3
and appendix A. Even without spherical symmetry, the results of [45] suggest that the results
described in section 2 capture all the possible pure intersecting M2-M5 solutions.

There is an important issue that we clarify in appendix B. We are considering the 1
4 -BPS

system (8 supersymmetries) of intersecting M2’s and M5’s. These branes have one spatial
direction in common, which we label by y. The combined M2 and M5 system therefore spans
six spatial dimensions, and so has four transverse spatial dimensions. Because of the way that
the supersymmetry projectors work, one can add, without breaking the supersymmetry any
further, a complementary set of M5 branes, which we will denote as M5’, whose world volume
spans these four transverse dimensions and y. There is a complete democracy between the
original M5 branes and the M5’ branes. One can thus have 1

4 -BPS solutions with arbitrary
numbers of M2, M5 and M5’ branes, and the BPS equations respect this fact. However, the
explicit eleven-dimensional metric involves a fibration that seemingly breaks the democracy.
In appendix B we discuss how this seeming asymmetry between the M5 branes and the M5’
branes is simply an artifact of coordinate choices.

From the perspective of the supermaze, we want the M5 branes to wrap what will become
compactified directions and not fill the space-time. We thus focus on solutions with no
net M5’ charge. However, because we do want net M2 and M5 charges, the Chern-Simons
term of supergravity will generically require some, at least, “dipolar” distribution of M5’
charge. These considerations play a major role in determining the solutions we consider
in subsequent sections.

In section 3, we first look at a smeared, highly symmetric version of our supermaze and
show how it is related to a brane-intersection solution found in [46]. We then consider a
more general scaling limit of our system of equations that corresponds to a “near-brane-
intersection” limit of the supermaze. We show that this reduces to a particular family2 of
the AdS3×S3×S3 solutions constructed in [44]. Our analysis provides the complete mapping

2The fact that our system asymptotes to M2 or M5 branes at infinity implies that we must set γ = 1 in the
solutions constructed in [44].
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between the near-brane supermaze, the results of [45] and the results of [44]. We re-derive
the BPS equations of [44] from the perspective of the supermaze, thereby furnishing a
description of the supersymmetries of the near-brane, AdS formulation in terms of projection
matrices in M-theory.

In section 4 and appendix C, we show how our supermaze system can be smeared and
dualized into various brane systems. In particular, we show how the supermaze solutions can
be dualized to the F1-D1 string web, whose geometry was constructed in [47]. In appendix D,
we also use dualities to construct simple, new solutions to our original supermaze equations.

In section 5 we consider “floating” M2 and M5 branes both in the original intersecting
M2-M5 brane formulation and in the near-brane AdS formulation. Floating branes [48]
reveal the probes that are mutually BPS with respect to the background brane configuration.
While the floating brane analysis is relatively straightforward in the M2-M5 formulation,
it is particularly revealing in the AdS formulation of [44]. Indeed it shows how the AdS
directions emerge from combinations of natural brane coordinates and shows that only a
particular family of the solutions considered in [44] correspond to brane configurations that
are asymptotic to M2 or M5 branes at infinity.

In section 6, we adapt and develop some of the examples of AdS solutions obtained
in [44], mapping them across to the M2-M5 brane-intersection formulation. This reveals
how the AdS space and the Riemann surface of [44] appear in the more intuitive brane
configurations that are inherent to the supermaze.

The primary core of this paper is the development of “momentum-free” supermazes, the
equations that govern them and how to map the near-brane, AdS solutions onto the M2-M5
configurations. The next step in this program will be to add independent momenta to all the
elements of this system. This is going to be a challenging enterprise for future work. However,
we could not resist exploring the addition of a simple momentum charge as a first step in
this direction. In section 7 we show that a singular momentum charge can indeed be added
by a harmonic Ansatz for the distribution of BPS momentum charge. On top of the AdS,
near-brane “momentum-free” supermaze, adding such a momentum distribution converts the
AdS3 factor into an extremal spinning BTZ black-hole geometry whose momentum charge
depends on the two dimensions of the brane intersection locus. The fact that adding such
a momentum charge involves such an extremely simple Ansatz makes us very optimistic
about completing the far more ambitious project of adding independent momenta to each
intersection locus. Even if the asymptotics of these solutions is not flat, it is also worth
remarking that they give an infinite violation of black-hole uniqueness in this system.

We finish by making some concluding remarks in section 8.

2 The most general solution describing M5-M2 intersections

We are interested in 8-supercharge, or 1
4 -BPS, supergravity solutions describing the uplift of

momentum-free type IIA little strings inside NS5 branes. If we denote the direction of the
little strings as x1, and the M-theory direction as x2, the M-theory solution will have the
charges of M2 branes extended along 012 and of M5 branes extended along the directions
013456. Before the back-reaction of the branes, one can think about this configuration as
describing M5 branes located at arbitrary positions in the M-theory direction, x2, and M2
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branes stretched between any of these M5 branes, and located at arbitrary locations inside
the four-torus spanned by x3, x4, x5, x6.

However, we know that this picture is altered by the interaction between these branes [42]:
the M2 branes will pull on the M5 branes, and the final brane configuration will consist of
multiple spikes with M5 and M2 charge, extending from one M5 to another. Furthermore,
we expect the back-reaction of these spikes to give rise, via a geometric transition, to a new
geometry containing bubbles and fluxes, but no brane sources. However, both the brane
interactions and the geometric transition will respect the symmetries and the supersymmetries
of the original brane system.

Our strategy is to use the eight Killing spinors of the system, defined in terms of the
frame components along the M2 and M5 directions:

Γ012 ε = −ε , Γ013456 ε = ε (2.1)

to solve the gravitino equation

δψµ ≡ ∇µ ϵ+
1

288
(
Γµ

νρλσ − 8 δν
µ Γρλσ

)
Fνρλσ ϵ = 0 , (2.2)

and to determine the metric and three-form vector potential of this system. Before beginning
we can observe that, since

Γ0123456789 10 = 1l , (2.3)

equation (2.1) implies that

Γ01789 10 ε = −ε , (2.4)

and hence adding a set of M5 branes along 01789 10 does not break supersymmetry any
further. We will denote this second possible set of branes by M5’.

2.1 The metric and the three-form potential

We parametrize the M2 directions via (x0, x1, x2) = (t, y, z), and we denote the coordinates
inside the M5 branes (x3, . . . , x6) by vectors u⃗ ∈ R4. The transverse dimensions, (x7, . . . , x10),
will be parametrized by vectors v⃗ ∈ R4. As we explain in appendix A, upon using (2.2) and the
equations of motion of eleven-dimensional supergravity we find that the eleven-dimensional
metric ultimately has the form:

ds2
11 = e2A0

[
− dt2 + dy2 + e−3A0 (−∂zw)−

1
2 du⃗ · du⃗+ e−3A0 (−∂zw)

1
2 dv⃗ · dv⃗

+ (−∂zw)
(
dz + (∂zw)−1 (∇⃗u⃗w) · du⃗

)2]
.

(2.5)

This metric is conformally flat along time and the common M2-M5 direction, (t, y) ∈ R(1,1),
and also along the internal M5 torus (parameterized by u⃗) and the transverse R4 parameterized
by v⃗ ∈ R4. Since the equations we solve are local, the torus wrapped by the M5 branes
can be replaced by R4. To obtain solutions with a compact four-torus one has to consider
periodic sources in this R4. The metric involves a non-trivial fibration of the “M-theory
direction,” z, over this internal R4.
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The constraints on, and relationships between, the functions A0(u⃗, v⃗, z) and w(u⃗, v⃗, z)
will be discussed below, and, for obvious reasons, we require ∂zw < 0.

We will use the set of frames:

e0 = eA0 dt , e1 = eA0 dy , e2 = eA0(−∂zw)
1
2
(
dz+(∂zw)−1 (∇⃗u⃗w

)
·du⃗
)
,

ei+2 = e−
1
2 A0 (−∂zw)−

1
4 dui , ei+6 = e−

1
2 A0 (−∂zw)

1
4 dvi , i=1,2,3,4 .

(2.6)

The three-form vector potential is given by:

C(3)=−e0∧e1∧e2+ 1
3! ϵijkℓ

(
(∂zw)−1(∂uℓ

w)dui∧duj∧duk−(∂vℓ
w)dvi∧dvj∧dvk), (2.7)

where ϵijkℓ is the ϵ-symbol on R4.
This solution appears to be asymmetric between the two R4’s, and hence between the M5

and M5’ branes. However, as we explain in detail in appendix B, this is a coordinate artifact
coming from the choice of fibration of the M-theory direction. One can flip the fibration from
the u⃗-plane to the v⃗-plane by using w as a coordinate and thinking of z as a function, z(w, u⃗, v⃗).

2.2 The maze function

Denote the Laplacians on each R4 via:

Lu ≡ ∇u⃗ · ∇u⃗ , Lv ≡ ∇v⃗ · ∇v⃗ , (2.8)

and suppose that G0(u⃗, v⃗, z) is a solution to what we will refer to as the “maze equation:3”

LvG0 = (LuG0) (∂z∂zG0)− (∇u⃗∂zG0) · (∇u⃗∂zG0) . (2.9)

One then finds that there are eight solutions to the gravitino variation equations, (2.2),
provided w and A0 are given by:

w = ∂zG0 , e−3A0 (−∂zw)
1
2 = LvG0 . (2.10)

One can also verify that these equations along with (2.9) imply

e−3A0 (∂zw)−
1
2 − (∂zw)−1 (∇u⃗w) · (∇u⃗w) = −LuG0 . (2.11)

Hence “brane-intersection” equations, like (2.9), should determine the M5-M2 intersec-
tions of interest to us. More precisely, one expects that once the boundary conditions and
sources are specified, equation (2.9) should have a unique solution.

The differential equation (2.9) has a very interesting form but it is non-linear and cannot
be explicitly solved in general, and rigorous existence proofs are extremely challenging. (It
also has variant, but very similar, forms for many other solutions describing 1

4 -BPS brane
intersections [45, 47, 52]). Nevertheless, it was argued in [45] (see, sections 4.5 and 5.1) using
perturbation theory that once one has specified a brane distribution through its boundary
conditions and sources, there is indeed a unique solution to (2.9), and thus there is a one-to-one
map between brane webs4 and solutions to (2.9).

3In other contexts, when a solution to a BPS system is governed by a single function satisfying one equation,
this function and the equation have been referred to as a “master function” and a “master equation.” (See, for
example, [49–51].) Since G0 completely encodes the structure of the “maze” of branes, we think “maze” is a
more appropriate sobriquet here.

4Some of these brane webs are a special examples of the configurations we consider, where one smears over
three directions of the internal four-torus.
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2.3 Imposing spherical symmetry

A supermaze generically has spherical symmetry in the transverse R4, but breaks all isometries
in the internal R4. Since this solution is complicated, one can try focusing on a simpler
solution that has spherical symmetry in the internal R4 as well. This solution can describe
either a single M2 spike ending on and pulling on an M5 brane, or an M2 brane stretching
between two M5 branes, or multiple coincident M2 branes ending on multiple M5 branes.

The metric with spherical symmetry in the two R4’s is:

ds2
11 = e2A0

[
−dt2+dy2+(−∂zw)

(
dz+(∂zw)−1 (∂uw)du

)2
+e−3A0 (−∂zw)−

1
2
(
du2+u2 dΩ2

3
)
+e−3A0 (−∂zw)

1
2
(
dv2+v2 dΩ′2

3
)]
,

(2.12)

where u = |u⃗|, v = |v⃗| and dΩ2
3, dΩ′2

3 are the metrics of unit three-spheres in each R4 factor.
The obvious choice for a set of frames is then:

e0 = eA0 dt , e1 = eA0 dy , e2 = eA0 (−∂zw)
1
2
(
dz + (∂zw)−1 (∂uw) du

)
,

e3 = e−
1
2 A0 (−∂zw)−

1
4 du , e4 = e−

1
2 A0 (−∂zw)

1
4 dv ,

ei+4 = e−
1
2 A0 (−∂zw)−

1
4 σi , ei+7 = e−

1
2 A0 (−∂zw)

1
4 σ̃i , i = 1, 2, 3 .

(2.13)

where σi and σ̃i are left-invariant one-forms on the unit three-spheres.
Similarly one has the spherically symmetric 3-form potential:

C(3) = −e0 ∧ e1 ∧ e2 + (∂zw)−1 (u3∂uw
)
Vol(S3) +

(
v3∂vw

)
Vol(S′3) , (2.14)

where Vol(S3) and Vol(S′3) are the volume forms of the unit three-spheres. Note there is
a sign-flip of the flux along the S′3 compared to (2.7). This is because of the orientation
change in (2.13) compared to (2.6) where the e4 is now the radial v-direction.

The spherically symmetric formulation is important because it is the one we use most
directly, and because it is relatively easily to show that it is the most general 1

4 -BPS
configuration for our intersecting M2 and M5 branes.

In appendix A we derive this solution following the methodology developed in [49, 50, 53–
55]. We will show that the solutions described above are the only possible ones with these
symmetries.

