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Global environmental change is rapidly altering the dynamics
of terrestrial vegetation, with consequences for the functioning
of the Earth system and provision of ecosystem services'?.
Yet how global vegetation is responding to the changing
environment is not well established. Here we use three
long-term satellite leaf area index (LAI) records and ten global
ecosystem models to investigate four key drivers of LAl trends
during 1982-2009. We show a persistent and widespread
increase of growing season integrated LAl (greening) over
25 to 50% of the global vegetated area, whereas less
than 4% of the globe shows decreasing LAl (browning).
Factorial simulations with multiple global ecosystem models
suggest that CO, fertilization effects explain 70% of the
observed greening trend, followed by nitrogen deposition
(9%), climate change (8%) and land cover change (LCC) (4%).
CO, fertilization effects explain most of the greening trends
in the tropics, whereas climate change resulted in greening of
the high latitudes and the Tibetan Plateau. LCC contributed
most to the regional greening observed in southeast China and
the eastern United States. The regional effects of unexplained
factors suggest that the next generation of ecosystem models
will need to explore the impacts of forest demography,
differences in regional management intensities for cropland
and pastures, and other emerging productivity constraints such
as phosphorus availability.

Changes in vegetation greenness have been reported at regional
and continental scales on the basis of forest inventory and satellite

measurements’®. Long-term changes in vegetation greenness are
driven by multiple interacting biogeochemical drivers and land-use
effects’. Biogeochemical drivers include the fertilization effect of
elevated atmospheric CO, concentration (eCO,), regional climate
change (temperature, precipitation and radiation), and varying rates
of nitrogen deposition. Land-use-related drivers involve changes in
land cover and in land management intensity, including fertilization,
irrigation, forestry and grazing'®. None of these driving factors
can be considered in isolation, given their strong interactions
with one another. Previously, a few studies had investigated the
drivers of global greenness trends®”!!, with a limited number of
models and satellite observations, which prevented an appropriate
quantification of uncertainties'?.

Here, we investigate trends of leaf area index (LAI) and their
drivers for the period 1982 to 2009 using three remotely sensed
data sets (GIMMS3g, GLASS and GLOMAP) and outputs from
ten ecosystem models run at global extent (see Supplementary
Information). We use the growing season integrated leaf area index
(hereafter, LAL; Methods) as the variable of our study. We first
analyse global and regional LAI trends for the study period and
differences between the three data sets. Using modelling results, we
then quantify the contributions of CO, fertilization, climatic factors,
nitrogen deposition and LCC to the observed trends.

Trends from the three long-term satellite LAI data sets
consistently show positive values over a large proportion of the
global vegetated area since 1982 (Fig. 1). The global greening trend
estimated from the three data sets is 0.068 + 0.045m?’m™2yr".
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Figure 1| a-c, Spatial pattern of trends in growing season integrated LAl derived from three remote sensing data sets. a, GIMMS LAI3g. b, GLOBMAP LAl
¢, GLASS LA All data sets cover the period 1982 to 2009. Regions labelled by black dots indicate trends that are statistically significant (Mann-Kendall
test, p<0.05). d, Probability density function of LAl trends for GIMMS LAI3g, GLASS LAI, GLOBMAP LAl and the average of the three remote sensing data

sets (AVG OBS).

The GIMMS LAI3g data set, which includes recent data up to
2014, shows a continuation of the trend from the 1982 to 2009
period (Fig. 1 and Supplementary Fig. 3). The regions with the
largest greening trends, consistent across the three data sets,
are in southeast North America, the northern Amazon, Europe,
Central Africa and Southeast Asia. The GLASS LAI data shows
the most extensive statistically significant greening (Mann-Kendall
test, p < 0.05 ) over 50% of vegetated lands, followed by GLOBMAP
LAI (43%) and GIMMS LAI3g (25%). All three LAI data sets also
consistently show a decreasing LAI trend (browning) over less than
4% of global vegetated land—these are observed in northwest North
America and central South America. Analyses of the changes in
observed maximum LAI also show similar widespread greening
trends (Supplementary Section 8).

We compare satellite-based LAI anomalies with LAI anomalies
simulated by ten global ecosystem models driven by eCO,
(+46 ppm over the study period), climate, nitrogen deposition
and LCC (Supplementary Section 7). Multi-Model Ensemble
Mean (MMEM) LAI anomalies, with all these drivers considered,
generally agree with averaged satellite observations at the global
scale (r=0.83, p < 0.01; Fig. 2a). The trend in MMEM LAI
anomalies (0.062 m* m~? yr™') is within the range of estimates from
the three satellite data sets. The model simulations suggest that
increasing gross primary productivity, although partly neutralized
by increasing autotrophic respiration, and decreasing carbon loss
due to fires are responsible for the increasing LAI during 1982
to 2009 (Supplementary Section 9). The spatial pattern of LAI
trends also matches well between satellite data and MMEM
simulations (Fig. 3a,b). Consistent greening trends between models
and observations are seen in Fig. 3 across the southeast United
States, the Amazon Basin, Europe, central Africa, Southeast Asia and
Australia. However, satellite LAT and MMEM results show different
magnitudes (or signs) of trends in the southwestern United States,
southern South American countries, and Mongolia, indicating
that models may be over-sensitive to trends in precipitation
(Supplementary Section 10).

