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Preface

This book captures the latest exciting developments concerning one of the most
fascinating unsolved mysteries about our origins: how did the first stars and
galaxies form? This era, known as the cosmic dawn because these sources were
the first to illuminate our Universe, assumes central importance in our under-
standing of the history of the Universe. Most research on this question has been
theoretical so far. But the next decade or two will bring about a new generation
of large telescopes with unprecedented sensitivity that promise to supply a flood
of data about the infant Universe during its first billion years after the Big Bang.
Among the new observatories are the James Webb Space Telescope (JWST)—
the successor to the Hubble Space Telescope, and three extremely large tele-
scopes on the ground (ranging from 24 to 42 m in diameter), as well as several
new arrays of dipole antennas operating at low radio frequencies. The fresh
data on the first galaxies and the diffuse gas between them will test existing the-
oretical ideas about the formation and radiative effects of the first galaxies, and
might even reveal new physics that has not yet been anticipated. This emerging
interface between theory and observation will constitute an ideal opportunity
for students considering a research career in astrophysics or cosmology. Thus
the book is intended to provide a self-contained introduction to research on the
first galaxies at a technical level appropriate for a graduate student.

The book is organized into three parts that largely build on each other.
Part I, Fundamentals of Structure Formation, includes chapters on basic
cosmology, linear perturbation theory, nonlinear structure formation, and the
intergalactic medium. This part provides a broad introduction to studies of cos-
mological structure and galaxy formation with applications well beyond the first
galaxies themselves. The first three chapters provide a crucial introduction to
the rest of the book; the fourth (on the intergalactic medium) is not essential
for many of the later chapters but is important for understanding the reioniza-
tion process as well as many of the most important observational probes of the
cosmic dawn.

Part II, The First Structures, focuses on the physics driving the formation of
these objects, as well as the physics that determines their influence on sub-
sequent generations of objects. We review the formation of the first stars and
black holes, the importance of stellar feedback, the basic principles of galaxy
evolution, and the epoch of reionization. Many of the principles contained here
also have wide application to other areas of extragalactic astrophysics, though
we focus on their application to the first galaxies. The first two chapters in
this part build on each other, but the others can be approached largely
independently.
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Part III, Observations of the Cosmic Dawn, describes several directions in
which we hope to observe the most distant galaxies in the coming decades.
This part begins with a discussion of galaxy surveys and then moves on to two
unique probes of this era: the Lyman-α and 21-cm lines of neutral hydrogen.
It concludes with brief discussions of several other techniques. The chapters in
this section are largely independent of each other and may be read in any order.

Throughout the text, we reference seminal papers as well as some recent
calculations with endnotes; these are collected in the Notes section. In the
Further Reading section, we list useful overviews in the form of books and
review papers. We have also included two appendixes. In Appendix A, we in-
clude fundamental constants and conversion factors, and, in Appendix B we
summarize the cosmological parameters assumed in this book (see also §1.4).

Note that both for the sake of brevity and because the current cosmological
measurements are reasonably secure, most of the equations do not explicitly
state their dependence on such factors as the baryon density, Hubble constant,
or cold dark matter density. Inserting these dependencies is a useful exercise,
and we encourage the interested readers to check their understanding in this
way.

Various introductory sections of this book are based on an undergraduate-
level book, How Did the First Stars and Galaxies Form? by one of us (A.L.), which
followed a cosmology class he had taught over two decades in the Astronomy
and Physics departments at Harvard University. Other parts relate to overviews
both of us wrote over the past decade in the form of review articles. Where
necessary, selected references are given to advanced papers and other review
articles in the scientific literature.

The writing of this book was made possible thanks to the help we received
from many individuals. First and foremost, we are grateful to our families
for their support and patience during the lengthy writing period of the book.
Needless to say, the content of this book echoes many papers and scientific
discussions we had over the years with our students, postdocs, and senior col-
laborators, including Dan Babich, Rennan Barkana, Jon Bittner, Laura Blecha,
Judd Bowman, Frank Briggs, Avery Broderick, Volker Bromm, Chris Carilli,
Renyue Cen, Benedetta Ciardi, T. J. Cox, Mark Dijkstra, Daniel Eisenstein,
Claude-André Faucher-Giguère, Richard Ellis, Idan Ginsburg, Zoltan Haiman,
Lars Hernquist, Jackie Hewitt, Loren Hoffman, Bence Kocsis, Girish Kulkarni,
Adam Lidz, Andrei Mesinger, Matt McQuinn, Joey Muñoz, Ramesh Narayan,
Peng Oh, Ryan O’Leary, Rosalba Perna, Tony Pan, Ue-Li Pen, Jonathan
Pritchard, Fred Rasio, Martin Rees, Doug Rubin, George Rybicki, Athena Stacy,
Dan Stark, Yue Shen, Nick Stone, Anne Thoul, Hy Trac, Eli Visbal, Stuart
Wyithe, and Matias Zaldarriaga. We did not attempt to provide a comprehen-
sive reference list of the related literature, since such a list would be out of date
within a few years in this rapidly evolving frontier. Instead we focused pedagog-
ically on the underlying physical principles that will remain relevant in the fu-
ture, and referred the reader to representative papers, review articles, and books
for further reading. We thank Nina Zonnevylle and Uma Mirani for their assis-
tance in obtaining permissions for the figures of the book; Laurie Lites for her
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assistance with the manuscript; Fred Davies, Lauren Holzbauer, Joey Muñoz,
and Ramesh Narayan for their help with several figures; and Natalie Mashian,
Doug Rubin, and Anjali Tripathi for their comments on the finished manu-
script. Finally, it has been a delightful experience for us to work with our book
editor, Ingrid Gnerlich, and the entire production team at Princeton University
Press.