3 Near-brane M5-M2 intersections

Perhaps rather surprisingly, the 1
4 -BPS geometry created by intersecting M2 and M5 branes

has a near-brane limit that includes an AdS3 factor. One can see this by searching for
solutions with an SO(2, 2)× SO(4)× SO(4) isometry and whose geometry contains factors of
AdS3×S3×S3. The most general such geometry can depend on two non-trivial variables that
we will label as (ρ, ξ). Such solutions have been extensively studied in [44, 46, 52, 56–60].

3.1 Smeared solutions

One can smear along the M-theory direction and thereby find geometries that are ultimately
independent of z. This results in the solution given in [46]. However one has to be a little
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careful in using the methodology of section 2 to arrive at this result: smearing should make
the solution independent of the M-theory direction but, as we will describe, this requires
a judicious coordinate change.

There are two ways to proceed. The smearing will wash out the fibration and so one
can re-work the approach of appendix A but starting with B1 ≡ 0.

In this instance one finds that the BPS equations only solve a subset of the equations of
motion and so one must supplement the BPS system with one of the equations of motion.
Alternatively, one can use the results of section 2 while being careful about what it means
to be independent of the M-theory direction. Specifically, we will see that to realize such
independence one may have to change the z-coordinate via ẑ = zf(u) to get a metric that
is then independent of ẑ. In particular, such a coordinate change leads to a differential
dẑ = f(u)dz + zf ′(u)du that can be used to absorb a z-dependent B1 field into a coordinate
re-definition.

To explore these possibilities, and cast the net a little wider, it is instructive to seek
solutions to (2.9) with a power-series Ansatz in z:

G0 = −1
2 z

2 ĝ2(u, v) + z ĝ1(u, v) + ĝ0(u, v) . (3.1)

Substituting this into (2.9) results in a quadratic in z and hence three equations:

Lv⃗ ĝ2 + ĝ2 Lu⃗ ĝ2 − 2
(
∇⃗u⃗ ĝ2

)2 = 0 ,

Lv⃗ ĝ1 + ĝ2 Lu⃗ ĝ1 − 2
(
∇⃗u⃗ ĝ1

)
·
(
∇⃗u⃗ ĝ2

)
= 0 ,

Lv⃗ ĝ0 + ĝ2 Lv⃗ ĝ0 −
(
∇⃗u⃗ ĝ1

)2 = 0 .

(3.2)

The first equation can be written

Lv⃗ ĝ2 − ĝ3
2 Lu⃗(ĝ−1

2 ) = 0 , (3.3)

which leads to an obvious “separable” solution:

ĝ2 = h2(v⃗)
h1(u⃗)

, (3.4)

where the hj are harmonic. This is the near-brane, limiting boundary condition discussed
in [45].

With this choice for ĝ2, the remaining equations in (3.2) are linear. There is also the
gauge redundancy associated with a linear shift z → z + const.. We will make the simple
choice: ĝ1 ≡ 0, which also eliminates the redundancy. Hence we take

G0 = −1
2 z

2 h2(v⃗)
h1(u⃗)

+ ĝ0(u, v) , (3.5)

and the maze equation, (2.9), reduces to the requirement that the hj are harmonic and
that ĝ0 satisfy the linear equation:

1
h1(u⃗)

Lu⃗ ĝ0 +
1

h2(v⃗)
Lv⃗ ĝ0 = 0 . (3.6)
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Having got to this point we note that we now have:

w = ∂zG0 = −z h2(v⃗)
h1(u⃗)

, (3.7)

and this means that the non-diagonal frame in the metric can be greatly simplified. Specifically:

e−A0 e2 = (−∂zw)
1
2
(
dz + (∂zw)−1 (∇⃗u⃗w

)
· du⃗

)
=
(
h2(v⃗)
h1(u⃗)

) 1
2
[
dz − z

h1(u⃗)
(
∇⃗u⃗ h1(u⃗)

)
· du⃗

]

=
(
h1(u⃗)h2(v⃗)

) 1
2

[
dz

h1(u⃗)
− z

(h1(u⃗))2
(
∇⃗u⃗ h1(u⃗)

)
· du⃗

]
=
(
h1(u⃗)h2(v⃗)

) 1
2 dẑ ,

(3.8)
where

ẑ ≡ z

h1(u⃗)
. (3.9)

In other words, the fibration is “pure gauge.” Hence, both the fibration and the z-dependence
of the metric can be removed by a judicious change of variable. It is the ẑ-coordinate that
is the correct smeared M-theory direction.

There is probably a rich class of solutions to equation (3.6), but there is one interesting,
non-trivial way to satisfy it. One first re-writes (3.6) as:

Lu⃗ ĝ0 = −h0(u⃗, v⃗)h1(u⃗) , Lv⃗ ĝ0 = h0(u⃗, v⃗)h2(v⃗) , (3.10)

for some function, h0. One then follows [46] by imposing the constraint h0 = h1h2 so that:

ĝ0 = f2(v⃗)h1(u⃗)− f1(u⃗)h2(v⃗) , where Lu⃗ f1 = h2
1 , Lv⃗ f2 = h2

2 , (3.11)

and hence

G0 = −1
2 z

2 h2(v⃗)
h1(u⃗)

+ f2(v⃗)h1(u⃗)− f1(u⃗)h2(v⃗) . (3.12)

Using this in (2.10), one obtains

w = −z h2(v⃗)
h1(u⃗)

, e−3A0

(
h2(v⃗)
h1(u⃗)

) 1
2
= h1(u⃗)h2

2(v⃗) ⇒ e−2A0 = h1(u⃗)h2(v⃗) . (3.13)

The end result is precisely the family of solutions constructed in [46] and, in particular,
the metric reduces to:

ds2
11 = (h1(u⃗)h2(v⃗))−1 (−dt2 + dy2) + dẑ2 + h1(u⃗) du⃗ · du⃗+ h2 (v⃗) dv⃗ · dv⃗ . (3.14)

One should note that, if one starts from the more general framework of section 2, then
the independence from the M-theory direction and the removal of the non-trivial fibration
requires a re-definition of the z-coordinate.
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3.2 More general families of solutions

There are more general, “unsmeared” solutions that have been obtained in a “near-brane”
limit [44, 52, 56–60]. Here we summarize the key results of [44].

The Ansatz makes full use of the isometries:

ds2
11 = e2A ( f̂2

1 ds
2
AdS3 + f̂2

2 ds
2
S3 + f̂2

3 ds
2
S′3 + hijdσ

idσj ) ,
C(3) = b1 ê

012 + b2 ê
345 + b3 ê

678 ,
(3.15)

where the metrics ds2
AdS3

, s2
S3 and ds2

S′3 are the metrics of unit radius on AdS3 and the
three-spheres and ê012, ê345 and ê678 are the corresponding volume forms.

The functions e2A, f̂j , bj , and the two-dimensional metric, hij , are, a priori, arbitrary
functions of (σ1, σ2) (and the e2A factor is redundant). However, the final result in [44]
is to pin down all these functions and express them in terms of a complex function, G,
and a real function h.

First, the two dimensional metric must be that of a Riemann surface with Kähler
potential, log(h):

hijdσ
idσj = ∂wh∂w̄h

h2 |dw|2 , (3.16)

where w is a complex coordinate and h is required to be harmonic:

∂w∂w̄h = 0 . (3.17)

We will define real and imaginary parts of w via:

w = ξ + i ρ ⇒ ∂w = 1
2
(
∂ξ − i ∂ρ

)
, ∂w̄ = 1

2
(
∂ξ + i ∂ρ

)
. (3.18)

It is also convenient to introduce the harmonic conjugate, h̃, of h, defined by requiring
that −h̃ + ih is holomorphic:

∂w̄(−h̃+ ih) = 0 . (3.19)

Since −h̃+ ih is holomorphic we can use them as local coordinates on the Riemann surface,
or, equivalently we can take

−h̃+ ih = β w = β (ξ + i ρ) , (3.20)

where β is a constant parameter introduced for later convenience.
Thus we may (locally) fix the Riemann surface metric to be a multiple of that of the

Poincaré upper half-plane:

hijdσ
idσj = dξ2 + dρ2

4 ρ2 , (3.21)

where the factor of 4 comes from the factors of 1
2 in partial derivatives (3.18).

The complex function, G, is required to satisfy the equation:

∂w G = 1
2 (G+G ) ∂w log(h) . (3.22)
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If one writes G in terms of real and imaginary parts, G = g1 + ig2, and uses the local
coordinates (3.20), then one has:

∂ξg1 + ∂ρg2 = 0 , ∂ξg2 − ∂ρg1 = −1
ρ
g1 . (3.23)

It is convenient to introduce potentials, Φ, and Φ̃, associated with G. First, one
defines Φ via:

∂w Φ = G∂wh ⇔ ∂ξΦ = −β g2 , ∂ρΦ = β g1 . (3.24)

The existence of such a Φ is guaranteed by the first equation in (3.23). The second equation
in (3.23) implies that Φ must satisfy(

∂2
ξ + ∂2

ρ − 1
ρ
∂ρ

)
Φ = 0 . (3.25)

Similarly, the second equation in (3.23) implies that there is a conjugate potential, Φ̃,
defined by:

∂ξΦ̃ = −β
ρ
g1 = −1

ρ
∂ρΦ , ∂ρΦ̃ = −β

ρ
g2 = 1

ρ
∂ξΦ . (3.26)

The first equation in (3.23) then implies that Φ̃ must satisfy

∂2
ξ Φ̃ + 1

ρ
∂ρ
(
ρ ∂ρΦ̃

)
= 0 . (3.27)

If one introduces a dummy coordinate, χ, and considers Euclidean R3 with coordinates
(ρ, χ, ξ), where ξ defines one of the axes and (ρ, χ) are polar coordinates in the remaining R2,
then the equation (3.27) is simply the condition that Φ̃ is harmonic on R3. Moreover, if one
defines a one-form, Φdχ, then the relationship between Φ and Φ̃ in (3.26) can be summarized
as ∗3(Φdχ) = dΦ̃. It remains to be seen if this is simply a coincidence or where there is some
deeper physical meaning to this observation and the coordinate, χ.

Finally, define the functions:

W± ≡ |G± i|2 + γ±1 (GG− 1) , (3.28)

where −1 ≤ γ ≤ 1 is a “deformation” parameter that defines the relevant exceptional
superalgebra D(2, 1; γ) ⊕ D(2, 1; γ) [44].

The γ = 1 limit will be essential to our subsequent analysis. Indeed, it was noted
in [44, 58] that the superalgebra D(2, 1; γ)⊕D(2, 1; γ) can only be embedded in osp(8|4,R)
for γ = 1, and in this limit the superalgebra becomes osp(4|2,R)⊕ osp(4|2,R). Therefore,
restricting to γ = 1 is quite probably a crucial step if one is to embed the brane configuration
into an asymptotically-flat background because the supersymmetries in asymptotically-flat
geometries are expected to be subalgebras of osp(8|4,R).

The sign of gamma is related to the magnitude of G via:

γ (GG− 1) ≥ 0 , (3.29)
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and to keep our presentation simple, we will henceforth restrict to:

γ > 0 , |G| ≥ 1 . (3.30)

With this choice, the parameters in [44] can be simplified to:

c1 = γ1/2+γ−1/2> 0 , c2 =−γ1/2< 0 , c3 =−γ−1/2< 0 , σ=+1 . (3.31)

The metric functions in (3.15) are given by:

f̂−2
1 = γ−1 (γ + 1)2 (GG− 1) , f̂−2

2 =W+ , f̂−2
3 =W− , (3.32)

and
e6A = h2 (GG− 1)W+W− = γ (γ + 1)−2 h2 f̂−2

1 f̂−2
2 f̂−2

3 . (3.33)

The flux functions, bi, are given by:

b1 = ν1
c3

1

[
h (G+G)
(GG− 1)

+ γ−1 (γ + 1)2 Φ− (γ − γ−1) h̃
]
,

b2 = ν2
c3

2

[
− h (G+G)

W+
+ (Φ− h̃)

]
, b3 = ν3

c3
3

[
h (G+G)

W−
− (Φ + h̃)

]
,

(3.34)

where one has |νi| = 1, with signs arranged so that ν1ν2ν3 = −1. Compared to the results
in [44], we have used (3.31) and we have dropped some (irrelevant) additive constants in the bi.

3.3 Mapping the AdS3 solutions to M5-M2 intersections

Our goal here is to show how to map the AdS3 solutions of section 3.2 into the spherically-
symmetric brane-intersection formulation of section 2.3.

The first step is to remember that the AdS3 solutions, supposed to correspond to a
near-brane limit, depend non-trivially on only two coordinates, (ρ, ξ), whereas the formulation
in section 2.3 allows asymptotically-flat solutions that depend non-trivially on three variables,
(u, v, z). We thus have to find a scaling limit for the solutions in section 2.3.

To render the scaling properties more transparent, we introduce a Poincaré metric
on AdS3:

ds2
AdS3 = dµ2

µ2 + µ2 (− dt2 + dy2) , (3.35)

where the Poincaré R1,1 factor represents the common directions of the brane intersection,
and it is to be identified with the same factor in (2.12).

