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Global environmental change is rapidly altering the dynamics1

of terrestrial vegetation,with consequences for the functioning2

of the Earth system and provision of ecosystem services1,2.3

Yet how global vegetation is responding to the changing4

environment is not well established. Here we use three5

long-term satellite leaf area index (LAI) records and ten global6

ecosystemmodels to investigate four key drivers of LAI trends7

during 1982–2009. We show a persistent and widespread8

increase of growing season integrated LAI (greening) over9

25 to 50% of the global vegetated area, whereas less10

than 4% of the globe shows decreasing LAI (browning).11

Factorial simulations with multiple global ecosystem models12

suggest that CO2 fertilization e�ects explain 70% of the13

observed greening trend, followed by nitrogen deposition14

(9%), climate change (8%) and land cover change (LCC) (4%).15

CO2 fertilization e�ects explain most of the greening trends16

in the tropics, whereas climate change resulted in greening of17

the high latitudes and the Tibetan Plateau. LCC contributed18

most to the regional greening observed in southeast China and19

the eastern United States. The regional e�ects of unexplained20

factors suggest that the next generation of ecosystem models21

will need to explore the impacts of forest demography,22

di�erences in regional management intensities for cropland23

andpastures, andotheremergingproductivityconstraintssuch24

as phosphorus availability.25

Changes in vegetation greenness have been reported at regional26

and

Q.1

continental scales on the basis of forest inventory and satellite27

measurements3–8. Long-term changes in vegetation greenness are 28

driven by multiple interacting biogeochemical drivers and land-use 29

effects9. Biogeochemical drivers include the fertilization effect of 30

elevated atmospheric CO2 concentration (eCO2), regional climate 31

change (temperature, precipitation and radiation), and varying rates 32

of nitrogen deposition. Land-use-related drivers involve changes in 33

land cover and in landmanagement intensity, including fertilization, 34

irrigation, forestry and grazing10. None of these driving factors 35

can be considered in isolation, given their strong interactions 36

with one another. Previously, a few studies had investigated the 37

drivers of global greenness trends6,7,11, with a limited number of 38

models and satellite observations, which prevented an appropriate 39

quantification of uncertainties12. 40

Here, we investigate trends of leaf area index (LAI) and their 41

drivers for the period 1982 to 2009 using three remotely sensed 42

data sets (GIMMS3g, GLASS and GLOMAP) and outputs from 43

ten ecosystem models run at global extent (see Supplementary 44

Information). We use the growing season integrated leaf area index 45

(hereafter, LAI; Methods) as the variable of our study. We first 46

analyse global and regional LAI trends for the study period and 47

differences between the three data sets. Using modelling results, we 48

then quantify the contributions of CO2 fertilization, climatic factors, 49

nitrogen deposition and LCC to the observed trends. 50

Trends from the three long-term satellite LAI data sets 51

consistently show positive values over a large proportion of the 52

global vegetated area since 1982 (Fig. 1). The global greening trend 53

estimated from the three data sets is 0.068 ± 0.045m2 m−2 yr−1. 54
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Figure 1 | a–c, Spatial pattern of trends in growing season integrated LAI derived from three remote sensing data sets. a, GIMMS LAI3g. b, GLOBMAP LAI.
c, GLASS LAI. All data sets cover the period 1982 to 2009. Regions labelled by black dots indicate trends that are statistically significant (Mann–Kendall
test, p<0.05). d, Probability density function of LAI trends for GIMMS LAI3g, GLASS LAI, GLOBMAP LAI and the average of the three remote sensing data
sets (AVG OBS).