2

We used an optimal fingerprint detection method" to assess
the ability of the models to simulate observed patterns of LAI
response to eCO,, climate change, nitrogen deposition and LCC.
We regressed the observed two-year mean global average LAI time
series against the MMEM-simulated LAI reflecting the effects of
single drivers, based on factorial runs where only one driver is varied
at the time. A residual consistency test” suggests no inconsistency
between the regression residuals and the model-simulated internal
variability in the absence of forcing (Methods), indicating that
the fingerprint detection method is suitable for detection and
attribution at the global scale (Fig. 2b). The 95% confidence intervals
of the scaling factors of CO, fertilization (best estimates of scaling
factor B =1.03, 95% confidence interval [0.84,1.23]) and climate
change (8 =1.06, [0.55,1.64]) are not only above zero but also span
unity, which means that the modelled signals from these two drivers
are successfully detected and suitable for attribution (Fig. 2b). The
fingerprints of nitrogen deposition and LCC effects on the trend
of LAI remain confounded with internal variability and cannot be
clearly detected (not shown).

Globally, the model factorial simulations suggest that CO, fer-
tilization explains the largest contribution to the satellite-observed
LAI trend (70.1 £+ 29.4%, 0.048 + 0.020m*m~>yr™'), followed
by nitrogen deposition (8.8 £+ 11.8%, 0.006 £ 0.008 m* m~yr '),
climate change (8.1 £ 20.6%, 0.006 £ 0.014m* m 2 yr~') and LCC
(3.7 £ 14.7%, 0.003 £ 0.010 m* m~*yr~"') (Fig. 2c). The contribu-
tions of CO, fertilization and climate change are reliable according
to the optimal fingerprint analysis, whereas the effects of LCC
and nitrogen deposition should be interpreted with caution. Our
estimation of CO, fertilization effects on vegetation growth is more
prominent than Los®, probably owing to the different attribution
approaches. When using only those ecosystem models (five out
of ten) that incorporate nitrogen limitations and nitrogen depo-
sition effects (Supplementary Table 1), the fraction of the LAI
trend that is unambiguously attributed to CO, fertilization is
slightly smaller (66.2 £+ 13.2%, 0.045 + 0.009m®’ m~*yr~') than
when using models that ignore nitrogen processes (75.0 £ 42.6%,
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Figure 2| a, Interannual changes in anomalies of growing season integrated leaf area index (LAI) estimated by multi-model ensemble mean (MMEM) with
all drivers considered (blue line) and average of the three remote sensing data (red line) for the period 1982-2009, and interannual changes in anomalies of
LAl of GIMMS LAI3g (green line) for the period 1982-2014. The shaded area shows the intensity of El Nifio-Southern Oscillation (ENSO) as defined by the
multivariate ENSO index. The black dashed lines label the sensor changing time of the Advanced Very High Resolution Radiometer (AVHRR) satellite
series. Two volcanic eruptions (El Chichdn eruption and Pinatubo eruption) are indicated with brown dashed lines. b, Best estimates of the scaling factors
of CO; fertilization effects, climate change effects and simulated LAl under the four scenarios and their 5-95% uncertainty range from optimal fingerprint
analyses of global LAl for 1982-2009. ¢, Trend in global-averaged LAl derived from satellite observation (OBS) and modelled trends driven by rising CO>,
climate change (CLI), nitrogen deposition (NDE) and land cover change (LCC) using the Mann-Kendall test. Error bars show the standard deviation of
trends derived from satellite data and model simulations. Two asterisks indicate that the trend is statistically significant (p < 0.05).

0.051 £ 0.029 m* m~2yr~" ). This suggests that, although incorpo-
rating nitrogen in ecosystem models does not significantly (¢-test,
p <0.05) change the contribution of the CO, fertilization effect to
the global trend of LAL it reduces the spread of model simulations
(F-test, p<0.05).