We start by noting that the metric (3.15) is scale invariant under:

µ → λµ , (t, y) → λ−1(t, y) . (3.36)

This must now be imposed on the more general class of solutions discussed in section 2.3.
Scale invariance of (2.12) can be achieved by taking:

(u, v) →
√
λ (u, v) , z → λ−1z , (3.37)
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and
eA0 → λ eA0 , w → λ−1w . (3.38)

There is a very important difference between (3.36), (3.37) and (3.38). The first two are
simply prescriptions for the scaling of coordinates, while the (3.38) imposes strong constraints
on the functional form of eA0 and w. It is these constraints that lead to the near-brane limit.
Indeed, this scaling invariance leads to the following Ansatz for the mapping we seek:

u = √
µm1(ρ, ξ) , v = √

µm2(ρ, ξ) , z = µ−1m3(ρ, ξ) ,
w = µ−1m4(ρ, ξ) , eA0 = µm5(ρ, ξ) ,

(3.39)

for some functions, mj .
A direct comparison of (2.12) and (3.15), using (3.35) and (3.21), leads to:

e2A f̂2
1 µ

2=e2A0 , e2A f̂2
2 =e−A0 (−∂zw)−

1
2 u2 , e2A f̂2

3 =e−A0 (−∂zw)
1
2 v2 , (3.40)

along with

e2A
(
f̂2

1
dµ2

µ2 + dξ2 + dρ2

4 ρ2

)
= e−A0

(
(−∂zw)−

1
2 du2 + (−∂zw)

1
2 dv2

)
+ e2A0 (−∂zw)

(
dz + (−∂zw)−1 (∂uw

)
du
)2
.

(3.41)

Using (3.20), (3.32), (3.33) and (3.40) in (3.41) one finds that one must have:

γ

(1 + γ)2
1

(GG− 1)
dµ2

µ2 + dξ2 + dρ2

4 ρ2

= 1
W+

du2

u2 + 1
W−

dv2

v2 + 1
β2 ρ2 (GG− 1)

W+
W−

(
u2dz + (∂zw)−1 (u3∂uw

) du
u

)2
.

(3.42)

One can also manipulate (3.40), using (3.33) and (3.20), to obtain:

u2v2= β2γ

(γ+1)2 µ
2ρ2 , (−∂zw)

v2

u2 =
W+
W−

, eA0 =
β
√
γµρ

(γ+1) e
−2A(W+W−)

1
2 . (3.43)

The first identity in (3.43), and the form of the fibration on the right-hand side of (3.42),
suggest a slightly more refined change of variables:

u = √
aµ ρ eα(ρ,ξ) , v = √

aµ ρ e−α(ρ,ξ) , z = µ−1 e−2α(ρ,ξ) p(ρ, ξ) , (3.44)

where α and p are functions to be determined, and the parameter a is given by:

a ≡
β
√
γ

(γ + 1) . (3.45)

Comparing the expressions (2.14) and (3.15) for the C(3) flux leads to:

(∂zw)−1 (u3∂uw
)
= b2 ,

(
v3∂vw

)
= b3 , (3.46)

where b2 and b3 are given in (3.34). The matching of the flux along the AdS direction involves
non-trivial gauge transformations and we will return to this below.
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From this we note that (3.42) can be re-written as

γ

(1 + γ)2
1

(GG− 1)
dµ2

µ2 + dξ2 + dρ2

4 ρ2

= 1
W+

du2

u2 + 1
W−

dv2

v2 + 1
β2 ρ2 (GG− 1)

W+
W−

(
u2dz + b2

du

u

)2
.

(3.47)

Substituting the change of variable (3.44) into this, one obtains an over-determined system
of equations for b2 and the derivatives of α and p. This system is very complicated, involving
square-roots of a quadratic in W±. However, for γ = 1, the system dramatically simplifies
and one finds:

∂ξα = − ε1
2ρ g1 , ∂ρα = 1

2ρ g2 , b2 = 2 a ρ p+ ε2 βρ g1
g2

1 + g2
2 + g2

,

∂ξp = −ε1ε2 β

2 aρ (g2 − 1) , ∂ρp = −1
ρ

(
p+ ε2 β

2 a g1

)
.

(3.48)

where g1 and g2 are the real and imaginary parts of G, G = g1 + ig2.
From (3.23) one sees that ∂ξ(ρ−1g2) = ∂ρ(ρ−1g1) and hence we must take ε1 = −1, and

then one can identify α with the potential Φ̃:

α = − 1
2β Φ̃ . (3.49)

Similarly, it is elementary to integrate the equations for p to arrive at:

p = − ε2
2 a ρ

(
Φ+ β ξ

)
. (3.50)

Using (3.48) one finds that b2 must have the form:

b2 = ε2

(
βρ g1

g2
1 + g2

2 + g2
−
(
Φ+ β ξ

))
= ε2

(
h (G+G)

W+
−
(
Φ− h̃

))
. (3.51)

From (3.31) one sees that c2 = −1 for γ = 1, and one finds a perfect match between (3.51)
and (3.34) if ν2 = ε2.

To summarize, in order to map the solution in section 3.2 to the near-brane limit of the
spherically-symmetric brane-intersection of section 2.3 one needs to take:

γ = 1 , u =
(1

2 βµρ
) 1

2 e
− 1

2 β
Φ̃
, v =

(1
2 βµρ

) 1
2 e

+ 1
2 β

Φ̃
, z = − ε2

βρµ
e

1
β

Φ̃ (Φ+ β ξ
)
.

(3.52)
One can also compute w as a function of (µ, ρ, ξ). Indeed, from (3.43) and (3.46) one has

∂zw = −g
2
1 + g2

2 + g2
g2

1 + g2
2 − g2

e
− 2

β
Φ̃
, (∂zw)−1 (u3∂uw

)
= b2 ,

(
v3∂vw

)
= b3 , (3.53)

from which one obtains:

dw = (∂zw)dz + (∂uw)du+ (∂vw)dv = d

[
ε2
βρµ

e
− 1

β
Φ̃(Φ− βξ)

]
, (3.54)
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and hence:

w = ε2
βρµ

e
− 1

β
Φ̃(Φ− βξ) . (3.55)

To get an exact differential on the right-hand side of (3.54) it is essential that one has

b3 = ε2

(
βρ g1

g2
1 + g2

2 − g2
−
(
Φ− β ξ

))
= ε2

(
h (G+G)

W−
−
(
Φ+ h̃

))
. (3.56)

From (3.31) one sees that c3 = −1 for γ = 1, and one finds a perfect match between (3.56)
and (3.34) if ν3 = −ε2.

It is interesting to note that (3.52) and (3.55) imply

u2 z = −1
2 ε2

(
Φ+ β ξ

)
, v2w = 1

2 ε2
(
Φ− β ξ

)
, (3.57)

which, once again, illustrates the “democracy” in the fibration discussed in appendix B.
Additionally, it is interesting to observe that (3.52) and (3.55) imply that if one flips the
signs of the potentials, then one flips the roles of u and v and the roles of z and w:

Φ → −Φ , Φ̃ → −Φ̃ ⇒ u↔ v , z ↔ w . (3.58)

Finally, consider the differential:

ω ≡ e3A0 (−∂zw)
1
2
(
dz + (∂zw)−1 (∂uw

)
du
)
. (3.59)

Using (3.33), (3.43) and (3.52) one finds:

ω = W+ µ
2

4 (GG− 1)

(
u2dz + (∂zw)−1 (u3∂uw

) du
u

)
= ε2

4

[(
βρ g1

g2
1 + g2

2 − 1
+ 2Φ

)
µdµ− d

(
µ2 Φ

)]
= ε2

8

[(
h(G+G)
(GG− 1)

+ 4Φ
)
µdµ− d

(
2µ2 Φ

)]
= ε2
ν1
b1 µdµ− ε2

4 d
(
µ2 Φ

)
,

(3.60)

where the last expression follows from (3.34) and (3.31) for γ = 1. Thus one has

b1 = ν1
4

(
βρ g1

g2
1 + g2

2 − 1
+ 2Φ

)
, (3.61)

as in (3.34) and [44] with c1 = 2.
The important point here is that the three-form potential (2.7) along y (the common

M2-M5 direction) and z (the M-theory direction) is:

C
(3)
tyz = −e0 ∧ e1 ∧ e2 = −dt ∧ dy ∧ ω = −ε2

ν1
b1 µdt ∧ dy ∧ dµ+ ε2

4 d
(
µ2 Φ dt ∧ dy

)
. (3.62)

Using (3.15) and (3.35) one has:

C
(3)
tyz = b1 µdt ∧ dy ∧ dµ , (3.63)

and so these components of the flux match (3.62), up to a gauge transformation, provided
that ν1 = −ε2.

We have shown that there is perfect agreement if and only if −ν1 = ν2 = −ν3 = ε2.
In [44] these is a further constraint ν1ν2ν3 = −1, which suggests ε2 = −1, however this

last constraint is related to the form of the unbroken supersymmetries. We will discuss
all these signs in the next section.
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3.4 Verifying the BPS equations for the AdS3 solutions

We can use the results of section 3.3 to verify that the AdS3 solutions satisfy directly the
BPS equations in section 2. Specifically, we have taken the following frames:

e0 = µ eA

2
√
GḠ− 1

dt , e1 = µ eA

2
√
GḠ− 1

dy ,

e2 = ε2 e
A

ρ
√
(GḠ− 1)W+W−

(
ρ g1

dµ

µ
+ (GḠ− 1)

(
g2 dξ − g1 dρ

))
,

e3 = eA

2
√
W+

(
dµ

µ
+ dρ

ρ
+ 1
ρ

(
g1 dξ + g2 dρ

))
,

e4 = eA

2
√
W−

(
dµ

µ
+ dρ

ρ
− 1
ρ

(
g1 dξ + g2 dρ

))
,

ei+4 = eA

2
√
W+

σi , ei+7 = eA

2
√
W−

σ̃i , i = 1, 2, 3 .

(3.64)

These are, in fact, precisely the same frames as in (2.13); note, in particular, the possible
sign choice, ε2, in e2. Using (3.15) to define the Ansatz for the flux, C(3), one finds that
all the BPS equations can be satisfied if:

∂ξb1 = ε2 ∂ξ

[
− β ρ g1

4 (GḠ− 1)

]
+ 1

2 ε2 β g2 , ∂ρb1 = ε2 ∂ρ

[
− β ρ g1

4 (GḠ− 1)

]
− 1

2 ε2 β g1 ,

∂ξb2 = ε2 ∂ξ

[
− 2β ρ g1

W+
+ β ξ

]
− ε2 β g2 , ∂ρb2 = ε2 ∂ρ

[
− 2β ρ g1

W+
+ ε2 β ξ

]
+ ε2 β g1 ,

∂ξb3 = ε2 ∂ξ

[
− 2β ρ g1

W−
− β ξ

]
− ε2 β g2 , ∂ρb3 = ε2 ∂ρ

[
− 2β ρ g1

W−
− β ξ

]
+ ε2 β g1 .

(3.65)
which leads to:

b1=−ε2

(
βρg1

4(GḠ−1)
+1
2Φ
)
, b2=−ε2

(2βρg1
W+

−(Φ+βξ)
)
, b3=−ε2

(2βρg1
W−

−(Φ−βξ)
)
.

(3.66)
This is consistent with (3.34) for c1 = 2, c2 = c3 = −1, if one takes −ν1 = −ν2 = ν3 = ε2.

The signs of the fluxes determine the unbroken supersymmetries. Indeed, if we gen-
eralize (A.4) to

Γ012 ε = η1 ε , Γ013567 ε = η2 ε , Γ01489 10 ε = −η1 η2 ε , (3.67)

where ηj are signs, η2
j = 1, then one finds:

b1 = ε2 η1

(
β ρ g1

4 (GḠ− 1)
+ 1

2 Φ
)
, b2 = ε2 η1η2

(2β ρ g1
W+

− (Φ + β ξ)
)
,

b3 = −ε2 η2

(2β ρ g1
W−

− (Φ− β ξ)
)
.

(3.68)

This matches (3.34) for c1 = 2, c2 = c3 = −1, if ν1 = ε2η1, ν2 = ε2η1η2 and ν3 = ε2η2.
Note that this implies ν1ν2ν3 = ε2, and, as noted above, this matches the constraint in [44]
if ε2 = −1. This means that the frame, e2, in (3.64) comes with a negative sign. Indeed,
in section 3.3 the matching required that −ν1 = ν2 = −ν3 = ε2, which corresponds to
η1 = η2 = ε2 = −1.
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The choices of signs η1, η2 and ε2 are determined by the unbroken supersymmetry and
frame orientations. We will persist with the choice that we started with in (2.1) and we
will keep our frames positive. Thus we will take:

η1 = −1 , η2 = +1 , ε2 = +1 . (3.69)

4 String webs

Some of the solutions we have constructed can be related, via dualities, to the (p, q) string-web
solutions preserving eight supercharges that were obtained in [47]. This relation is expected:
when the M2-M5 solutions are smeared over three of the internal torus directions, one can
find a duality chain that relates the M2 and M5 branes to F1 and D1 strings. To illustrate
this connection and some of the interesting properties of our solutions it reveals, we perform
the explicit duality at the level of supergravity solutions, and relate the F1-D1 string-web
solutions of [47] to the ones we obtained in section 2.