The GIMMS LAI3g data set, which includes recent data up to1

2014, shows a continuation of the trend from the 1982 to 20092

period (Fig. 1 and Supplementary Fig. 3). The regions with the3

largest greening trends, consistent across the three data sets,4

are in southeast North America, the northern Amazon, Europe,5

Central Africa and Southeast Asia. The GLASS LAI data shows6

the most extensive statistically significant greening (Mann–Kendall7

test, p<0.05 ) over 50% of vegetated lands, followed by GLOBMAP8

LAI (43%) and GIMMS LAI3g (25%). All three LAI data sets also9

consistently show a decreasing LAI trend (browning) over less than10

4% of global vegetated land—these are observed in northwest North11

America and central South America. Analyses of the changes in12

observed maximum LAI also show similar widespread greening13

trends (Supplementary Section 8).14

We compare satellite-based LAI anomalies with LAI anomalies15

simulated by ten global ecosystem models driven by eCO216

(+46 ppm over the study period), climate, nitrogen deposition17

and LCC (Supplementary Section 7). Multi-Model Ensemble18

Mean (MMEM) LAI anomalies, with all these drivers considered,19

generally agree withQ.2 averaged satellite observations at the global20

scale (r=0.83, p < 0.01; Fig. 2a). The trend in MMEM LAI21

anomalies (0.062m2 m−2 yr−1) is within the range of estimates from22

the three satellite data sets. The model simulations suggest that23

increasing gross primary productivity, although partly neutralized24

by increasing autotrophic respiration, and decreasing carbon loss25

due to fires are responsible for the increasing LAI during 198226

to 2009 (Supplementary Section 9). The spatial pattern of LAI27

trends also matches well between satellite data and MMEM28

simulations (Fig. 3a,b). Consistent greening trends between models29

and observations are seen in Fig. 3 across the southeast United30

States, theAmazonBasin, Europe, central Africa, SoutheastAsia and31

Australia. However, satellite LAI and MMEM results show different32

magnitudes (or signs) of trends in the southwestern United States,33

southern South American countries, and Mongolia, indicating34

that models may be over-sensitive to trends in precipitation35

(Supplementary Section 10).36

We used an optimal fingerprint detection method13 to assess 37

the ability of the models to simulate observed patterns of LAI 38

response to eCO2, climate change, nitrogen deposition and LCC. 39

We regressed the observed two-year mean global average LAI time 40

series against the MMEM-simulated LAI reflecting the effects of 41

single drivers, based on factorial runswhere only one driver is varied 42

at the time. A residual consistency test13 suggests no inconsistency 43

between the regression residuals and the model-simulated internal 44

variability in the absence of forcing (Methods), indicating that 45

the fingerprint detection method is suitable for detection and 46

attribution at the global scale (Fig. 2b). The 95% confidence intervals 47

of the scaling factors of CO2 fertilization (best estimates of scaling 48

factor β = 1.03, 95% confidence interval [0.84, 1.23]) and climate 49

change (β=1.06, [0.55,1.64]) are not only above zero but also span 50

unity, whichmeans that themodelled signals from these two drivers 51

are successfully detected and suitable for attribution (Fig. 2b). The 52

fingerprints of nitrogen deposition and LCC effects on the trend 53

of LAI remain confounded with internal variability and cannot be 54

clearly detected (not shown). 55

Globally, the model factorial simulations suggest that CO2 fer- 56

tilization explains the largest contribution to the satellite-observed 57

LAI trend (70.1 ± 29.4%, 0.048 ± 0.020m2 m−2 yr−1), followed 58

by nitrogen deposition (8.8 ± 11.8%, 0.006 ± 0.008m2 m−2 yr−1), 59

climate change (8.1 ± 20.6%, 0.006 ± 0.014m2 m−2 yr−1) and LCC 60

(3.7 ± 14.7%, 0.003 ± 0.010m2 m−2 yr−1) (Fig. 2c). The contribu- 61

tions of CO2 fertilization and climate change are reliable according 62

to the optimal fingerprint analysis, whereas the effects of LCC 63

and nitrogen deposition should be interpreted with caution. Our 64

estimation of CO2 fertilization effects on vegetation growth is more 65

prominent than Los6, probably owing to the different attribution 66

approaches. When using only those ecosystem models (five out 67

of ten) that incorporate nitrogen limitations and nitrogen depo- 68

sition effects (Supplementary Table 1), the fraction of the LAI 69

trend that is unambiguously attributed to CO2 fertilization is 70

slightly smaller (66.2 ± 13.2%, 0.045 ± 0.009m2 m−2 yr−1) than 71

when using models that ignore nitrogen processes (75.0 ± 42.6%, 72
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Figure 2 | a, Interannual changes in anomalies of growing season integrated leaf area index (LAI) estimated by multi-model ensemble mean (MMEM) with
all drivers considered (blue line) and average of the three remote sensing data (red line) for the period 1982–2009, and interannual changes in anomalies of
LAI of GIMMS LAI3g (green line) for the period 1982–2014. The shaded area shows the intensity of EI Niño–Southern Oscillation (ENSO) as defined by the
multivariate ENSO index. The black dashed lines label the sensor changing time of the Advanced Very High Resolution Radiometer (AVHRR) satellite
series. Two volcanic eruptions (El Chichón eruption and Pinatubo eruption) are indicated with brown dashed lines. b, Best estimates of the scaling factors
of CO2 fertilization e�ects, climate change e�ects and simulated LAI under the four scenarios and their 5–95% uncertainty range from optimal fingerprint
analyses of global LAI for 1982–2009. c, Trend in global-averaged LAI derived from satellite observation (OBS) and modelled trends driven by rising CO2,
climate change (CLI), nitrogen deposition (NDE) and land cover change (LCC) using the Mann–Kendall test. Error bars show the standard deviation of
trends derived from satellite data and model simulations. Two asterisks indicate that the trend is statistically significant (p<0.05).