—A. L. & S. F.
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Chapter One

Introduction and Cosmological Background

1.1 Preliminary Remarks

On large scales, the Universe is observed to be expanding. As it expands, galax-
ies separate from one another, and the density of matter (averaged over a large
volume of space) decreases. If we imagine playing the cosmic movie in reverse
and tracing this evolution backward in time, we would infer that there must
have been an instant when the density of matter was infinite. This moment in
time is the Big Bang, before which we cannot reliably extrapolate our history.
But even before we get all the way back to the Big Bang, there must have been
a time when stars like our Sun and galaxies like our Milky Way did not exist,
because the Universe was denser than they are. If so, how and when did the first
stars and galaxies form?

Primitive versions of this question were considered by humans for thousands
of years, long before it was realized that the Universe is expanding.
Religious and philosophical texts attempted to provide a sketch of the big pic-
ture from which people could derive the answer. In retrospect, these attempts
appear heroic in view of the scarcity of scientific data about the Universe prior
to the twentieth century. To appreciate the progress made over the past cen-
tury, consider, for example, the biblical story of Genesis. The opening chapter
of the Bible asserts the following sequence of events: first, the Universe was
created, then light was separated from darkness, water was separated from the
sky, continents were separated from water, vegetation appeared spontaneously,
stars formed, life emerged, and finally humans appeared on the scene. Instead,
the modern scientific order of events begins with the Big Bang, followed by an
early period in which light (radiation) dominated and then a longer period in
which matter was preeminent and led to the appearance of stars, planets, life
on Earth, and eventually humans. Interestingly, the starting and end points of
both versions are the same.

Cosmology is by now a mature empirical science. We are privileged to live in
a time when the story of genesis (how the Universe started and developed) can
be critically explored by direct observations. Because light takes a finite time to
travel to us from distant sources, we can see images of the Universe when it
was younger by looking deep into space through powerful telescopes.

Existing data sets include an image of the Universe when it was 400,000 years
old (in the form of the cosmic microwave background in Figure 1.1), as well as
images of individual galaxies when the Universe was older than a billion years.
But there is a serious challenge: between these two epochs was a period when
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WMAP 5-year
–200 T (µK) +200

Figure 1.1 Image of the Universe when it first became transparent, 400,000 years after
the Big Bang, taken over 5 years by the Wilkinson Microwave Anisotropy Probe
(WMAP) satellite (see Color Plate 1 for a color version of this figure). Slight
density inhomogeneities at the level of one part in ∼105 in the otherwise uni-
form early Universe imprinted hot and cold spots in the temperature map of
the cosmic microwave background on the sky. The fluctuations are shown in
units of microkelvins, and the unperturbed temperature is 2.725 K. The same
primordial inhomogeneities seeded the large-scale structure in the present-
day Universe. The existence of background anisotropies was predicted in a
number of theoretical papers three decades before the technology for tak-
ing this image became available. Courtesy of NASA and the WMAP Science
Team.

the Universe was dark, stars had not yet formed, and the cosmic microwave
background no longer traced the distribution of matter. And this is precisely
the most interesting period, when the primordial soup evolved into the rich zoo
of objects we now see. How can astronomers see this dark yet crucial time?

The situation is similar to having a photo album of a person that begins with
the first ultrasound image of him or her as an unborn baby and then skips to
some additional photos of his or her years as teenager and adult. The later pho-
tos do not simply show a scaled-up version of the first image. We are currently
searching for the missing pages of the cosmic photo album that will tell us how
the Universe evolved during its infancy to eventually make galaxies like our own
Milky Way.

Observers are moving ahead along several fronts. The first involves the con-
struction of large infrared telescopes on the ground and in space that will pro-
vide us with new (although rather expensive!) photos of galaxies in the Universe
at intermediate ages. Current plans include ground-based telescopes
24–42 m in diameter and NASA’s successor to the Hubble Space Telescope,
the James Webb Space Telescope (JWST). In addition, several observational
groups around the globe are constructing radio arrays that will be capable of



chapter1 August 11, 2012

INTRODUCTION AND COSMOLOGICAL BACKGROUND 5

mapping the three-dimensional distribution of cosmic hydrogen left over from
the Big Bang in the infant Universe. These arrays are aiming to detect the
long-wavelength (redshifted 21-cm) radio emission from hydrogen atoms. Co-
incidentally, this long wavelength (or low frequency) overlaps the band used
for radio and television broadcasting, and so these telescopes include arrays
of regular radio antennas that one can find in electronics stores. These an-
tennas will reveal how the clumpy distribution of neutral hydrogen evolved
with cosmic time. By the time the Universe was a few hundreds of millions of
years old, the hydrogen distribution had been punched with holes and resem-
bled Swiss cheese. These holes were created by the ultraviolet radiation from
the first galaxies and black holes, which ionized the cosmic hydrogen in their
vicinity.

Theoretical research has focused in recent years on predicting the signals
expected from the telescopes described and on providing motivation for these
ambitious observational projects.

All these predictions are generated in the context of the modern cosmological
paradigm, which turns the Big Bang model into a quantitative tool for under-
standing our Universe. In the remainder of this chapter, we briefly describe the
essential aspects of this paradigm for understanding the formation of the first
galaxies in the Universe.

1.2 Standard Cosmological Model

1.2.1 Cosmic Perspective

In 1915 Einstein formulated the general theory of relativity. He was inspired by
the fact that all objects follow the same trajectories under the influence of grav-
ity (the so-called equivalence principle, which by now has been tested to better
than one part in a trillion), and realized that this would be a natural result if
space–time is curved under the influence of matter. He wrote an equation de-
scribing how the distribution of matter (on one side of his equation) determines
the curvature of space–time (on the other side of his equation). Einstein then
applied his equation to describe the global dynamics of the Universe.