We begin with the string-web solutions:

ds2
IIB =

√
h11

[
−e3Adt2 + e3Ahabdr

adrb + e−3A

dethdw
2
2 + dy2

6

]
, (4.1)

e2ϕ = h2
11

deth , C0 = −h12
h11

, B2 = e3Ah1adt ∧ dra, C2 = e3Ah2adt ∧ dra

which describe a web of F1-strings, D1-strings and more generic (p, q) strings in the plane
spanned by (r1, r2), with w2 and y6 being orthogonal directions. The two-dimensional metric
hab can be expressed in terms of a Kähler potential:

hab =
1
2∂a∂bK(r1, r2,y) , (4.2)

which satisfies a Monge-Ampère equation

∆yK + 2e−3A = 0 , (4.3)

with e−3A = deth.

4.1 The D2-D4 frame

In order to dualize the solution (4.1) to the M2-M5 duality frame and compare it with our
solution (2.5)–(2.7), we have to first go to the D2-D4 frame by performing T-dualities along
w2 and y1, an S-duality, and finally another T-duality along y2. Anticipating the mapping of
this solution to the one of section 2, we do the following coordinate relabeling:

r1 → z , r2 → u1 , w2 → u2 , y1 → u3 , y2 → y , y3,4,5,6 → υ3,4,5,6 . (4.4)

The procedure, explained in detail in appendix C, involves working in the democratic
formalism and using several times the Monge-Ampère equation (4.3). The final result for
the solution describing a D2-D4 web is

ds2 = 1√
deth

(−dt2+dy2)+
√
deth
h11

(du2
2+du2

3)+
√
deth

(
e3Ahabdr

adrb+ds2
R4

)
,

e2ϕ =
√
deth
h11

, B2 =
h12
h11

du2∧du3 ,
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C3 = e3Ah1adt∧dra∧dy− υ3

2 ∂υ∂zKdΩ′
3 ,

C5 =
1
h11

dt∧du1∧du2∧du3∧dy+
υ3

2

(
h12
h11

∂υ∂zK−∂υ∂u1K

)
du2∧du3∧dΩ′

3 . (4.5)

4.2 Uplifting to M-theory

In order to go to M-theory we have to uplift the system (4.5) along a direction, x, that we will
call x = −u4. Using the usual relations between type IIA and 11-dimensional supergravity

ds2
11 = e

−2ϕ
3 ds2

10 + e
4ϕ
3 (dx+ C1)2 , (4.6)

C ′
3 = C3 +B2 ∧ dx , (4.7)

where x is the uplifting direction, we arrive at the following M-theory solution:

ds2
11=

h
1/3
11

(deth)2/3 (−dt
2+dy2)+(deth)1/3

h
2/3
11

(du2
2+du2

3+du2
4)

+(deth)1/3h
1/3
11

(
e3Ahabdr

adrb+ds2
R4

)
, (4.8)

C3=
h11
dethdt∧dz∧dy+

h12
dethdt∧du1∧dy−

h12
h11

du2∧du3∧du4−
υ3

2 ∂υ∂zKdΩ′
3 . (4.9)

Remembering the re-labelling of the ra coordinates in (4.4), and adding and subtracting
(det h)1/3

h
2/3
11

du2
1 in (4.8), the foregoing metric becomes:

ds2
11 = h

1/3
11

(deth)2/3 (−dt
2 + dy2) + (deth)1/3

h
2/3
11

(du2
1 + du2

2 + du2
3 + du2

4)

+ h
4/3
11

(deth)2/3

(
dz + h12

h11
du1

)2
+ (deth)1/3h

1/3
11

(
dυ2 + υ2dΩ′2

3

)
, (4.10)

where we have written the R4 metric of (4.8) in hyperspherical coordinates,
Now, we would like to compare this solution with (2.5)–(2.7). In order to do that we

have to assume spherical symmetry in R4(υ⃗),5 and fiber the “original” M-theory direction,
z, over a single direction of the R4(u⃗), which we pick, for obvious reasons, to be u1. The
metric and C(3) field then become:

ds2
11=e2A0(−dt2+dy2)+e−A0(−∂zw)−

1
2
(
du2

1+du2
2+du2

3+du2
4

)
(4.11)

+e2A0(−∂zw)
(
dz+(∂zw)−1(∂u1w)du1

)2
+e−A0(−∂zw)

1
2
(
dυ2+υ2dΩ′2

3

)
,

C(3)=−e3A0(−∂zw)
1
2dt∧dy∧dz+e3A0(−∂zw)−

1
2 (∂x1w)dt∧dy∧dx1 (4.12)

+(−∂zw)−1(∂u1w)du2∧du3∧du4+(υ3∂υw)dΩ′
3 .

Comparing (4.11) with (4.8) it is easy to see that the following relations should hold for
the two metrics to be the same:

e2A0 = h
1/3
11

(deth)2/3 , h11 = −∂zw , h12 = −∂u1w . (4.13)

5It is not necessary to assume spherical symmetry in R4(υ⃗) in 4.1, but doing so simplifies considerably the
transition to the democratic formalism.
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Finally, comparing (4.12) with (4.9) we see that w should be equal to −1
2∂zK, and from (2.10)

one finds that the maze function, G0, is, up to signs and factors of 2, precisely the Kähler
potential of the string-web solution.

5 Floating M2 and M5 branes

Even if the brane structure of the solutions we construct is obscured by the brane interactions
and back-reaction, there is a very intuitive way to reveal this structure: one finds the brane
probes that feel no force when inserted into these solutions. The orientation of the floating
branes in the metric given by the frames in section 2 is straightforward, and so is the evaluation
of the appropriate DBI-like and Wess-Zumino-like terms in the M2-brane action. However,
the action of M5 branes is rather complicated [61]; the easiest way to evaluate it is to use
one of the isometries of the M-theory solution to formally write it as a Type IIA solution (as
we did in the previous section) and evaluate the action of probe D4 branes.

We now examine these brane probes in more detail.

5.1 Floating M2 branes in the intersecting M2-M5 Ansatz

It is easy to see the floating M2 branes in the brane-intersection formulation of the M2-M5
solutions of section 2. Indeed, parametrizing the brane using coordinates (η0, η1, η2), it is
trivial to see that a brane with:

t = η0 , y = η1 , z = η2 , u⃗, v⃗ constant , (5.1)

feels no force in all of the solutions in section 2. This is because the (t, y, z)-components
of C(3) are simply:

C
(3)
tyz = −e0 ∧ e1 ∧ e2 . (5.2)

Since this is the form of the determinant of the frames along the probe directions, it means
that the WZW term will precisely cancel the DBI action for the brane embedding defined
by (5.1). Thus (5.1) defines floating M2 branes.

Using (3.52) we see that in the AdS3 formulation, the floating M2 branes are given by:

ρ = k1 µ
−1 , Φ̃(ξ, ρ) = k2 , (5.3)

where k1 and k2 are constants. The floating M2 branes thus follow the level-curves of Φ̃, with
scale, µ, set by the radial coordinate, ρ, on the Riemann surface.

5.2 Floating M2 branes in the AdS3 formulation

It is instructive to look for floating M2 branes directly in the AdS3 solutions. We are
going to start with a general value (though positive) value of γ > 0. Following (5.1) we
use the parametrization

t = η0 , y = η1 , µ = eη2 , ξ = σ1(η2) , ρ = σ2(η2) , (5.4)

for some functions, σ1 and σ2.
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The pull-back of the metric defined by (3.15), (3.21) and (3.35) onto the M2 brane is:

dŝ2
3 = e2A

[
f̂2

1
(
dη2

2 + e2η2
(
− dη2

0 + dη2
1
))

+ (σ′1)2 + (σ′2)2

4σ2
2

dη2
2

]
. (5.5)

The DBI Lagrangian is given by the square-root of the determinant of this metric:

LDBI = e3A f̂2
1 e

2η2

(
f̂2

1 + (σ′1)2 + (σ′2)2

4σ2
2

) 1
2

= h f̂2
1 e

2η2

[
(GG− 1)W+W−

(
f̂2

1 + (σ′1)2 + (σ′2)2

4σ2
2

)] 1
2
.

(5.6)

To be able to cancel this against the WZW term, the term in the square bracket needs to be
a perfect square. For γ = 1, there is a simple way to achieve this. Suppose

(σ′1)2 + (σ′2)2

σ2
2

= g2
1 + g2

2
g2

1
, (5.7)

then one finds that[
(GG− 1)W+W−

(
f̂2

1 + (σ′1)2 + (σ′2)2

4σ2
2

)]
=
(
W+W−
4 g1

)2
, (5.8)

and the DBI Lagrangian reduces to:

LDBI = e2η2
β σ2

(
(g2

1 + g2
2)2 − g2

2
)

4 g1 (g2
1 + g2

2 − 1)
, (5.9)

where we have assumed γ = 1 and used (3.20) and (5.4).
The WZW action is the pull-back of C(3) onto the M2 brane:

Ĉ(3) = b1 e
2η2 dη0 ∧ dη1 ∧ dη2 , (5.10)

with b1 given by (3.34). However, we must also allow for a possible gauge transformation
of the form C(3) → C(3) + d[µ2Λ(ρ, ξ) dη0 ∧ dη1], for some function, Λ, and so we take the
WZW action to be:

C̃(3) = e2η2
(
b1 + 2Λ + (∂ξΛ)σ′1 + (∂ρΛ)σ′2

)
dη0 ∧ dη1 ∧ dη2 . (5.11)

Taking γ = 1 and Λ = −2ν1c
−3
1 Φ yields

C̃(3) = e2η2 ν1
c3

1

[
h (G+G)
(GG− 1)

− 2 (∂ξΦ)σ′1 − 2 (∂ρΦ)σ′2
]
dη0 ∧ dη1 ∧ dη2

= ν1 e
2η2 β σ2

4

[
g1

(g2
1 + g2

2 − 1)
+ g2

σ′1
σ2

− g1
σ′2
σ2

]
dη0 ∧ dη1 ∧ dη2 ,

(5.12)

where we have used (3.26) and (3.31) for γ = 1.
The WZW term exactly matches the DBI Lagrangian, (5.9), if and only if:

σ2 = k1 e
−η2 ,

σ′1
σ2

= g2
g1
, (5.13)

which also satisfies (5.7). The constant, k1 is the same as in (5.3).
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Given that σ2 = −σ′2, the second equation can be written:

g1σ
′
1 + g2 σ

′
2 = 0 ⇔ ∂ξΦ̃σ′1 + ∂ρΦ̃σ′2 = 0 , (5.14)

which means that the floating branes follow the level curves of Φ̃. This agrees with the shape
of the floating M2 brane determined directly in section 5.1 and changing from the M2-M5
coordinates to the coordinates proper to the AdS3 solution (5.3).

This calculation indicates that floating M2 branes do not exist in the AdS3 solutions
of [44] unless γ = 1. Only for this value the expression under the square root in the DBI
Lagrangian becomes a perfect square, allowing the DBI and the WZ Lagrangians to cancel.
This confirms the result of the previous section: the AdS3 solutions of [44] only correspond
to near-horizon limits of M2-M5 brane intersections in flat space when γ = 1.

5.3 Floating M5 branes in the intersecting M2-M5 Ansatz

As we mentioned above, evaluating the action of probe M5 branes in a complicated background
is quite involved. The easiest strategy is to reduce the solution to Type IIA and evaluate the
action of probe D4 branes. Fortunately, we have already obtained the formulas for the IIA
reduction of our M2-M5 solution when relating it to F1-D1 string webs (4.5).

We consider probe D4 branes whose volume is parametrized by (η0, η1, η2, η3, η4) em-
bedded in spacetime as

η0 = t , η1 = −u1 , η2 = u2 , η3 = u3 , η4 = y . (5.15)

The induced metric on it is

ds̃2
5 = 1√

deth
(−dt2 + dy2) + h22√

deth
du2

1 +
√
deth
h11

(du2
2 + du2

3) (5.16)

and the induced NS-NS and RR fields are

B̃2 = h12
h11

du2 ∧ du3 ,

C̃3 = − h12
dethdt ∧ du1 ∧ dy , (5.17)

C̃5 = − 1
h11

dt ∧ du1 ∧ du2 ∧ du3 ∧ dy .

It is straightforward now to see that the DBI and WZ actions are:

SDBI = −T4

∫
d5σe−ϕ

√
− det

(
G̃αβ + Fαβ + B̃αβ

)
= −T4

∫
d5σ

h22
deth , (5.18)

SW Z = −T4

∫
eB̃2+F̃2 ∧ ⊕nC̃n = T4

∫
d5σ

h22
deth , (5.19)

and hence the D4-brane (5.15) feels no force in this solution. This in turn indicates that
probe M5 branes extended along y and the four-torus parameterized by u⃗ feel no force in
the M2-M5 solution (2.5)–(2.7).
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6 Interesting examples of M2-M5 near-horizon solutions

The solutions of the M2-M5 system considered in section 2 are determined by a non-linear
Monge-Ampère-like maze equation (2.9), and obtaining generic solutions to this equation is
prohibitively complicated. Even simpler solutions such as a single infinite M2 brane ending
on (and pulling on) an M5 brane cannot be found. The only known solution to this maze
equation is the one corresponding to an infinite tilted M5 brane with M2 charge. This
solution can be obtained by dualizing a tilted D-brane system, and for the proper tilt and
the proper M2 brane density it can be shown to fit precisely in the Ansatz (2.12). We
present this solution in appendix D.