0.051± 0.029m2 m−2 yr−1 ). This suggests that, although incorpo-1

rating nitrogen in ecosystem models does not significantly (t-test,2

p<0.05) change the contribution of the CO2 fertilization effect to3

the global trend of LAI, it reduces the spread of model simulations4

(F-test, p<0.05).5

Vegetation leaf area changes result from interacting factors, but6

factorial simulations help to attribute a dominant factor for the7

observed changes. Our analyses show that the CO2 fertilization8

effect has a rather spatially uniform effect on the positive LAI trends.9

The modelled relative increases in global mean LAI due to CO210

fertilization alone is about 4.7–9.5% (or 10.2–20.7% per 100 ppm)11

during 1982 to 2009, which is comparable to measurements from12

the Free-Air CO2 Enrichment (FACE) experiments (0.3–11.1%, or13

0.6–24.1% per 100 ppm)14. However, no FACE experiment covered14

tropical forests, where models suggest that eCO2 is the dominant15

factor of the recent LAI trend (Fig. 3c,d). The spatial pattern is16

consistent with previous analyses15 that posited large absolute LAI17

increases due to eCO2 in the tropics, in the absence of temperature,18

water and nitrogen limitations16, and large relative LAI increases19

due to eCO2 in arid regions, where eCO2 is expected to increase the20

water use efficiency of plants (Supplementary Fig. 12)17. A simple21

theoretical model17,18 was used to diagnose the response of leaf level22

carbon assimilation to the observed 46 ppm increase of CO2 over the23

study period, including the effect of vapour pressure deficit trends24

and stomatal closure. This model gave a similar relative response of25

carbon assimilation to eCO2 as the ecosystem models did for LAI 26

(Supplementary Section 12). 27

Climate change explains about 8.1 ± 20.1% of the observed 28

positive LAI trend but, unlike eCO2 effects, climatic effects are 29

negative in some regions. Although detected by the optimal 30

fingerprint model, the effects of climate change are not consistent 31

between models, and may even be opposite in individual model 32

simulations. Overall, climate change has dominant contributions 33

to the greening trend over 28.4% of the global vegetated area 34

(Fig. 3c,d). Positive effects of climate change in the northern 35

high latitudes and the Tibetan Plateau are attributed to rising 36

temperature, which enhances photosynthesis and lengthens the 37

growing season5, whereas the greening of the Sahel and SouthAfrica 38

are primarily driven by increasing precipitation (Supplementary 39

Fig. 13). South America is the only continent where negative climate 40

effects were statistically significant (Supplementary Figs 10 and 41

11b). This is particularly important owing to the role of the Amazon 42

forests in the global carbon cycle19,20. Ecosystemmodels may tend to 43

overestimate the responses of vegetation growth to precipitation12
44

(Supplementary Section 10), which is one of the reasons why the 45

fate of the Amazon forests continues to be debated10. 46

Considerable evidence points to nitrogen limitation of vegetation 47

growth over many parts of the Earth21, with local alleviation 48

by nitrogen deposition in boreal and temperate regions22,23. Our 49

analyses suggest that nitrogen deposition explains 8.8 ± 11.8% of 50
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Figure 3 | a,b, Spatial distribution pattern of the trend in growing season integrated LAI for the period 1982–2009. LAI trends were derived from the
average of GIMMS, GLOBMAP and GLASS LAI in a and from a multi-model ensemble mean with all drivers considered in b; regions labelled by dots have
trends that are statistically significant (p<0.05). The trend is calculated and evaluated using the Mann–Kendall test at the 5% significance level. c,
Dominant driving factors of LAI, defined as the driving factor that contributes the most to the increase (or decrease) in LAI in each vegetated grid cell. The
driving factors include rising CO2 (CO2), climate change (CLI), nitrogen deposition (NDE), land cover change (LCC) and other factors (OF), the latter being
defined by the non-modelled fraction of observed LAI trend (see text). A prefix ‘+’ of the driving factors indicates a positive e�ect on LAI trends, whereas
‘−’ indicates a negative e�ect. d, Fractional area of vegetated land in 15◦ latitude bands (90◦ N–60◦ S) attributed to di�erent factors. The fraction of
vegetated area (%) that is dominantly driven by each factor is labelled on top of the bar.

the LAI trend at the global scale. However, this result is uncertain,1

because only two models in the ensemble specifically performed2

factorial simulations with and without nitrogen deposition. A3

slightly negative trend in nitrogen deposition effect was observed in4

North America and Europe, where nitrogen deposition rates have5

stabilized, or even declined, during the past three decades24,25.