There were no computers available in 1915, and Einstein’s equations for the
Universe were particularly difficult to solve in the most general case. To get
around this obstacle Einstein considered the simplest possible Universe, one
that is homogeneous and isotropic. Homogeneity means uniform conditions
everywhere (at any given time), and isotropy means the same conditions in all
directions seen from one vantage point. The combination of these two simpli-
fying assumptions is known as the cosmological principle.

The Universe can be homogeneous but not isotropic: for example, the ex-
pansion rate could vary with direction. It can also be isotropic and not ho-
mogeneous: for example, we could be at the center of a spherically symmetric
mass distribution. But if it is isotropic around every point, then it must also be
homogeneous.
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Under the simplifying assumptions associated with the cosmological prin-
ciple, Einstein and his contemporaries were able to solve the equations. They
were looking for their “lost keys” (solutions) under a convenient “lamppost”
(simplifying assumptions), but the real Universe is not bound by any contract
to be the simplest that we can imagine. In fact, it is truly remarkable in the first
place that we dare describe the conditions across vast regions of space based on
the blueprint of the laws of physics that describe the conditions here on Earth.
Our daily life teaches us too often that we fail to appreciate complexity, and that
an elegant model for reality is often too idealized for describing the truth (along
the lines of approximating a cow as a spherical object).

In 1915 Einstein had the wrong notion of the Universe; at the time people
associated the Universe with the Milky Way galaxy and regarded all the “spiral
nebulae,” which we now know are distant galaxies, as constituents of our own
Milky Way galaxy. Because the Milky Way is not expanding, Einstein attempted
to reproduce a static universe with his equations. This turned out to be possi-
ble only after he added a cosmological constant, whose negative gravity would
exactly counteract that of matter. However, Einstein later realized that this solu-
tion is unstable: a slight enhancement in density would make the density grow
even further. As it turns out, there are no stable static solutions to Einstein’s
equations for a homogeneous and isotropic Universe. The Universe must be
either expanding or contracting. Less than a decade later, Edwin Hubble dis-
covered that the nebulae previously considered to be constituents of the Milky
Way galaxy are receding from us at a speed v that is proportional to their dis-
tance r , namely, v = H0r , whereH0 is a spatial constant (which can evolve with
time), commonly termed the Hubble constant.i Hubble’s data indicated that the
Universe is expanding. (Hubble also resolved individual bright stars in these
nebulae, unambiguously determining their nature and their vast distances from
the Milky Way.)

Einstein was remarkably successful in asserting the cosmological principle.
As it turns out, our latest data indicate that the real Universe is homogeneous
and isotropic on the largest observable scales to within one part in 105. In par-
ticular, isotropy is well established for the distribution of faint radio sources,
optical galaxies, the X-ray background, and most important, the cosmic mi-
crowave background (CMB). The constraints on homogeneity are less strict,
but a cosmological model in which the Universe is isotropic and significantly
inhomogeneous in spherical shells around our special location is also excluded
based on surveys of galaxies and quasars. Fortuitously, Einstein’s simplifying
assumptions turned out to be extremely accurate in describing reality: the keys
were indeed lying next to the lamppost. Our Universe happens to be the sim-
plest we could have imagined, for which Einstein’s equations can easily be
solved.

iThe redshift data examined by Hubble was mostly collected by Vesto Slipher a decade earlier and
only partly by Hubble’s assistant, Milton L. Humason. The linear local relation between redshift
and distance (based on Hubble and Humason’s data) was first formulated by Georges Lemaître in
1927, 2 years prior to the observational paper written by Hubble and Humason.
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Why was the Universe prepared to be in this special state? Cosmologists were
able to go one step further and demonstrated that an early phase transition,
called cosmic inflation—during which the expansion of the Universe accelerated
exponentially—could have naturally produced the conditions postulated by the
cosmological principle (although other explanations also may create such con-
ditions). One is left to wonder whether the existence of inflation is just a fortu-
nate consequence of the fundamental laws of nature, or whether perhaps the
special conditions of the specific region of space–time we inhabit were selected
out of many random possibilities elsewhere by the prerequisite that they allow
our existence. The opinions of cosmologists on this question are split.

1.2.2 Origin of Structure

Hubble’s discovery of the expansion of the Universe has immediate implica-
tions for the past and future of the Universe. If we reverse in our mind the
expansion history back in time, we realize that the Universe must have been
denser in its past. In fact, there must have been a point in time where the mat-
ter density was infinite, at the moment of the so-called Big Bang. Indeed, we
do detect relics from a hotter, denser phase of the Universe in the form of light
elements (such as deuterium, helium, and lithium) as well as the CMB. At early
times, this radiation coupled extremely well to the cosmic gas and produced a
spectrum known as a blackbody, a form predicted a century ago to characterize
matter and radiation in equilibrium. The CMB provides the best example of a
blackbody spectrum we have.