In contrast, the near-horizon geometries corresponding to M2-M5 solutions with an
SO(4) × SO(4) isometry have been shown in section 3 to belong to the γ = 1 family of
AdS3×S3×S3×Σ solutions constructed in [44], where Σ is a Riemann surface. These solutions
can be constructed systematically by solving a set of linear equations in two dimensions, and
there are quite a few classes of solutions that one can try to relate to M2-M5 brane systems.

6.1 No-flip solutions

In section 8.3 of [44], the authors consider “no-flip” solutions with:

h = −iw + iw̄ , G = ±
[
i+

n+1∑
a=1

ζa Im(w)
(w̄ − ξa)|w − ξa|

]
, (6.1)

where ξa and ζa are real parameters. As noted in (3.58), the exchange of the plus and minus
sign in the expression above exchanges the role of u and v and the role of z and w.

From (6.1), (3.18) and (3.20), we see that

β = 2 , (6.2)

and

g1 = ±
n+1∑
a=1

ζa ρ (ξ − ξa)(
(ξ − ξa)2 + ρ2) 3

2
, g2 = ±

[
1 +

n+1∑
a=1

ζa ρ
2(

(ξ − ξa)2 + ρ2) 3
2

]
. (6.3)

Such functions are familiar in the study of axi-symmetric Gibbons-Hawking metrics.6

Indeed, one can easily compute the potentials from (3.26) (with β = 2):

Φ̃=±2
[
−logρ+

n+1∑
a=1

ζa√
(ξ−ξa)2+ρ2

]
, Φ=∓2

[
ξ+

n+1∑
a=1

ζa(ξ−ξa)√
(ξ−ξa)2+ρ2

]
. (6.4)

This gives a nice physical picture of these solutions: the non-logarithmic part of Φ̃ is simply
the three-dimensional potential of charges, ±2 ζa, arrayed along the ξ-axis at the points
(ρ, ξ) = (0, ξa). The log ρ component of Φ̃ is also a harmonic function, and its role is to
give the correct asymptotic behavior.

The floating M2 branes are given by (5.3). When |k2| is large, then either u or v must
be small. The floating branes are thus given by the level-curves of Φ̃ and, as can be seen in
figure 1, when ρ is small, they roughly circle half-way around each of the singularities of Φ̃

6This may not be a complete coincidence: Gibbons-Hawking metrics provide solutions to the Monge-Ampère
equation in two variables with two U(1) isometries.
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Figure 1. Contour plot of Φ̃ for two points, with (ζ1 = 1, ξ1 = 1) and (ζ2 = 2, ξ2 = −1). By (5.3),
the lines of constant potential drawn in black are the floating M2 branes.

located at (ρ, ξ) = (0, ξa), and run roughly parallel to the boundary between the singularities.
These infinite M2 branes are parallel to the M2 branes whose back-reaction gives rise to
the solution, but in the coordinates adapted to the AdS3 near-horizon geometry they have
the shape given in figure 1.

7 Adding momentum

To transform the M2-M5 supermaze we discussed in the previous sections into a microstate
of a three-charge black hole with a large horizon, one needs to add to it momentum along
the common M2-M5 direction. As discussed in detail in [42, 43], a momentum wave that
preserves the locally-16-supercharge structure of the supermaze can only be added when
accompanied by other brane dipole moments, which can modify the structure of our Ansatz.
Our purpose here is to find the minimal modification of our Ansatz needed to add momentum,
and to construct the resulting solution, even though this solution does not display local
supersymmetry enhancement to 16 supercharges.

7.1 Adding momentum to spherically symmetric brane intersections

As we will see, the simplest 1
8 -BPS solutions that carry momentum charge have a singular

momentum-charge source that gives rise to a momentum harmonic function that encodes
the momentum density of the solution.

We start from the metric Ansatz:

ds11 = −e2A0 dt2 + e2A1
(
dy − P dt

)2 + e2A2 du2 + e2A3 dv2 + u2 e2A4 dΩ2
3 + v2 e2A5 dΩ′2

3

+ e2A6
(
dz +B1 du

)2
,

(7.1)
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which reduces to the no-momentum Ansatz in equation (2.5) by taking A1 ≡ A0 and P ≡ 0.
We take the frames to be:

e0 = eA0 dt , e1 = eA1
(
dy − P dt

)
, e2 = eA6

(
dz +B1 du

)
,

e3 = eA2 du , e4 = eA3 dv , ei+4 = u eA4 σi , ei+7 = v eA5 σ̃i , i = 1, 2, 3 .
(7.2)

Based on the symmetries, we also use the Ansatz (A.9) for the field strength.
The supersymmetries of this system will be defined in terms of the frame components

along the momentum direction, y, as well as the M2 and M5 directions:

Γ01 ε = −ε , Γ012 ε = −ε , Γ013456 ε = ε (7.3)

There are thus four supersymmetries and the brane system is 1
8 -BPS.

As before, these projectors are compatible with

Γ01789 10 ε = −ε , (7.4)

and hence one can add another set of M5 branes along the directions 01789 10 without
breaking supersymmetry any further.

As before, the goal is to solve

δψµ ≡ ∇µ ϵ+ 1
288

(
Γµ

νρλσ − 8 δν
µ Γρλσ

)
Fνρλσ ϵ = 0 , (7.5)

subject to the foregoing projection conditions.
Solving these BPS equations proceeds as in appendix A.2, except that one rapidly

discovers that one must take P = −eA0−A1 + const. The constant can be absorbed through
a shift of y, and we will take:

P ≡ 1− eA0−A1 . (7.6)

With this choice, the solution with no momentum constructed in appendix A.2 is simply
given by taking A1 = A0.

It is convenient to define

Â0 ≡ 1
2 (A0 +A1) , Â1 ≡ 1

2 (A0 −A1) , (7.7)

and one finds that all the remaining BPS equations are exactly as in section A.2 with Â0
replacing by A0 and A6 replacing A1. In particular, the BPS equations place no constraint
whatsoever on Â1.

One thus finds that the BPS equations are identically satisfied if the metric takes the form

ds11 = e2Â0

[
− e2Â1 dt2 + e−2Â1

(
dy +

(
e2 Â1 − 1

)
dt
)2

+ (−∂zw)
(
dz + (∂zw)−1 (∂uw

)
du
)2

+ e−3Â0 (−∂zw)−
1
2
(
du2 + u2 dΩ2

3
)
+ e−3Â0 (−∂zw)

1
2
(
dv2 + v2 dΩ′2

3
)]
,

(7.8)
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with the frames:

e0 = eÂ0+Â1 dt , e1 = eÂ0−Â1
(
dy +

(
e2 Â1 − 1

)
dt
)
,

e2 = eÂ0 (−∂zw)
1
2
(
dz + (∂zw)−1 (∂uw

)
du
)
,

e3 = e−
1
2 Â0 (−∂zw)−

1
4 du , e4 = e−

1
2 Â0 (−∂zw)

1
4 dv ,

ei+4 = 1
2 u e

− 1
2 Â0 (−∂zw)−

1
4 σi , ei+7 = 1

2 v e
− 1

2 Â0 (−∂zw)
1
4 σ̃i , i = 1, 2, 3 .

(7.9)

One finds that C(3) is still given by given by (2.14):

C(3) = −e0 ∧ e1 ∧ e2 + (∂zw)−1 (u3∂uw
)
Vol(S3) +

(
v3∂vw

)
Vol(S′3) . (7.10)

Note that Â1 cancels out entirely in e0 ∧e1. Thus the solution to the BPS equations is exactly
as it was in the absence of momentum, except for the Â1-dependent terms in the metric.

As before the BPS solution is obtained by solving (A.24) and then w and Â0 are obtained
from (A.23) and the appropriate re-labeling of (A.20):

F1 ≡ (−∂zw)
1
2 e−3Â0 , F2 ≡ (−∂zw)−

1
2 e−3Â0 + (−∂zw)−1 (∂uw)2 . (7.11)

The function Â1 is not determined by the BPS equations, however it is determined by the
equations of motion. To that end, it is useful to define the operator, L, to be the Laplacian
of the metric (7.8) with Â1 = 0. If H(u, v, z), is only a function of (u, v, z), then one finds
that the equations for w and Â0 enable one to simplify the Laplacian to:

L(H) = e2Â0 (−∂zw)−
1
2

[
(−∂zw)

1
u3∂u

(
u3∂uH

)
+ 1
v3∂v

(
v3∂vH

)
+ 2 (∂uw)∂u∂zH

+
(
(−∂zw)−

1
2 e−3Â0 + (−∂zw)−1 (∂uw)2)) ∂2

zH

]
.

(7.12)

Note that, by definition (and as is manifest from the explicit expression), this is a linear
operator on the background geometry defined by Â0 and w.

One can show that all the equations of motion are satisfied if Â1 solves:

L
(
e−2Â1

)
= 0 . (7.13)

Thus there is a simple harmonic Ansatz for adding pure momentum sources to the M2-M5
brane intersections.

7.2 Adding momentum charge to the near-brane limit

From the results above, it is elementary to translate the effect of adding a source correspond-
ing to momentum to the AdS near-brane limit described in section 3. The metric given
by (3.15), (3.21) and (3.35) generalizes to:

ds2
11 = e2A

[
f̂2

1

(
dµ2

µ2 + µ2
(
− e2Â1 dt2 + e−2Â1

(
dy +

(
e2 Â1 − 1

)
dt
)2))

+ f̂2
2 ds

2
S3 + f̂2

3 ds
2
S′3 +

dξ2 + dρ2

4ρ2

]
,

(7.14)

and the flux, C(3), remains the same.
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The function, Â1, is determined by the harmonic condition, (7.13), and in the coordinate
system of the near-brane AdS limit of section 3, this Laplacian becomes:

L(H) = 4 e−A
[
(GḠ− 1) 1

µ
∂µ
(
µ3∂µH

)
+ 1
ρ
∂ρ
(
ρ3∂ρH

)
+ ρ2∂2

ξH

]
, (7.15)

on some function, H(µ, ξ, ρ).
If one seeks a scaling solution to L(H) = 0 with H(µ, ξ, ρ) = µpK(ξ, ρ), then K

must satisfy

1
ρ
∂ρ
(
ρ3∂ρK

)
+ ρ2∂2

ξK + p(p+ 2) (GḠ− 1)K = 0 . (7.16)

One can easily verify that, for p = −1, this has solutions

K = c1
u2 + c2

v2 = 2
βρ

(
c1 e

1
β

Φ̃ + c2 e
− 1

β
Φ̃
)
. (7.17)

where c1 and c2 are constants and we have used (3.52). This is also manifestly a solution
to L(H) = 0 using (7.12). These correspond to smeared distributions of singular sources
of the momentum harmonic function,

To get an isolated momentum source one would like a solution that falls off at spatial
infinity as (u2 + v2)−3. In the µ, ρ coordinates this is

(u2 + v2)−3 ∼ µ−3 ρ−3 . (7.18)

It is useful to note that (7.16) may be written as

1
ρ3 ∂ρ

(
ρ3∂ρK

)
+ ∂2

ξK + p(p+ 2)
ρ2 (GḠ− 1)K = 0 , (7.19)

and that

L4(K) ≡ 1
ρ3 ∂ρ

(
ρ3∂ρK

)
+ ∂2

ξK , (7.20)

is the Laplacian of flat R5 with a metric:

ds2
5 ≡ dρ2 + ρ2dΩ2

3 + dξ2 . (7.21)

This means that

L4

( 1
(ρ2 + ξ2)

3
2

)
= 0 . (7.22)

Note that this falls off as ρ−3 at large ρ, which is consistent with (7.18).
Now observe that at large ρ and ξ, one generically has (GḠ − 1) → 0. Indeed, the

example in section 6.1 one has:

p(p+ 2)
ρ2 (GḠ− 1) ∼ c0

(ρ2 + ξ2)
3
2
, (7.23)
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for some constant c0. One can then solve (7.16) perturbatively. Indeed, if one starts from the
homogeneous solution (7.22), then, using (7.23), one obtains, at first order:

K = Q

(ρ2 + ξ2)
3
2

(
1− c0

4
1√

ρ2 + ξ2 + . . .

)
, (7.24)

for some constant, Q, that determines the momentum charge. Given the simplicity of the
Laplacian and the forms of the solutions in section 6.1, this perturbation expansion can
be continued to arbitrarily high order.

7.3 An interesting family of solutions

A simple solution to (7.15) is:

e−2Â1 = V0 + V1 µ
−2 , (7.25)

where

V0 = 1 +
m∑

a=1

ka(
(ξ − ξ̃a)2 + ρ2) 3

2
, V1 = q0 +

m′∑
a=1

qa(
(ξ − ξ̂a)2 + ρ2) 3

2
, (7.26)

for some charges ka and qa. Note that we have taken the constant term in V0 to be 1 because
we require Â1 → 0 at infinity. Furthermore, the locations of the poles of these harmonic
functions, ξ̃a and ξ̂a do not have to coincide with ξa, the locations of the poles of Φ and Φ̃
in section 6.1, but it might be interesting if they did.