Vegetation leaf area changes result from interacting factors, but
factorial simulations help to attribute a dominant factor for the
observed changes. Our analyses show that the CO, fertilization
effect has a rather spatially uniform effect on the positive LAI trends.
The modelled relative increases in global mean LAI due to CO,
fertilization alone is about 4.7-9.5% (or 10.2-20.7% per 100 ppm)
during 1982 to 2009, which is comparable to measurements from
the Free-Air CO, Enrichment (FACE) experiments (0.3-11.1%, or
0.6-24.1% per 100 ppm)"*. However, no FACE experiment covered
tropical forests, where models suggest that eCO, is the dominant
factor of the recent LAI trend (Fig. 3c,d). The spatial pattern is
consistent with previous analyses'" that posited large absolute LAI
increases due to eCO, in the tropics, in the absence of temperature,
water and nitrogen limitations'®, and large relative LAI increases
due to eCO; in arid regions, where eCO, is expected to increase the
water use efficiency of plants (Supplementary Fig. 12)"7. A simple
theoretical model'”*® was used to diagnose the response of leaf level
carbon assimilation to the observed 46 ppm increase of CO, over the
study period, including the effect of vapour pressure deficit trends
and stomatal closure. This model gave a similar relative response of

carbon assimilation to eCO, as the ecosystem models did for LAI
(Supplementary Section 12).

Climate change explains about 8.1 & 20.1% of the observed
positive LAI trend but, unlike eCO, effects, climatic effects are
negative in some regions. Although detected by the optimal
fingerprint model, the effects of climate change are not consistent
between models, and may even be opposite in individual model
simulations. Overall, climate change has dominant contributions
to the greening trend over 28.4% of the global vegetated area
(Fig. 3c,d). Positive effects of climate change in the northern
high latitudes and the Tibetan Plateau are attributed to rising
temperature, which enhances photosynthesis and lengthens the
growing season’, whereas the greening of the Sahel and South Africa
are primarily driven by increasing precipitation (Supplementary
Fig. 13). South America is the only continent where negative climate
effects were statistically significant (Supplementary Figs 10 and
11b). This is particularly important owing to the role of the Amazon
forests in the global carbon cycle'?. Ecosystem models may tend to
overestimate the responses of vegetation growth to precipitation'
(Supplementary Section 10), which is one of the reasons why the
fate of the Amazon forests continues to be debated'®.

Considerable evidence points to nitrogen limitation of vegetation
growth over many parts of the Earth®, with local alleviation
by nitrogen deposition in boreal and temperate regions*>*. Our
analyses suggest that nitrogen deposition explains 8.8 = 11.8% of
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Figure 3| a,b, Spatial distribution pattern of the trend in growing season integrated LAl for the period 1982-2009. LAl trends were derived from the
average of GIMMS, GLOBMAP and GLASS LAl in a and from a multi-model ensemble mean with all drivers considered in b; regions labelled by dots have
trends that are statistically significant (p <0.05). The trend is calculated and evaluated using the Mann-Kendall test at the 5% significance level. ¢,
Dominant driving factors of LAl, defined as the driving factor that contributes the most to the increase (or decrease) in LAl in each vegetated grid cell. The
driving factors include rising CO, (CO5), climate change (CLI), nitrogen deposition (NDE), land cover change (LCC) and other factors (OF), the latter being
defined by the non-modelled fraction of observed LAl trend (see text). A prefix '+’ of the driving factors indicates a positive effect on LAl trends, whereas
‘—"indicates a negative effect. d, Fractional area of vegetated land in 15° latitude bands (90° N-60° S) attributed to different factors. The fraction of
vegetated area (%) that is dominantly driven by each factor is labelled on top of the bar.

the LAI trend at the global scale. However, this result is uncertain,
because only two models in the ensemble specifically performed
factorial simulations with and without nitrogen deposition. A
slightly negative trend in nitrogen deposition effect was observed in
North America and Europe, where nitrogen deposition rates have
stabilized, or even declined, during the past three decades™*.

LCC is a dominant driver of LAI greening over only 9.6% of
the global vegetated area, mainly in southeast China and southeast
United States. Models produce negative LCC effects on LAI trends
in tropical and southern temperate regions where deforestation
occurred (Supplementary Fig. 11d)*. However, the individual effect
of LCC is apparently outweighed by other factors in these regions,
and thus does not seem to be dominant. Trends of the LCC effect
simulated by ecosystem models differ significantly in magnitude,
and sometimes also in sign. This could be due to differences
in model assumptions relating to whether the productivity of
secondary vegetation is smaller or larger than that of the vegetation
it replaces.