To get a rough estimate of when the Big Bang occurred, we may simply divide
the distance of all galaxies by their recession velocity. This calculation gives a
unique answer, ∼ r/v ∼ 1/H0, that is independent of distance.ii The latest
measurements of the Hubble constant give a value of H0 ≈ 70 km s−1 Mpc−1,
which implies a current age for the Universe 1/H0 of 14 billion years (or 5×1017

seconds).
The second implication concerns our future. A fortunate feature of a spher-

ically symmetric Universe is that when considering a sphere of matter in it,
we are allowed to ignore the gravitational influence of everything outside this
sphere. If we empty the sphere and consider a test particle on the boundary of
an empty void embedded in a uniform Universe, the particle will experience no
net gravitational acceleration. This result, known as Birkhoff’s theorem, is remi-
niscent of Newton’s “iron sphere theorem.” It allows us to solve the equations
of motion for matter on the boundary of the sphere through a local analysis
without worrying about the rest of the Universe. Therefore, if the sphere has ex-
actly the same conditions as the rest of the Universe, we may deduce the global
expansion history of the Universe by examining its behavior. If the sphere is

iiAlthough this is an approximate estimate, it turns out to be within a few percent of the true
age of our Universe owing to a coincidence. The cosmic expansion at first decelerated and then
accelerated, with the two almost canceling each other at the present time, giving the same age as if
the expansion were at a constant speed (as would be strictly true only in an empty Universe).
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slightly denser than the mean, we will infer how its density contrast will evolve
relative to the background Universe.

For the moment, let us ignore the energy density of the vacuum (which is al-
ways a good approximation at sufficiently early cosmic times, when matter was
denser). Then, the equation describing the motion of a spherical shell of matter
is identical with the equation of motion of a rocket launched from the surface
of the earth. The rocket will escape to infinity if its kinetic energy exceeds its
gravitational binding energy, making its total energy positive. However, if its
total energy is negative, the rocket will reach a maximum height and then fall
back. To deduce the future evolution of the Universe, we need to examine the
energy of a spherical shell of matter relative to the origin. With a uniform den-
sity ρ, a spherical shell of radius r has a total massM = ρ× (

4πr3/3
)

enclosed
within it. Its energy per unit mass is the sum of the kinetic energy due to its ex-
pansion speed v = Hr , (1/2)v2, and its potential gravitational energy, −GM/r
(whereG is Newton’s constant), namely,E = v2/2−GM/r . By substituting the
preceding relations for v and M , we can easily show that E = (1/2)v2(1 − �),
where� = ρ/ρc, and ρc = 3H 2/8πG is defined as the critical density. We there-
fore find that there are three possible scenarios for the cosmic expansion. The
Universe has either (i) � > 1, making it gravitationally bound with E < 0—
such a “closed Universe” will turn around and end up collapsing toward a “big
crunch”; (ii) � < 1, making it gravitationally unbound with E > 0—such an
“open Universe” will expand forever; or the borderline case, (iii) � = 1, making
the Universe marginally bound or “flat” with E = 0.

Einstein’s equations relate the geometry of space to its matter content
through the value of �: an open Universe has the geometry of a saddle with
a negative spatial curvature, a closed Universe has the geometry of a spherical
globe with a positive curvature, and a flat Universe has a flat geometry with no
curvature. Our observable section of the Universe appears to be flat.

Now we are in a position to understand how objects like the Milky Way galaxy
formed out of small density inhomogeneities that are amplified by gravity.

Let us consider for simplicity the background of a marginally bound (flat)
Universe dominated by matter. In such a background, only a slight enhance-
ment in density is required to exceed the critical density ρc. Because of
Birkhoff’s theorem, a spherical region denser than the mean will behave as
if it is part of a closed Universe and will increase its density contrast with time,
while an underdense spherical region will behave as if it is part of an open
Universe and will appear more vacant with time relative to the background, as
illustrated in Figure 1.2. Starting with slight density enhancements that bring
them above the critical value, ρc, the overdense regions will initially expand,
reach a maximum radius, and then collapse on themselves (like the trajectory
of a rocket launched straight up, away from the center of the earth). An initially
slightly inhomogeneous Universe will end up clumpy, with collapsed objects
forming out of overdense regions. The material to make the objects is drained
out of the intervening underdense regions, which end up as voids.

The Universe we live in started with primordial density perturbations of a
fractional amplitude ∼10−5 when the cosmic microwave background last scat-
tered. The overdensities were amplified at late times (once matter dominated
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Early times Mean density
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E < 0 bound

Intermediate 
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Figure 1.2 Top: Schematic illustration of the growth of perturbations to collapsed ha-
los through gravitational instability. The overdense regions initially expand,
reach a maximum size, and then turn around and collapse to form gravita-
tionally bound halos if their density exceeds a critical threshold (see §3.1).
The material that makes the halos originated in the voids that separate them.
Middle: A simple model for the collapse of a spherical region. The dynamical
fate of a rocket launched from the surface of the earth depends on the sign
of its energy per unit mass, E = (1/2)v2 −GM⊕/r . The behavior of a spher-
ical shell of matter on the boundary of an overdense region (embedded in a
homogeneous and isotropic Universe) can be analyzed in a similar fashion.
Bottom: A collapsing region may end up as a galaxy, like NGC 4414, shown
here (Courtesy of NASA and ESA). The halo gas cools and condenses to a
compact disk surrounded by an extended dark matter halo.



chapter1 August 11, 2012

10 CHAPTER 1

the cosmic mass budget) up to values close to unity and collapsed to make ob-
jects, first on small scales. We have not yet seen the first small galaxies that
started the process that eventually led to the formation of big galaxies like the
Milky Way. The search for the first galaxies is a search for our origins and the
main subject of this book.

Beyond being uniform, the early Universe was simple in one additional way:
the process of Big Bang nucleosynthesis produced the first atomic nuclei, but
these were mostly hydrogen and helium (with ∼93% of those atoms in the
form of hydrogen). However, life as we know it on planet Earth requires water.
The water molecule includes oxygen, an element that was not made in the Big
Bang and did not exist until the first stars had formed. Therefore, our form of
life could not have existed in the first hundred million years after the Big Bang,
before the first stars had formed. There is also no guarantee that life will persist
in the distant future.