Amusingly enough, at fixed ρ and ξ, (7.25) gives

e−2Â1 = 1 + α+Qµ−2 , (7.27)

for some parameters, α,Q > 0.
If one takes ka = 0, a ≥ 1, then α = 0 and the metric in the AdS3 directions becomes

dµ2

µ2 + µ2
(
− e2Â1 dt2 + e−2Â1

(
dy +

(
e2 Â1 − 1

)
dt
)2)

= dµ2

µ2 − µ4

Q+ µ2 dt
2 + (Q+ µ2)

(
dy − Q

Q+ µ2 dt

)2

= dµ2

µ2 + µ2(− dt2 + dy2)+Q (dy − dt)2 ,

(7.28)

which is simply the extremal BTZ metric. Thus, our solution describes a continuous family
of extremal BTZ ×S3×S3 solutions warped over a Riemann surface, where the (angular)
momentum of the extremal BTZ solutions, Q, is a function of the Riemann-surface coordinates,
ρ and ξ. The families of solutions we have constructed give an infinite violation of black hole
uniqueness with our particular AdS3×S3×S3 × Σ asymptotics.

8 Conclusions and future directions

We have constructed, from first principles, the eight-supercharge supergravity solutions
corresponding to a system of parallel M5 branes with M2 stretched between them, and have
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related our solutions to those previously obtained in [45]. We have found that these solutions
are entirely determined by a single “maze function” satisfying a Monge-Ampère-like “maze
equation.” We have used floating probe M2 and M5 branes to explore the structure of these
solutions and have related a class of our solutions to F1-D1 (p,q) string-web solutions [47].

Solving the maze equation is non-trivial in general, but we have identified two ways
of finding special classes of solutions. The first, is to consider an infinite M2-M5 bound
state at a certain angle and with a certain ratio of M2 and M5 densities. This solution,
obtained in appendix D by dualities, can be shown to have a maze function that satisfies
exactly the maze equation.

The second method to solve this equation is to take a near-horizon limit of our solutions,
by imposing a certain scaling symmetry on the functions in the metric and 4-form field-
strength Ansatz. This scaling symmetry allowed us, in section 3, to relate our solutions to a
family of the AdS3×S3×S3 solutions warped over a Riemann surface constructed in [44]. As
with other microstate geometries, these solutions can be constructed via a linear procedure.
We have discussed the physics of one such family of solutions in this paper, and leave the
construction and exploration of more general solutions to future work.

We have also found a family of supergravity solutions that describe M2-M5 intersections
carrying momentum. The momentum of these solutions has singular sources, but we have
succeeded in extending the solutions of [44] to BTZextremal×S3×S3 solutions warped over a
Riemann surface, where the momentum of the BTZ black hole is a function of the Riemann
surface coordinates. From a higher-dimensional perspective, these solutions violate black-hole
uniqueness copiously.

The primary focus of our work here has been the construction of the “static,” or
momentum-free supermazes. The important next step is to add momentum charge in such a
manner that one obtains themelia [43]: fundamental brane systems that, while being 1

8 -BPS
globally, actually have 16 supersymmetries locally, and thus represent states in the black-hole
microstructure. As we remarked earlier, this will require the addition of fluxes and localized
momentum excitations that go well beyond the simple Ansätze we have used here. On the
other hand, our results in section 7 give us considerable optimism that this can be achieved,
and perhaps through a linear system of equations that supplements the maze equation.

To understand and appreciate this remark, it useful to recall some of the history of
microstate geometries and superstrata. In the earliest work on microstate geometries, it was
clear that the most general such geometry in five dimensions would be based on a general
four-dimensional ambi-polar hyper-Kähler geometry [62–64]. Similarly, in six-dimensions, the
most general superstrata are based on a highly-non-trivial five-dimensional spatial fibration
over a four-dimensional “almost hyper-Kähler” base [65, 66]. These geometries are generically
determined by non-linear systems of equations. However, once these geometries are determined,
one can add momentum charge to these backgrounds in a variety of ways, and the system
of equations that determines the momentum excitations, as well as the entire phases space
of such excitations, is actually linear [20, 62, 64, 66, 67]. Moreover, the momentum can be
added in such a manner as to make themelia, like the superstratum, and this also enables
the detailed construction of the corresponding holographic dictionary [68–75].

If this pattern repeats with supermazes, then the “static,” or momentum-free supermazes
will indeed be governed by generically non-linear maze equations, as we have described here,
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but it is quite possible that the addition of momentum excitations on top of this geometry
could, once again, be governed by linear systems of equations. If this happens, we should be
able to add momentum while preserving the 16-local-supercharge structure of the supermaze
and thus construct huge new families of themelia. Our results in section 7 are a first step
towards achieving of this ideal.

While the linear systems on the “static,” or momentum-free supermazes could still be
highly non-trivial and difficult to solve explicitly, these structures would still establish the
existence of momentum-carrying supermazes in supergravity, and would provide a route to
characterizing the phase space of such excitations, and especially the themelia that locally
have sixteen supercharges. Ultimately, one would like to quantize this phase space to arrive
at a semi-classical description of the fractionated branes that lie at the heart of black-hole
microstructure.

This may seem like something of “an ask,” but the nearly 20 year history of successes in
microstate geometries suggests that such a miraculous outcome is really very plausible!
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A Spherically symmetric 1
4-BPS M5-M2 intersections

Here we show that our spherically symmetric configurations are, in fact, the most 1
4 -BPS

general solutions with such symmetries and with supersymmetries defined by (2.1). That
is, we will impose Poincaré symmetry on the common (t, y) directions of the branes and
require an SO(4)× SO(4) symmetry that sweeps out two three spheres. We will write down
the most general configurations that satisfies these symmetry requirements and, following
the methodology developed in [49, 50, 53–55], we will show that the solutions defined in
section 2.3 are the only possibilities.

A.1 The Ansatz

The most general metric satisfying the symmetry requirements must have the form:

ds2
11 = e2α0

(
− dt2 + dy2)+ e2α1 dΩ2

3 + e2α2 dΩ′2
3 + gij dz

idzj , (A.1)

where α0, α1 and α2 are arbitrary functions of three remaining coordinates, zi, and gij is a
general metric in these three dimensions. There is, of course, a remaining diffeomorphism
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invariance, zi → z̃i(zj), and this can, in principle, be fixed by taking the metric, gij , to be
diagonal [76–78]. It is therefore tempting to write (z1, z2, z3) = (z, u, v) and take:

ds2
3 = gij dz

idzj = e2α3 dz2 + e2α4 du2 + e2α5 dv2 . (A.2)

One is then tempted to use a set of frames:

e0 = eα0 dt , e1 = eα0 dy , e2 = eα1 dz e3 = eα2 du, e4 = eα3 dv ,

ei+4 = eα4 σi , ei+7 = eα5 σ̃i , i=1,2,3 ,
(A.3)

however, this misses a very important physical point. The choice of frames also fixes the
meaning of the supersymmetry projectors of the form (2.1) and (2.4), which in the current
frame labelling become:

Γ012 ε = −ε , Γ013567 ε = ε , Γ01489 10 ε = −ε . (A.4)

The M5, M5’ and M2 branes are thereby required to follow the coordinate axes, and this is
not the most general possibility because brane intersections typically result in deformations
of the underlying branes. The most general possibility is to use frames, and hence Γ-matrices
that are an arbitrary SO(3) rotation (depending on (u, v, z)) of the frames (e2, e3, e4) in (A.3).
This is a little too challenging to analyze here, and so we make a more physical choice.

If one thinks in terms the IIA theory, we have a system of NS5, NS5’ branes and F1
strings. The former are much heavier than the latter, and so they can be fixed along the
coordinate axes while the M2 brane direction can be fibered over the M5 and M5’ directions.
This leads to the Ansatz we will use here:

e0 = eA0 dt , e1 = eA0 dy , e2 = eA1
(
dz +B1 du+B2 dv

)
,

e3 = eA2 du , e4 = eA3 dv , ei+4 = u eA4 σi , ei+7 = v eA5 σ̃i , i = 1, 2, 3 .
(A.5)

where A0, . . . , A5 and B1, B2 are arbitrary functions of (z, u, v). We have, for convenience,
introduced factors of u and v into the definitions of the ei+4 and ei+7 respectively. Finally, one
can also make a re-parametrization z → z̃(z, u, v) so as to gauge away B2 (or B1). Therefore,
without loss of generality, one can take:

B2 ≡ 0 . (A.6)

We will therefore adopt the frames:

e0 = eA0 dt , e1 = eA0 dy , e2 = eA1
(
dz +B1 du

)
,

e3 = eA2 du , e4 = eA3 dv , ei+4 = u eA4 σi , ei+7 = v eA5 σ̃i , i = 1, 2, 3 ,
(A.7)

and metric:

ds2
11 = e2A0

(
− dt2 + dy2)+ e2A2 du2 + e2A3 dv2 + u2 e2A4 dΩ2

3 + v2 e2A5 dΩ′2
3

+ e2A1
(
dz +B1 du

)2
.

(A.8)

Within this Ansatz there remains the freedom to re-parametrize z → ẑ(z, u), and to re-define
u → û(u), v → v̂(v).
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It is simpler to make an appropriately invariant Ansatz for the four-form field strength:

F (4) = e0 ∧ e1 ∧
(
b1 e

2 ∧ e3 + b2 e
2 ∧ e4 + b3 e

3 ∧ e4 )
+
(
b4 e

2 + b5 e
3 + b6 e

4 ) ∧ e5 ∧ e6 ∧ e7 +
(
b7 e

2 + b8 e
3 + b9 e

4 ) ∧ e8 ∧ e9 ∧ e10 ,
(A.9)

where b1, . . . , b9 are arbitrary functions of (u, v, z). One will ultimately have to impose the
Bianchi identities on F (4).

A.2 Solving the BPS system

If one uses the fact that ϵ̄Γµϵ is necessarily the time-like Killing vector ∂
∂t one finds that the

(u, v, z) dependence of the Killing vector is determined by:

ϵ = e
1
2 A0 ϵ0 , (A.10)

where ϵ0 is independent of t, y, z, u, v. The dependence of the supersymmetries on the sphere
coordinates is determined entirely by the representations of SO(4)×SO(4)′, or (SU(2))4: four
out of the eight supersymmetries are independent of the sphere angles and four rotate in the
vector representation of each SO(4) (or as bi-fundamentals of each pair of SU(2)’s).

Using this, the projectors (A.4) and the Ansatz (A.8) and (A.9), it is straightforward
to solve the hugely over-determined system (2.2).

A first pass through this system determines the functions bi algebraically in terms of the
Aj and B1 and the first derivatives of the Aj and B1. One then eliminates the bi entirely to
arrive at a collection of first-order differential constraints on the Aj and B1.

This collection includes:

∂u
(
A5 −A3

)
= ∂z

(
A5 −A3

)
= 0 , ∂v

(
A4 −A2

)
= ∂z

(
A4 −A2

)
= 0 . (A.11)

This means that (A5 − A3) is only a function of v and (A4 − A2) is only a function of u.
Remembering that the Ansatz still allows the re-definition u → û(u), v → v̂(v), we can
absorb these functional dependences of (A5 − A3) and (A4 − A2) into such a coordinate
re-definition and assume, without loss of generality, that

A4 = A2 , A5 = A3 , (A.12)

which means that the sphere metrics in ds2
11 extend to the metrics of two conformally flat R4’s:

ds2
11 = e2A0

(
− dt2 + dy2)+ e2A2

(
du2 + u2 dΩ2

3
)
+ e2A3

(
dv2 + v2 dΩ′2

3
)

+ e2A1
(
dz +B1 du

)2
.

(A.13)

Using (A.12), some of the other first-order equations show that (A0 + A2 + A3) is a
constant. This constant can be taken to be zero by scaling u and v, and so we can take:

A3 = −(A0 +A2) . (A.14)

The first order system then gives ∂v(A1+2A2) = 0, which means that A1 = −2A2+a1(z, u)
for some arbitrary function, a1. However there is still the freedom to re-define z → ẑ(z, u),
and so we can take a1 ≡ 0, to arrive at:

A1 = −2A2 . (A.15)
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We have thus simplified the eleven-dimensional metric to the form:

ds2
11 = e2A0

[ (
− dt2 + dy2)+ e2(A2−A0) (du2 + u2 dΩ2

3
)
+ e−2(A2+2A0) (dv2 + v2 dΩ′2

3
)

+ e−2(A0+2A2) (dz +B1 du
)2]

.

(A.16)
There remains one last differential constraint in the first-order system:

∂z
(
B1 e

−2(A0+2A2)) = ∂u
(
e−2(A0+2A2)) . (A.17)

This can be solved by introducing a potential, w(u, v, z), with:

B1 e
−2(A0+2A2) = −∂uw , e−2(A0+2A2) = −∂zw , (A.18)

which leads to

B1 = (∂zw)−1 ∂uw , e−2(A0+2A2) = −∂zw , (A.19)

and the metric (A.16) becomes exactly that of (2.12).
One then finds that all the BPS equations are satisfied. However, one still has to solve

the Bianchi conditions on F (4).

A.3 Solving the Bianchi equations

Solving the BPS equations led to expressions for the bi in terms of the Aj and B1 and their
first derivatives. One thus obtains expressions for the bi in terms of the Aj , the first derivatives
of Aj and the first and second derivatives of w. The Bianchi identities thus lead to equations
that are third-order in derivatives of w. Amazingly enough, these equations can be integrated.