Q.3

6

LCC is a dominant driver of LAI greening over only 9.6% of7

the global vegetated area, mainly in southeast China and southeast8

United States. Models produce negative LCC effects on LAI trends9

in tropical and southern temperate regions where deforestation10

occurred (Supplementary Fig. 11d)26. However, the individual effect11

of LCC is apparently outweighed by other factors in these regions,12

and thus does not seem to be dominant. Trends of the LCC effect13

simulated by ecosystem models differ significantly in magnitude,14

and sometimes also in sign. This could be due to differences15

in model assumptions relating to whether the productivity of16

secondary vegetation is smaller or larger than that of the vegetation17

it replaces.18

At the global scale, the observed LAI trend can be largely19

accounted for by CO2, climate, nitrogen deposition and LCC.20

However, at regional scales, other factors (OF) not considered in21

models, such as forest management, grazing, changes in cultivation22

practices and varieties, irrigation and disturbances such as storms23

and insect attacks, can be a cause of mismatch between observed24

and simulated LAI trends. The patterns of the effect of other factors25

were estimated as a residual, by subtracting the simulated trend26

caused by factors explicitly modelled from the observed local LAI27

trend. OF contributes the most to the observed LAI trend over28

25.0% (increase) and 5.3% (decrease) of the vegetated area (Fig. 3d).29

OF can also encompass non-modelled processes, such as plant30

diversity within a type of vegetation, hydrological and nutrient31

liberation during permafrost thawing, phosphorus and potassium32

limitations, access to ground water by deep roots, and rigid 33

discretization of the simulated vegetation into few plant functional 34

types. Further, uncertainties in existingmodel parameterization and 35

structure (Supplementary Section 7) and biases from the remote 36

sensing data sets (Supplementary Section 6) can cause a mismatch 37

between simulated and observed LAI trends. Interestingly, positive 38

effects tentatively attributed to OF are mainly found in areas 39

of intensive ecosystem management, such as northeast China, 40

Europe and India27. Negative OF effects are mainly found in 41

northern high latitudes, where most models lack a representation 42

of regionally important ecosystems (peatlands, wetlands) as well as 43

of specific disturbances28,29. 44

Understanding the mechanisms behind LAI trends is a first, yet 45

critical, step towards better understanding the influence of human 46

actions on terrestrial vegetation, and towards improving future 47

projections of vegetation dynamics. Bymaking use of three LAI data 48

sets, an ensemble of ten ecosystem models, and a fingerprinting 49

technique, we assessed the consistency of observed greening and 50

browning patternswith the effects of key environmental drivers. The 51

use of a ten-model ensemble increases confidence in the attribution, 52

although model simulations diverge in some aspects, particularly 53

for the impacts of climate change and LCC, which suggests an 54

area for future model improvements. Overall, the described LAI 55

trends represent a significant alteration of the productive capacity 56

of terrestrial vegetation through anthropogenic influences. 57

Methods 58

Methods and any associated references are available in the online 59

version of the paper. 60
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Methods1

The growing season integrated leaf area index was used as a proxy of vegetation2

growth in this study. We identified the growing season for each 0.5◦×0.5◦ grid cell3

of global vegetated area using GIMMS LAI3g data sets and freeze/thaw data sets.4