1.2.3 Geometry of Space

The history and fate of our Universe are thus tied inexorably to its contents—
be it matter, dark energy, or something even more exotic. However, measur-
ing the average density of the Universe is extraordinarily difficult. Fortunately,
Einstein’s equations show that the contents of the Universe are also tied to its
geometry—so measuring the latter would indirectly constrain its components.

How can we tell the difference between the flat surface of a book and the curved
surface of a balloon? A simple way is to draw a triangle of straight lines between
three points on those surfaces and measure the sum of the three angles of the
triangle. The Greek mathematician Euclid demonstrated that the sum of these
angles must be 180◦ (or π radians) on a flat surface. Twenty-one centuries later,
the German mathematician Bernhard Riemann extended the field of geome-
try to curved spaces, which played an important role in the development of
Einstein’s general theory of relativity. For a triangle drawn on a positively curved
surface, like that of a balloon, the sum of the angles is larger than 180◦. (This
can easily be figured out by examining a globe and noticing that any line con-
necting one of the poles to the equator opens an angle of 90◦ relative to the
equator. Adding the third angle in any triangle stretched between the pole and
the equator would surely result in a total of more than 180◦.) According to
Einstein’s equations, the geometry of the Universe is dictated by its matter
content; in particular, the Universe is flat only if the total � equals unity. Is
it possible to draw a triangle across the entire Universe and measure its geometry?

Remarkably, the answer is yes. At the end of the twentieth century cosmolo-
gists were able to perform this experiment by adopting a simple yardstick pro-
vided by the early Universe. The familiar experience of dropping a stone in
the middle of a pond results in a circular wave crest that propagates outward.
Similarly, perturbing the smooth Universe at a single point at the Big Bang
would have resulted in the propogation of a spherical sound wave outward
from that point. The wave would have traveled at the speed of sound, which
was of the order of the speed of light c (or, more precisely, c/

√
3) early on
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when radiation dominated the cosmic mass budget. At any given time, all the
points extending to the distance traveled by the wave are affected by the original
pointlike perturbation. The conditions outside this “sound horizon” will remain
uncorrelated with the central point, because acoustic information has not yet
been able to reach them. The temperature fluctuations of the CMB trace the
simple sum of many such pointlike perturbations that were generated in the
Big Bang. The patterns they delineate will therefore show a characteristic corre-
lation scale, corresponding to the sound horizon at the time when the CMB was
produced, 400,000 years after the Big Bang. By measuring the apparent angular
scale of this “standard ruler” on the sky, known as the acoustic peak in the CMB,
and comparing it with theory, experimental cosmologists inferred from the sim-
ple geometry of triangles that the Universe is flat (or at least very close to it).

The inferred flatness may be a natural consequence of the early period of cos-
mic inflation during which any initial curvature was flattened. Indeed, a small
patch of a fixed size (representing our current observable region in the cosmo-
logical context) on the surface of a vastly inflated balloon would appear nearly
flat. The sum of the angles on a nonexpanding triangle placed on this patch
would get arbitrarily close to 180◦ as the balloon inflated.

Even though we now know that our Universe is very close to being flat, this
flatness only constrains the cumulative energy density in the Universe; it tells
us very little about how that energy is distributed among the different compo-
nents, such as baryons, other forms of matter, and dark energy. We must probe
our Universe in other ways to learn about this distribution.

1.2.4 Observing Our Past: Cosmic Archaeology

Our Universe is the simplest possible on two counts: it satisfies the cosmo-
logical principle, and it has a flat geometry. The mathematical description of
an expanding, homogeneous, and isotropic Universe with a flat geometry is
straightforward. We can imagine filling up space with clocks that are all syn-
chronized. At any given snapshot in time the physical conditions (density, tem-
perature) are the same everywhere. But as time goes on, the spatial separation
between the clocks will increase. The stretching of space can be described by a
time-dependent scale factor, a(t). A separation measured at time t1 as r(t1) will
appear at time t2 to have a length r(t2) = r(t1)[a(t2)/a(t1)].

A natural question to ask is whether our human bodies or even the solar sys-
tem is also expanding as the Universe expands. The answer is no, because these
systems are held together by forces whose strength far exceeds the cosmic force.
The mean density of the Universe today, ρ̄, is 29 orders of magnitude smaller
than the density of our body. Not only are the electromagnetic forces that keep
the atoms in our body together far greater than the force of gravity, but even
the gravitational self-force of our body on itself overwhelms the cosmic influ-
ence. Only on very large scales does the cosmic gravitational force dominate the
scene. This also implies that we cannot observe the cosmic expansion with a lo-
cal laboratory experiment; to notice the expansion we need to observe sources
spread over the vast scales of millions of light-years.
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The space–time of an expanding homogeneous and isotropic flat Universe
can be described very simply. Because of the cosmological principle, we can es-
tablish a unique time coordinate throughout space by distributing clocks that
are all synchronized throughout the Universe, so that each clock will measure
the same time t since the Big Bang. The space–time (four–dimensional) line
element ds, commonly defined to vanish for a photon, is described by the
Friedmann-Robertson-Walker (FRW) metric,

ds2 = c2dt2 − d�2, (1.1)

where c is the speed of light and d� is the spatial line element. The cosmic
expansion can be incorporated through a scale factor a(t) that multiplies the
fixed (x, y, z) coordinates tagging the clocks, which are themselves “comoving”
with the cosmic expansion. For a flat space,

d�2 = a(t)2(dx2 + dy2 + dz2) = a2(t)(dR2 + R2d�), (1.2)

where d� = dθ2 + sin2 θ dφ2, (R, θ, φ) are the comoving spherical coordinates
centered on the observer, and (x, y, z) = (R cos θ, R sin θ cosφ,R sin θ sinφ).
Throughout this book, we quote distances in these comoving units—as opposed
to their time-varying proper equivalents—unless otherwise specified.