Define:

F1 ≡ (−∂zw)
1
2 e−3A0 , F2 ≡ (−∂zw)−

1
2 e−3A0 + (−∂zw)−1 (∂uw)2 , (A.20)

and then set:

H1 ≡ Lvw − ∂zF1 , H2 ≡ Luw + ∂zF2 , (A.21)

where Lu and Lv are the Laplacians on the R4’s.
The Bianchi identities can be summarized as

∂zH1 = ∂uH1 = ∂zH2 = ∂vH2 = 0 , (A.22)

and hence H1 = H1(v) and H2 = H2(u).
One should note that (A.18) only defines w up to the addition of an arbitrary function

of v, and so we can take H1(v) ≡ 0. We will simplify life by taking H2(u) ≡ 0. Having set
H1 ≡ H2 ≡ 0, one can satisfy (A.21) by introducing a pre-potential, G0(u, v, z), with:

w = ∂zG0 , F1 = LvG0 , F2 = −LuG0 . (A.23)

From this and (A.20), one can determine e−3A0 in terms of LvG0 and (−∂zw)
1
2 . Substituting

this into the second expression in (A.20) and using (A.23), one obtains an equation that
determines G0:

LvG0 = (∂2
zG0) (LuG0)− (∂u∂zG0)2 , (A.24)

which is precisely the spherically symmetric form of (2.9).
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B The democracy of M5 and M5’ branes

The metric (2.6) and fluxes (2.7) given in section 2.1 appear to be asymmetric between the
two R4’s, and hence between the M5 and M5’ branes.

The purpose of this appendix is to show that this is a coordinate artifact inherent in the
fibration of the M-theory direction. Following a discussion in [45], we will show that one can
flip the fibration from the u⃗-plane to the v⃗-plane by exchanging the role of w and z. In the
u⃗-plane fibration (2.6), w is a function and z is a coordinate. In the v⃗-plane fibration we will
construct here, w is a coordinate and z is a function appearing in the solution, z(w, u⃗, v⃗).

It is useful to introduce the notation, familiar from thermodynamics, in which subscripts
on parentheses specify the variables that are being held fixed. For example, given a function,
F , and some variables η, ζ, ξ, the expression(

∂F

∂η

)
ζ,ξ

(B.1)

specifically indicates that the derivative with respect to η is being taken while ζ and ξ

are held fixed.
Consider the complete differential of the function w(z, u⃗, v⃗):

dw =
(
∂w

∂z

)
u⃗,v⃗

dz +
(
∂w

∂ui

)
z,v⃗

dui +
(
∂w

∂vi

)
z,u⃗

dvi . (B.2)

If one holds w fixed, then this must vanish and one then obtains:(
∂z

∂ui

)
w,v⃗

= −
((

∂w

∂z

)
u⃗,v⃗

)−1 ( ∂w
∂ui

)
z,v⃗

,

(
∂z

∂vi

)
w,u⃗

= −
((

∂w

∂z

)
u⃗,v⃗

)−1 (∂w
∂vi

)
z,u⃗

,

(B.3)
and (

∂z

∂w

)
u⃗,v⃗

=
((

∂w

∂z

)
u⃗,v⃗

)−1
. (B.4)

Using this one finds:

e2 = (−∂zw)
1
2
(
dz + (∂zw)−1 (∇⃗u⃗w

)
· du⃗

)
= −(−∂zw)−

1
2
(
(∂zw)dz +

(
∇⃗u⃗w

)
· du⃗

)
= −(−∂zw)−

1
2
(
dw −

(
∇⃗v⃗ w

)
· dv⃗

)
= −

(
(−∂wz)u⃗,v⃗

) 1
2

(
dw +

((
∂z

∂w

)
v⃗,u⃗

)−1( ∂z
∂vi

)
w,v⃗

)
dvi

)
= −(−∂wz)

1
2
(
dw + (∂wz)−1(∇⃗v⃗ z

)
· dv⃗

)
.

(B.5)

One also obtains:

C(3) = −e0∧e1∧e2+ 1
3! ϵijkℓ

(
−(∂uℓ

z) dui∧duj∧duk+(∂wz)−1 (∂vℓ
z) dvi∧dvj∧dvk

)
. (B.6)

One therefore finds that by using w as a coordinate and using z(w, u⃗, v⃗) as a function
appearing in the metric, the fibration is now over the R4 defined by v⃗ and the form of C(3)

is similarly inverted compared to (B.6).
Thus the BPS solution generically requires a non-trivial fibration over one of the R4’s

but which R4 is a matter of a coordinate choice. We will remain with the formulation in
section 2.1 where the M-theory direction is fibered over R4(u⃗).

– 33 –



C Dualities from the F1-D1 string web to the D2-D4 string web

In this appendix we describe in detail the dualities we perform to relate the F1-D1 string-web
solution constructed in [47] to the M2-M5 solutions we construct in section 2.

In order to perform a T-duality along an isometry direction x, we initially have to express
the various fields in the following form:

ds2 = Gxx(dx+Aµdx
µ)2 + ĝµνdx

µdxν ,

B2 = Bµxdx
µ ∧ (dx+Aµdx

µ) + B̂2 , (C.1)
Cp = C(p−1) x ∧ (dx+Aµdx

µ) + Ĉp ,

where the hatted forms have no leg along x. Then, the transformed fields will be given by

ds̃2 = G−1
xx (dx+Bµxdx

µ)2 + ĝµνdx
µdxν ,

e2ϕ̃ = G−1
xx e

2ϕ , (C.2)
B̃2 = Aµdx

µ ∧ dx+ B̂2 ,

C̃p = Ĉp−1 ∧ (dx+Bµxdx
µ) + C(p)x .

As for the S-duality, the conventions we use for the S-dual fields of a given Type IIB
supergravity solution are the following:

g̃µν =
√
C2

0 + e−2ϕgµν , e−ϕ̃ = e−ϕ

C2
0 + e−2ϕ

, C̃0 = − C0
C2

0 + e−2ϕ
,

B̃2 = −C2 , C̃2 = B2 , C̃4 = C4 +B2 ∧ C2 . (C.3)

Using now (C.2) and (C.3), the solution obtained by the duality chain mentioned in the
beginning of this section is:

ds2 =
√
deth
h11

(du2
2 + du2

3) +
1√
deth

(−dt2 + dy2) +
√
deth

(
e3Ahabdr

adrb + ds2
R4

)
,

e2ϕ =
√
deth
h11

, B2 = h12
h11

du2 ∧ du3 , (C.4)

C3 = e3Ah1adt ∧ dra ∧ dy , C5 = 1
h11

dt ∧ du1 ∧ du2 ∧ du3 ∧ dy .

In order to uplift the solution to M-theory we need to determine the magnetic dual
of the C5 field. Even though this is enough for our purposes we will for completeness
determine the magnetic dual of the C3 field as well. Our conventions for the democratic
formalism are the following:

Fp = dCp−1 for p < 3 ,
Fp = dCp−1 +H3 ∧ Cp−3 for p ≥ 3 ,
F6 = ⋆F4 , F8 = ⋆F2 .
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For simplicity, we will assume spherical symmetry in the R4 spanned by υi and use hyper-
spherical coordinates to describe it:

υ3 = υ cosϕ1 ,

υ4 = υ sinϕ1 cosϕ2 ,

υ5 = υ sinϕ1 sinϕ2 cosϕ3 , (C.5)
υ6 = υ sinϕ1 sinϕ2 sinϕ3 ,

ds2
R4 = dυ2 + υ2

(
dϕ2

1 + sin2 ϕ1
(
dϕ2

2 + sin2 ϕ2 dϕ
2
3

))
Now the metric hab is a function of z, u1 and υ.

In order to find the C3 field dual to the C5 of (C.4) we need to compute F e
6 = dCe

5 +
H3 ∧ Ce

3 :7

dCe
5 = − 1

h2
11

(∂zh11dz + ∂υh11dυ) ∧ dt ∧ du1 ∧ du2 ∧ du3 ∧ dy , (C.6)

H3 ∧ Ce
3 =

[
∂z

(
h12
h11

)
e3Ah12 − ∂u1

(
h12
h11

)
e3Ah11

]
dt ∧ du1 ∧ du2 ∧ du3 ∧ dz ∧ dy

− ∂υ

(
h12
h11

)
e3Ah11 dz ∧ dt ∧ dυ ∧ du2 ∧ du3 ∧ dy (C.7)

− ∂υ

(
h12
h11

)
e3Ah12 du1 ∧ dt ∧ dυ ∧ du2 ∧ du3 ∧ dy .

Summing these two expressions we obtain:

F e
6 = f1 dt ∧ dz ∧ du1 ∧ du2 ∧ du3 ∧ dy

+ f2 dt ∧ du1 ∧ du2 ∧ du3 ∧ dy ∧ dυ (C.8)
− f3 dt ∧ dz ∧ du2 ∧ du3 ∧ dy ∧ dυ ,

where the fi are given by

f1 = 1
h2

11
∂zh11 − ∂z

(
h12
h11

)
e3Ah12 + ∂u1

(
h12
h11

)
e3Ah11 ,

f2 = 1
h2

11
∂υh11 − ∂υ

(
h12
h11

)
e3Ah12 , (C.9)

f3 = ∂υ

(
h12
h11

)
e3Ah11 .

We can now compute Fm
4 by Fm

4 = − ⋆ F e
6 :

Fm
4 =− υ3h11 (f2h11 + f3h12) dz ∧ dΩ′

3 − υ3h11 (f2h12 + f3h22) du1 ∧ dΩ′
3

+ r3f1h11 deth dr ∧ dΩ′
3 , (C.10)

where dΩ′
3 = sin2 ϕ1 sinϕ2 dϕ1 ∧ dϕ2 ∧ dϕ3. Using the explicit form of the fi, Fm

4 becomes:

Fm
4 = −

(
υ3∂υh11 dz + υ3∂υh12 du1

)
∧ dΩ′

3

+ υ3 (h22∂zh11 − h12∂zh12 − h12∂u1h11 + h11∂u1h12) dυ ∧ dΩ′
3 . (C.11)

7The superscripts e and m will be used to denote respectively the electric and magnetic parts of the
RR fields.
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In order to further simplify this expression we substitute (4.2) to the first line of (C.11)
(from now on we ignore dΩ′

3) and get:

− 1
2υ

3∂υ∂
2
zK dz − 1

2υ
3∂υ∂z∂u1K du1 = −1

2d(υ
3∂υ∂zK) + 1

2∂υ(υ3∂υ∂zK)dυ (C.12)

= −1
2d(υ

3∂υ∂zK) + υ3

2 ∂z

( 1
υ3∂υ(υ3∂υK)

)
dυ = −1

2d(υ
3∂υ∂zK) + υ3

2 ∂z∆yK dυ .

Plugging (4.2) in the second line of (C.11) we get

υ3

4
(
∂2

u1K∂
3
zK − 2∂z∂u1K∂

2
z∂u1K + ∂2

zK∂z∂
2
u1K

)
dυ = υ3∂z(deth) . (C.13)

Finally, putting (C.12) and (C.13) together we find

Fm
4 = −1

2d(υ
3∂υ∂zK) ∧ dΩ′

3 +
υ3

2 ∂z (∆yK + 2deth) dυ ∧ dΩ′
3 . (C.14)

The second term vanishes due to the Monge-Ampère equation (4.3) and therefore, from
Fm

4 = dCm
3 +H ∧ Cm

1 and because C1 = 0, we can easily see that Cm
3 is given by

Cm
3 = −1

2υ
3∂υ∂zK dΩ′

3 . (C.15)

Let us now find the C5 field dual to the C3 of (C.4), for which we need to compute
F e

4 = dCe
3 :

dCe
3 = −

[
∂u1

(
e3Ah11

)
− ∂z

(
e3Ah12

)]
dt ∧ du1 ∧ dz ∧ dy

−
[
∂υ

(
e3Ah11

)
dz + ∂υ

(
e3Ah12

)
du1

]
∧ dt ∧ dυ ∧ dy . (C.16)

Fm
6 will then be given by Fm

6 = ⋆F e
4 :

Fm
6 = υ3 deth

h11

[
h12∂υ

(
e3Ah11

)
− h11∂υ

(
e3Ah12

)]
dz ∧ du2 ∧ du3 ∧ dΩ′

3

+ υ3 deth
h11

[
h22∂υ

(
e3Ah11

)
− h12∂υ

(
e3Ah12

)]
du1 ∧ du2 ∧ du3 ∧ dΩ′

3 (C.17)

− υ3(deth)2

h11

[
∂u1

(
e3Ah11

)
− ∂z

(
e3Ah12

)]
du2 ∧ du3 ∧ dυ ∧ dΩ′

3 ,

which can be simplified to

Fm
6 = υ3

(
h12
h11

∂υh11 − ∂υh12

)
dz ∧ du2 ∧ du3 ∧ dΩ′

3

+ υ3
(
h12
h11

∂υh12 − ∂υh22

)
du1 ∧ du2 ∧ du3 ∧ dΩ′

3 (C.18)

+ υ3
(
∂u1(deth)−

h12
h11

∂z(deth)
)
dυ ∧ dx2 ∧ du3 ∧ dΩ′

3 .