The growing season was first determined from the GIMMS LAI3g data set30 using5

a Savitzky–Golay filter and then refined by excluding the ground-freeze period6

identified by the Freeze/Thaw Earth System Data Record31. In particular, the7

growing season of evergreen broadleaf forests was set to 12 months and starts in8

January. All the satellite-observed leaf area products and leaf area index outputs of9

ecosystem models were first aggregated to 0.5◦×0.5◦ spatial resolution and then10

composited to annual growing season integrated leaf area index data.11

Three satellite-observed leaf area index products (GIMMS LAI, GLOBMAP12

LAI and GLASS LAI) were used to analyse the changes in global vegetation for the13

period 1982–2009. We used a nonparametric trend test technique (Mann–Kendall14

test) to evaluate trends in growing season integrated leaf area index derived from15

the three satellite LAI products at the 95% significance level. We analysed trends in16

LAI at pixel level, global level and continental level. When we tested trends in LAI17

at global and continental scales, we calculated the mean of LAI values of all the18

pixels in the specific region, weighting by the area of each pixel.19

Ten ecosystem models were used to analyse the relative contributions of20

external driving factors to trends in global vegetation growth during 1982–2009.21

We performed four experimental simulations to evaluate the relative contribution22

of four main driving factors, namely, CO2 fertilization, climate change, nitrogen23

deposition and land cover change, to the global vegetation trends: (S1) varying CO224

only, (S2) varying CO2 and climate, (S3) varying CO2, climate and nitrogen25

deposition and (S4) varying CO2, climate and land cover change. S1, S2−S1, S3−S226

and S4−S2 were used to evaluate the effects of CO2 fertilization, climate change,27

nitrogen deposition and land cover change to vegetation growth, respectively (see28

Supplementary Section 7).29

We used an optimal fingerprint method13 to detect the signals of CO230

fertilization, climate change, nitrogen deposition and land cover change effects

simulated by ecosystem models at global scales. The optimal fingerprint expresses 31

the observation (Y) as a linear combination of scaled (βi) responses to external 32

driving factors (xi), and internal variability (ε): Y=
∑n

i=1 βixi+ε. The scaling 33

factors (βi) are estimated on the basis of the total least square method to adjust the 34

amplitude of the responses of LAI to each driving factor. We regressed the 35

satellite-observed LAI against responses of vegetation growth (expressed as LAI) to 36

elevated atmospheric CO2, climate change, nitrogen deposition and land cover 37

change estimated by multi-model ensemble mean simulations of ten ecosystem 38

models. We also performed similar analysis for the simulated LAI under scenarios 39

S1, S2, S3 and S4. These regressions provide best-estimate linear combinations of 40

signals simulated by ecosystem models. The coefficients of the signals are the 41

scaling factors (βi). A residual consistency test was introduced to check the 42

consistency between the residuals of satellite-observed LAI and best-estimate 43

combinations of signals and the assumed internal LAI variability13. The overall 44

statistical model was considered suitable only if the residual consistency test passed 45

at the 95% significance level. If the 95% confidence interval of the estimated scaling 46

factor lies above zero, the signal of the corresponding driving factor is detected; the 47

model simulations are suitable for attribution if the 95% confidence interval 48

contains 1. 49
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