A source located at a separation r = a(t)R from us will move at a velocity
v = dr/dt = ȧR = (ȧ/a)r , where ȧ = da/dt . Here r is a time-independent
tag denoting the present-day distance of the source (when a(t) ≡ 1). Defining
H = ȧ/a, which is constant in space, we recover the Hubble expansion law
v = Hr .

Edwin Hubble measured the expansion of the Universe using the Doppler
effect. We are all familiar with the same effect for sound waves: when a moving
car sounds its horn, the pitch (frequency) we hear is different when the car
is approaching us than when it is receding from us. Similarly, the wavelength
of light depends on the velocity of the source relative to us. As the Universe
expands, a light source will move away from us, and its Doppler effect will
change with time. The Doppler formula for a nearby source of light (with a
recession speed much smaller than the speed of light) gives

�m

m
≈ −�v

c
= −

(
ȧ

a

) ( r
c

)
= − (ȧ�t)

a
= −�a

a
, (1.3)

with the solution m ∝ a−1. Correspondingly, the wavelength scales as λ =
(c/m) ∝ a. We could have anticipated this outcome, since a wavelength can
be used as a measure of distance and should therefore be stretched as the
Universe expands. This relation holds also for the de Broglie wavelength, λdB =
(h/p) ∝ a, characterizing the quantum-mechanical wavefunction of a massive
particle with momentum p (where h is Planck’s constant). Consequently, the
kinetic energy of a nonrelativistic particle scales as (p2/2mp) ∝ a−2. Thus, in
the absence of heat exchange with other systems, the temperature of a gas of
nonrelativistic protons and electrons will cool faster (∝ a−2) than the CMB tem-
perature (hm ∝ a−1) as the Universe expands and a increases. The redshift z is
defined through the factor (1+z) by which the photon wavelength was stretched
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(or its frequency reduced) between its emission and observation times. If we
define a = 1 today, then a = 1/(1 + z) at earlier times. Higher redshifts cor-
respond to a higher recession speed of the source relative to us (that ultimately
approaches the speed of light when the redshift goes to infinity), which in turn
implies a larger distance (that ultimately approaces our horizon, which is the
distance traveled by light since the Big Bang) and an earlier emission time of
the source for the photons to reach us today.

We see high-redshift sources as they looked at early cosmic times. Observa-
tional cosmology is like archaeology—the deeper we look into space, the more
ancient the clues about our history are (see Figure 1.3).iii But there is a limit to
how far back we can see: we can image the Universe only if it is transparent.
Earlier than 400,000 years after the Big Bang, the cosmic gas was sufficiently
hot to be fully ionized, and the Universe was opaque owing to scattering by
the dense fog of free electrons that filled it. Thus, telescopes cannot be used to
image the infant Universe at earlier times (at redshifts > 103). The earliest pos-
sible image of the Universe can be seen in the cosmic microwave background,
the thermal radiation left over from the transition to transparency (Figure 1.1).
The first galaxies are believed to have formed long after that.

The expansion history of the Universe is captured by the scale factor a(t).
We can write a simple equation for the evolution of a(t) based on the behavior
of a small region of space. For that purpose we need to incorporate the fact
that in Einstein’s theory of gravity, not only does mass density ρ gravitate but
pressure p does as well. In a homogeneous and isotropic Universe, the quantity
ρgrav = (ρ+3p/c2) plays the role of the gravitating mass density ρ of Newtonian
gravity. There are several examples to consider. For a radiation fluid,iv prad/c

2 =
(1/3)ρrad, which implies that ρgrav = 2ρrad.

However, if the vacuum has a nonzero energy density that is constant in
space and time, the cosmological constant, then the pressure of the vacuum is
negative, because by opening up a new volume increment �V one gains an en-
ergy ρvacc

2�V instead of losing it, as is the case for normal fluids that expand
into more space. In thermodynamics, pressure is derived from the deficit in en-
ergy per unit of new volume, which in this case gives pvac/c

2 = −ρvac. This rela-
tion in turn leads to another reversal of signs, ρgrav = (ρvac+3pvac/c

2) = −2ρvac,
which may be interpreted as repulsive gravity! This surprising result gives rise
to the phenomenon of accelerated cosmic expansion, which characterized the
early period of cosmic inflation as well as the latest 6 billion years of cosmic
history.

iiiCosmology and archaeology share another similarity: both are observational, rather than experi-
mental, sciences. Thus, we are forced to interpret the complicated physics of actual systems rather
than design elegant experiments that can answer targeted questions. Although simplified models
can be built in the laboratory (or even inside computers), the primary challenge of cosmology is
figuring out how to extract useful information from real and complex systems that cannot be artifi-
cially altered.
ivThe momentum of each photon is 1/c of its energy. The pressure is defined as the momentum
flux along one dimension out of three and is therefore given by (1/3)ρradc

2, where ρrad is the
equivalent mass density of the radiation.
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Figure 1.3 Cosmic archaeology of the observable volume of the Universe, in comov-
ing coordinates (which factor out the cosmic expansion). The outermost
observable boundary (z = ∞) marks the comoving distance that light has
traveled since the Big Bang. Future observatories aim to map most of the
observable volume of our Universe and to improve dramatically the statis-
tical information we have about the density fluctuations within it. Existing
data on the CMB probe mainly a very thin shell at the hydrogen recombi-
nation epoch (z ∼ 103, beyond which the Universe is opaque), and current
large-scale galaxy surveys map only a small region near us at the center of
the diagram. The formation epoch of the first galaxies that culminated with
hydrogen reionization at a redshift z ∼ 10 is shaded dark gray. Note that the
comoving volume out to any of these redshifts scales as the distance cubed.