Using (4.2) the first two terms of (C.18) can be written as

1
2
h12
h11

dΣ
(
υ3∂υ∂zK

)
∧ du2 ∧ du3 ∧ dΩ′

3 −
1
2dΣ

(
υ3∂υ∂1K

)
∧ du2 ∧ du3 ∧ dΩ′

3 , (C.19)

where by Σ we denote the two-dimensional space spanned by z and u1.
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We can now compute Cm
5 from Fm

6 = dCm
5 +H3 ∧ Cm

3 , where Cm
3 is given in (C.15):

Fm
6 −H ∧ Cm

3 =
[
h12
h11

dΣ

(
υ3

2 ∂υ∂zK

)
+ d

(
h12
h11

)
υ3

2 ∂υ∂zK

]
∧ du2 ∧ du3 ∧ dΩ′

3

− dΣ

(
υ3

2 ∂υ∂u1K

)
∧ du2 ∧ du3 ∧ dΩ′

3 (C.20)

+ υ3
(
∂u1(deth)−

h12
h11

∂z(deth)
)
dυ ∧ dx2 ∧ dx3 ∧ dΩ′

3 .

The first two terms of (C.20) give

d

(
υ3

2
h12
h11

∂υ∂zK

)
∧ du2 ∧ du3 ∧ dΩ′

3 −
h12
h11

∂υ

(
υ3

2 ∂υ∂zK

)
dυ ∧ du2 ∧ du3 ∧ dΩ′

3

−d
(
υ3

2 ∂υ∂u1K

)
∧ du2 ∧ du3 ∧ dΩ′

3 + ∂υ

(
υ3

2 ∂υ∂u1K

)
dυ ∧ du2 ∧ du3 ∧ dΩ′

3 . (C.21)

Now if we combine the terms of (C.21) that are not total derivatives with the third term
of (C.20) we get

υ3

2 ∂u1

[
2 deth+ 1

υ3∂υ

(
υ3∂υK

)]
− υ3

2
h12
h11

∂z

[
2 deth+ 1

υ3∂υ

(
υ3∂υK

)]
(C.22)

and we see that the Monge-Ampère equation (4.3) appeared again. Therefore, (C.20)
reduces to:

Fm
6 −H ∧ Cm

3 = d

(
υ3

2
h12
h11

∂υ∂zK − υ3

2 ∂υ∂u1K

)
∧ du2 ∧ du3 ∧ dΩ′

3 (C.23)

and Cm
5 is

Cm
5 = υ3

2

(
h12
h11

∂υ∂zK − ∂υ∂u1K

)
du2 ∧ du3 ∧ dΩ′

3 . (C.24)

To sum up, the final form of the D2-D4 string-web solution is:

ds2 = 1√
deth

(−dt2 + dy2) +
√
deth
h11

(du2
2 + du2

3) +
√
deth

(
e3Ahabdr

adrb + ds2
R4

)
,

e2ϕ =
√
deth
h11

, B2 = h12
h11

du2 ∧ du3 , (C.25)

C3 = e3Ah1adt ∧ dra ∧ dy − υ3

2 ∂υ∂zK dΩ′
3 ,

C5 = 1
h11

dt ∧ du1 ∧ du2 ∧ du3 ∧ dy +
υ3

2

(
h12
h11

∂υ∂zK − ∂υ∂u1K

)
du2 ∧ du3 ∧ dΩ′

3 .

D The infinite tilted M2-M5 bound state

The Ansatz for the M5-M2 intersections described in section 2 is a complicated one. To con-
struct asymptotically-flat solutions, one needs to solve the Monge-Ampère-like equation (2.9)
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with the appropriate boundary conditions. In this appendix, we consider an alternative
approach to construct a simple solution to these equations. We start with a stack of tilted
D2-branes, and follow a chain of dualities to obtain a tilted M5-brane solution with M2 flux.
We will see how this construction fits the Ansatz of section 2.

A stack of D2 branes is described in Type IIA by the following system:

ds2 = Z−1/2(−dt2 + dx2
1 + dx2

2) + Z1/2(dx2
3 + · · ·+ dx2

9) , (D.1)

eΦ = Z1/4 , (D.2)

C3 = Z−1dt ∧ dx1 ∧ dx2 , (D.3)

where Z is a harmonic function. The branes are smeared along the directions x3,4,5, and
located at an arbitrary point in the directions x6,7,8,9, that we will take to be the center
of space. Noting r the distance to the branes in these last four directions, the harmonic
function Z takes the form:

Z = 1 + Q

r2 , r2 ≡ x2
6 + · · ·+ x2

9 . (D.4)

We now tilt the system in the x2,3 plane by an angle θ. We define the new coordinates
(x′2, x′3) by:

x2 = x′2c+ x′3s ,

x3 = −x′2s+ x′3c ,
(D.5)

where c ≡ cos θ, s ≡ sin θ. In the following we will always use the new rotated coordinate
and omit the primes. We also introduce the function W as:

W ≡ c2Z + s2 . (D.6)

In the new coordinates, the metric and gauge field of the tilted-brane solution can be
expressed as a fibration over the direction x3(≡ x′3):

ds2 = Z−1/2(−dt2 + dx2
1) + Z1/2(dx2

4 + · · ·+ dx2
9)

+ Z−1/2W
(
dx3 − cs(Z − 1)W−1dx2

)2
+ Z1/2W−1dx2

2 , (D.7)

e2Φ = Z1/2 , (D.8)

C3 = Z−1s dt ∧ dx1 ∧
(
dx3 − cs(Z − 1)W−1dx2

)
+W−1c dt ∧ dx1 ∧ dx2 . (D.9)

The goal is now to dualize this solution to a solution of M-theory, by first performing
two T-dualities, and then uplifting the solution.
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D.1 Performing two T-dualities

We start by performing two T-dualities, along x3 and x4, using the standard T-duality
rules (C.1), (C.2). After the first T-duality along x3, we obtain:

ds2 = Z−1/2(−dt2 + dx2
1) + Z1/2(dx2

4 + · · ·+ dx2
9) + Z1/2W−1

(
dx2

2 + dx2
3

)
, (D.10)

e2Φ =W−1Z , B2 = −cs(Z − 1)W−1 dx2 ∧ dx3 , (D.11)

C2 = Z−1s dt ∧ dx1 , C4 =W−1c dt ∧ dx1 ∧ dx2 ∧ dx3 . (D.12)

This a solution of Type IIB corresponding to a stack of D1-D3 branes, where the D3
branes extend along (x1, x2, x3) and the D1 branes extend along x1.

We then perform the second T-duality, along the x4 direction. Since the solution presents
no fibration or B-field in this direction, this is a trivial operation, it yields:

ds2=Z−1/2(−dt2+dx2
1+dx2

4)+Z1/2(dx2
5+···+dx2

9)+Z1/2W−1
(
dx2

2+dx2
3

)
, (D.13)

e2Φ=Z1/2W−1 , B2=−cs(Z−1)W−1dx2∧dx3 , (D.14)

C3=Z−1sdt∧dx1∧dx4 , C5=W−1cdt∧dx1∧dx2∧dx3∧dx4 . (D.15)

This is a D2(014)−D4(01234) system. Recall that T-dualities preserves the amount of
supersymmetries, all the solutions presented here have 16 supersymmetries.

Note that this solution can be embedded in the ansatz (4.5) by making a rotation in
the x45 plane and relabelling the coordinates. One then identifies

h11 = c2Z + s2 , h22 = s2Z + c2

h12 = cs(Z − 1) , and deth = Z .
(D.16)

We will nonetheless recompute the uplift of the solution to M-theory in this specific instance, as
a cross-check to the previous computation, and to identify the solution to the maze equation.

D.2 The democratic formalism

To uplift the solution to M-theory, we need to know the full expression of the C3 gauge
field in the democratic formalism. That is to say, we need to determine the magnetic dual
of the C5 gauge field of (D.15).

Let us first compute the 6-form field strength F6 = dC5 + dB2 ∧ C3. We have

dB2 ∧ C3 =
[
−cs ∂l

(
(Z − 1)W−1

)
dxl ∧ dx2 ∧ dx3

]
∧
[
Z−1s dt ∧ dx1 ∧ dx4

]
(D.17)

= cs2W−2Z−1(∂lZ) dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dxl , (D.18)

and

dC5 = c ∂l

(
W−1

)
dxl ∧ dt ∧ dx1 ∧ · · · ∧ dx4 (D.19)

= c3W−2(∂lZ) dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dxl , (D.20)
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where there is an implicit summation over l ∈ {5, 6, 7, 8, 9}, and to compute the derivatives
we have used the expression of W in (D.6).

Summing the two results, we thus obtain

F6 = cW−1Z−1(∂lZ) dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dxl (D.21)
= cZ−1(∂lZ) e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 ∧ el , (D.22)

where ei ∝ dxi are the natural diagonal frames of the metric (D.13).
We can now compute the dual four-form F

(m)
4 = − ⋆ F6:

F
(m)
4 = c

∂lZ

Z

ϵ(l−4),abcd

4! e4+a ∧ e4+b ∧ e4+c ∧ e4+d (D.23)

= c (∂lZ)
ϵ(l−4),abcd

4! dx4+a ∧ dx4+b ∧ dx4+c ∧ dx4+d (D.24)

where ϵ is the rank-5 antisymmetric tensor, the index l still runs between 5 and 9, while
the indices a, b, c, d are summed over 1, . . . , 5. The exponent “(m)” of the four-form denotes
the magnetic part.

We can further simplify this expression by using the fact that the harmonic function (D.4)
does not depend on x5, and depends only on the radial direction r:

F
(m)
4 = −c xl

r
(∂rZ)

ϵ(l−5),abc

3! dx5 ∧ dx5+a ∧ dx5+b ∧ dx5+c (D.25)

where now 5 is excluded from the sum over l, l ∈ {6, 7, 8, 9}, while the indices a, b, c still run
from 1 to 4. We then obtain the potential by integrating the field strength:

C
(m)
3 = −cx5xl

r
(∂rZ)

ϵ(l−5),abc

3! dx5+a ∧ dx5+b ∧ dx5+c (D.26)

= −c x5 r
3(∂rZ) dΩ′

3 , (D.27)

where dΩ′
3 is the volume form of the unit 3-sphere defined by x2

6 + · · · + x2
9 = 1.

D.3 M-theory uplift and matching

We can now uplift the solution to M-theory, calling the new direction x11:

ds2=Z−1/6W 1/3
[
Z−1/2(−dt2+dx2

1+dx2
4)+Z1/2(dx2

5+···+dx2
9)
]

+Z1/3W−2/3
(
dx2

2+dx2
3+dx2

11

)
, (D.28)

C3=Z−1sdt∧dx1∧dx4−cs(Z−1)W−1dx2∧dx3∧dx11−cx5r
3(∂rZ)dΩ′

3 . (D.29)

The system is now that of M2 branes extending in the directions (t, x1, x4), and M5
branes extending in (t, x1, x2, x3, x4, x11). To make contact with the Ansatz of section 2,
there remains to apply a rotation in the plane x4,5, by the same angle θ as the first tilt, and
to relabel the coordinates to match the notations:

x4 → cu1 + sz , x5 → −su1 + cz (D.30)
x1 → y , x2 → u2 , x3 → u3 , x11 → −u4 , x6,7,8,9 → v1,2,3,4 , (D.31)
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where, as previously, c = cos θ, s = sin θ. The final result is

ds2=W 1/3Z−2/3
(
−dt2+dy2

)
+W 4/3Z−2/3

(
dz−cs(Z−1)W−1du1

)2

+W 1/3Z1/3
(
dv2

1+···+dv2
4

)
+W−2/3Z1/3

(
du2

1+du2
2+du2

3+du2
4

)
, (D.32)

C3=Z−1sdt∧dy∧(sdz+cdu1)+cs(Z−1)W−1du2∧du3∧du4+c(su1−cz)v3(∂vZ)dΩ′
3 ,

(D.33)

where v ≡ (vivi)1/2, the harmonic function is Z = 1 + Q/v2, and dΩ′
3 is the volume form

of the unit 3-sphere defined by {v2 = 1}. This solution has 4 charges in total: M2(0y1),
M2(0yz), M5(0y1234), M5(0yz234). The charges cannot be independently dialed, they are
related because the solution preserves 16 supersymmetries. The M2 branes are smeared over
the direction u2,3,4, and are parallel to the M5 branes in the plane (z, u1).

Let us now compare this solution with the metric (2.5), and with the 3-form potential (2.7),
of the Ansatz. To match the metrics, one needs the following identifications:

eA0 =W 1/6Z−1/3 , (−∂zw) =W ,

(∂u1w) = cs(Z − 1) .
(D.34)

As for the potential (D.33), one finds that they can be matched up to a simple gauge
transformation, provided we identify:

(∂vl
w) = c (su1 − cz) vl

∂vZ

v
. (D.35)

The gauge transformation in question is:

δC3 = −c2dt ∧ dy ∧ dz + cs dt ∧ dy ∧ du1 . (D.36)

This confirms that this tilted D2 brane solution can be dualized to the Ansatz considered in
this paper. This gives an explicit solution of the maze equation. To see this, first integrate
the equations (D.34) and (D.35), and determine the function w:

w ≡ −zW + cs(Z − 1)u1 . (D.37)

Then we use (2.10) and (2.11) to compute G0:

G0 = −1
2Z(cz − su1)2 − 1

2(sz + cu1)2 + f(v) , (D.38)

where f satisfies Lvf ≡ v−3∂v(v3∂vf) = Z. This function satisfies the maze equation (2.9).

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has no associated code or the code will not
be deposited.
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