At the global scale, the observed LAI trend can be largely
accounted for by CO,, climate, nitrogen deposition and LCC.
However, at regional scales, other factors (OF) not considered in
models, such as forest management, grazing, changes in cultivation
practices and varieties, irrigation and disturbances such as storms
and insect attacks, can be a cause of mismatch between observed
and simulated LAI trends. The patterns of the effect of other factors
were estimated as a residual, by subtracting the simulated trend
caused by factors explicitly modelled from the observed local LAI
trend. OF contributes the most to the observed LAI trend over
25.0% (increase) and 5.3% (decrease) of the vegetated area (Fig. 3d).
OF can also encompass non-modelled processes, such as plant
diversity within a type of vegetation, hydrological and nutrient
liberation during permafrost thawing, phosphorus and potassium

limitations, access to ground water by deep roots, and rigid
discretization of the simulated vegetation into few plant functional
types. Further, uncertainties in existing model parameterization and
structure (Supplementary Section 7) and biases from the remote
sensing data sets (Supplementary Section 6) can cause a mismatch
between simulated and observed LAI trends. Interestingly, positive
effects tentatively attributed to OF are mainly found in areas
of intensive ecosystem management, such as northeast China,
Europe and India”. Negative OF effects are mainly found in
northern high latitudes, where most models lack a representation
of regionally important ecosystems (peatlands, wetlands) as well as
of specific disturbances™”.

Understanding the mechanisms behind LAI trends is a first, yet
critical, step towards better understanding the influence of human
actions on terrestrial vegetation, and towards improving future
projections of vegetation dynamics. By making use of three LAI data
sets, an ensemble of ten ecosystem models, and a fingerprinting
technique, we assessed the consistency of observed greening and
browning patterns with the effects of key environmental drivers. The
use of a ten-model ensemble increases confidence in the attribution,
although model simulations diverge in some aspects, particularly
for the impacts of climate change and LCC, which suggests an
area for future model improvements. Overall, the described LAI
trends represent a significant alteration of the productive capacity
of terrestrial vegetation through anthropogenic influences.

Methods
Methods and any associated references are available in the online
version of the paper.

Received 8 June 2015; accepted 29 March 2016;
published online XX Month XXXX
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Methods

The growing season integrated leaf area index was used as a proxy of vegetation
growth in this study. We identified the growing season for each 0.5° x 0.5° grid cell
of global vegetated area using GIMMS LAI3g data sets and freeze/thaw data sets.
The growing season was first determined from the GIMMS LAI3g data set® using
a Savitzky-Golay filter and then refined by excluding the ground-freeze period
identified by the Freeze/Thaw Earth System Data Record™. In particular, the
growing season of evergreen broadleaf forests was set to 12 months and starts in
January. All the satellite-observed leaf area products and leaf area index outputs of
ecosystem models were first aggregated to 0.5° x 0.5° spatial resolution and then
composited to annual growing season integrated leaf area index data.

Three satellite-observed leaf area index products (GIMMS LAI, GLOBMAP
LAT and GLASS LAI) were used to analyse the changes in global vegetation for the
period 1982-2009. We used a nonparametric trend test technique (Mann-Kendall
test) to evaluate trends in growing season integrated leaf area index derived from
the three satellite LAI products at the 95% significance level. We analysed trends in
LAT at pixel level, global level and continental level. When we tested trends in LAI
at global and continental scales, we calculated the mean of LAI values of all the
pixels in the specific region, weighting by the area of each pixel.

Ten ecosystem models were used to analyse the relative contributions of
external driving factors to trends in global vegetation growth during 1982-2009.
We performed four experimental simulations to evaluate the relative contribution
of four main driving factors, namely, CO, fertilization, climate change, nitrogen
deposition and land cover change, to the global vegetation trends: (S1) varying CO,
only, (S2) varying CO, and climate, (S3) varying CO,, climate and nitrogen
deposition and (S4) varying CO,, climate and land cover change. S1, $2—S1, $3—S2
and S4—S2 were used to evaluate the effects of CO, fertilization, climate change,
nitrogen deposition and land cover change to vegetation growth, respectively (see
Supplementary Section 7).

We used an optimal fingerprint method" to detect the signals of CO,
fertilization, climate change, nitrogen deposition and land cover change effects

simulated by ecosystem models at global scales. The optimal fingerprint expresses
the observation (Y) as a linear combination of scaled (8;) responses to external
driving factors (x;), and internal variability (¢): Y= E,":l Bix; +¢. The scaling
factors (3;) are estimated on the basis of the total least square method to adjust the
amplitude of the responses of LAI to each driving factor. We regressed the
satellite-observed LAI against responses of vegetation growth (expressed as LAI) to
elevated atmospheric CO,, climate change, nitrogen deposition and land cover
change estimated by multi-model ensemble mean simulations of ten ecosystem
models. We also performed similar analysis for the simulated LAI under scenarios
S1, S2, S3 and S4. These regressions provide best-estimate linear combinations of
signals simulated by ecosystem models. The coefficients of the signals are the
scaling factors (f;). A residual consistency test was introduced to check the
consistency between the residuals of satellite-observed LAI and best-estimate
combinations of signals and the assumed internal LAI variability"’. The overall
statistical model was considered suitable only if the residual consistency test passed
at the 95% significance level. If the 95% confidence interval of the estimated scaling
factor lies above zero, the signal of the corresponding driving factor is detected; the
model simulations are suitable for attribution if the 95% confidence interval
contains 1.
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