As the Universe expands and the scale factor increases, the matter mass den-
sity declines inversely with volume, ρmatter ∝ a−3, whereas the radiation energy
density (which includes the CMB and three species of relativistic neutrinos)
decreases as ρradc

2 ∝ a−4, because not only is the density of photons diluted
as a−3, but the energy per photon hm = hc/λ (where h is Planck’s constant)
declines as a−1. Today ρmatter is larger than ρrad (assuming massless neutrinos)
by a factor of ∼3,300, but at (1 + z) ∼3,300 the two were equal, and at even
higher redshifts the radiation dominated. Since a stable vacuum does not get
diluted with cosmic expansion, the present-day ρvac remained a constant and
dominated over ρmatter and ρrad only at late times (whereas the unstable “false
vacuum” that dominated during inflation decayed when inflation ended).
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In this book, we will primarily be concerned with the cosmic dawn, or the
era in which the first galaxies formed at z ∼ 6–30. At these early times, the
cosmological constant was very small compared with the matter densities and
can generally be ignored.

1.3 Milestones in Cosmic Evolution

The gravitating mass, Mgrav = ρgravV , enclosed by a spherical shell of radius
r(t) = a(t) and volume V = (4π/3)a3, induces an acceleration

d2a

dt2
= −GMgrav

a2
. (1.4)

Since ρgrav = ρ+3p/c2, we need to know how pressure evolves with the expan-
sion factor a(t). We obtain this information from the thermodynamic relation
mentioned previously between the change in the internal energy d(ρc2V ) and
the p dV work done by the pressure, d(ρc2V ) = −p dV . This relation implies
−3paȧ/c2 = a2ρ̇ + 3ρaȧ, where an overdot denotes a time derivative. Multi-
plying equation (1.4) by ȧ and making use of this relation yields our familiar
result

E = 1

2
ȧ2 − GM

a
, (1.5)

where E is a constant of integration, and M ≡ ρV . As discussed before, the
spherical shell will expand forever (being gravitationally unbound) if E ≥ 0 but
will eventually collapse (being gravitationally bound) if E < 0. Making use of
the Hubble parameter, H = ȧ/a, we can rewrite equation (1.5) as

E

ȧ2/2
= 1 −�, (1.6)

where � = ρ/ρc, with

ρc = 3H 2

8πG
= 9.2 × 10−30 g

cm3

(
H

70 km s−1Mpc−1

)2

. (1.7)

If we denote the present contributions to � from matter (including cold dark
matter as well as a contribution �b from ordinary matter of protons and neu-
trons, or “baryons”), vacuum density (cosmological constant), and radiation, with
�m, �	, and �r , respectively, a flat universe with E = 0 satisfies

H(t)

H0
=

[
�m

a3
+�	 + �r

a4

]1/2

, (1.8)

where we defineH0 and�0 = (�m+�	+�r) = 1 to be the present-day values
of H and �, respectively.

In the particularly simple case of a flat Universe, we find that if matter dom-
inates (i.e., �0 = 1), then a ∝ t2/3; if radiation dominates, then a ∝ t1/2;
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and if the vacuum density dominates, then a ∝ exp{Hvact}, where Hvac =
(8πGρvac/3)1/2 is a constant. After inflation ended, the mass density of our
Universe, ρ, was at first dominated by radiation at redshifts z > 3,300, by mat-
ter at 0.3 < z < 3,300, and finally by the vacuum at z < 0.3. The vacuum had
already started to dominate ρgrav at z < 0.7, or 6 billion years ago. Figure 1.6
illustrates the mass budget in the present-day Universe and during the epoch
when the first galaxies formed.

The preceding results for a(t) have two interesting implications. First, we
can calculate the relationship between the time since the Big Bang and redshift,
since a = (1 + z)−1. For example, during the matter-dominated era (1 < z <

103, with the low-z end set by the condition [1 + z] 
 [�	/�m]1/3),

t ≈ 2

3H0�m
1/2(1 + z)3/2

= 0.95 × 109 yr

[(1 + z)/7]3/2
. (1.9)

In this same regime, where �m ≈ 1, H ≈ 2/(3t), and a = (1 + z)−1 ≈
(3H0

√
�m/2)2/3t2/3.

Second, we note the remarkable exponential expansion for a vacuum-
dominated phase. This accelerated expansion serves an important purpose in
explaining a few puzzling features of our Universe. We have already noticed
that our Universe was prepared in a very special initial state: nearly isotropic
and homogeneous, with � close to unity and a flat geometry. In fact, it took
the CMB photons nearly the entire age of the Universe to travel toward us.
Therefore, it should take them twice as long to bridge their points of origin on
opposite sides of the sky. How is it possible then that the conditions of the Uni-
verse (as reflected in the nearly uniform CMB temperature) were prepared to be the
same in regions that were never in causal contact before? Such a degree of organiza-
tion is highly unlikely to occur at random. If we receive our clothes ironed and
folded neatly, we know that there must have a been a process that caused this
to happen. Cosmologists have identified an analogous “ironing process” in the
form of cosmic inflation. This process is associated with an early period dur-
ing which the Universe was dominated temporarily by the mass density of an
elevated vacuum state and experienced exponential expansion by at least ∼60 e-
folds. This vast expansion “ironed out” any initial curvature of our environment
and generated a flat geometry and nearly uniform conditions across a region far
greater than our current horizon. After the elevated vacuum state decayed, the
Universe became dominated by radiation.

The early epoch of inflation was important not just in producing the global
properties of the Universe but also in generating the inhomogeneities that
seeded the formation of galaxies within it. The vacuum energy density that had
driven inflation encountered quantum-mechanical fluctuations. After the per-
turbations were stretched beyond the horizon of the infant Universe (which
today would have occupied a size no bigger than a human hand), they mate-
rialized as perturbations in the mass density of radiation and matter. The last
perturbations to leave the horizon during inflation eventually reentered after
inflation ended (when the scale factor grew more slowly than ct). It is tantaliz-
ing to contemplate the notion that galaxies, which represent massive classical
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objects with ∼1067 atoms in today’s Universe, might have originated from sub-
atomic quantum-mechanical fluctuations at early times.

After inflation, an unknown process, called “baryogenesis” or “leptogenesis,”
generated an excess of particles (baryons and leptons) over antiparticles.v As
the Universe cooled to a temperature of hundreds of millions of electron-volts
(where 1 MeV/kB = 1.1604 × 1010 K), protons and neutrons condensed out of
the primordial quark–gluon plasma through the so-called quantum chromody-
namics (QCD) phase transition. At about one second after the Big Bang, the
temperature declined to ∼1 MeV, and the weakly interacting neutrinos decou-
pled. Shortly afterward, the abundance of neutrons relative to protons froze,
and electrons and positrons annihilated one another. In the next few minutes,
nuclear fusion reactions produced light elements more massive than hydrogen,
such as deuterium, helium, and lithium, in abundances that match those ob-
served today in regions where gas has not been processed subsequently through
stellar interiors. Although the transition to matter domination occurred at a red-
shift z ∼ 3,300, the Universe remained hot enough for the gas to be ionized,
and electron–photon scattering effectively coupled ordinary matter and radia-
tion. At z ∼ 1,100 the temperature dipped below ∼3,000 K, and free electrons
recombined with protons to form neutral hydrogen atoms. As soon as the dense
fog of free electrons was depleted, the Universe became transparent to the relic
radiation, which is observed at present as the CMB. These milestones of the
thermal history are depicted in Figure 1.4.

The Big Bang is the only known event in our past history in which particles
interacted with center-of-mass energies approaching the so-called Planck scalevi

[(hc5/G)1/2 ∼ 1019 GeV], at which quantum mechanics and gravity are expected
to be unified. Unfortunately, the exponential expansion of the Universe during
inflation erased memory of earlier cosmic epochs, such as the Planck time.

1.3.1 Luminosity and Angular-Diameter Distances

When we look at our image reflected off a mirror at a distance of 1 m, we see the
way we looked 6 nanoseconds ago, the time it took light to travel to the mirror
and back. If the mirror is spaced 1019 cm = 3 pc away, we will see the way we
looked 21 years ago. Light propagates at a finite speed, so by observing distant
regions, we are able to see what the Universe looked like in the past, a light-
travel time ago (see Figure 1.3). The statistical homogeneity of the Universe on
large scales guarantees that what we see far away is a fair statistical represen-
tation of the conditions that were present in our region of the Universe a long
time ago.

This fortunate situation makes cosmology an empirical science. We do not
need to guess how the Universe evolved. By using telescopes we can simply see

vThe origin of the asymmetry in the cosmic abundance of matter over antimatter is still an unre-
solved puzzle.
viThe Planck energy scale is obtained by equating the quantum-mechanical wavelength of a rel-
ativistic particle with energy E, namely, hc/E, to its “black hole” radius, ∼GE/c4, and solving
for E.
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Figure 1.4 Following inflation, the Universe went through several other milestones that
left a detectable record. These include baryogenesis (which resulted in the
observed asymmetry between matter and antimatter), the electroweak phase
transition (during which the symmetry between electromagnetic and weak
interactions was broken), the QCD phase transition (during which protons
and neutrons nucleated out of a soup of quarks and gluons), the dark mat-
ter decoupling epoch (during which the dark matter decoupled thermally
from the cosmic plasma), neutrino decoupling, electron–positron annihila-
tion, light-element nucleosynthesis (during which helium, deuterium, and
lithium were synthesized), and hydrogen recombination. The cosmic time
and CMB temperature of the various milestones are marked. Wavy lines and
question marks indicate milestones with uncertain properties. The signa-
tures that the same milestones left in the Universe are used to constrain its
parameters.

the way distant regions appeared at earlier cosmic times. Since a greater dis-
tance means a fainter flux from a source of a fixed luminosity, the observation of
the earliest sources of light requires the development of sensitive instruments
and poses technological challenges to observers.

How faint will the earliest galaxies appear to our telescopes? In an expanding
Universe there is some ambiguity as to which “distance” is most relevant. For
example, the framework we described earlier—in which the clocks are synchro-
nized relative to the Big Bang—is not appropriate for observations, because
light has a finite speed, so that a signal emitted from one clock at time tA will
be observed by another clock at a time tB > tA. Which of these times should we
use to compute the scale factor in a distance formula? Moreover, the method of
observation influences the choice of the relevant distance, because the photons
themselves evolve as they travel.

To answer these questions, we can easily express the flux observed from a
galaxy of luminosity L at a redshift z. The observed flux (energy per unit time
per unit telescope area) is obtained by spreading the energy emitted from the
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source per unit time, L, over the surface area of a sphere whose radius equals
the effective distance of the source,

f = L

4πd2
L

, (1.10)

where dL is defined as the luminosity distance in cosmology. For a flat Universe,
the comoving distance of a galaxy that emitted its photons at a time tem and is
observed at time tobs is obtained by summing over infinitesimal distance ele-
ments along the path length of a photon, c dt , each expanded by a factor (1 + z)
to the present time (corresponding to setting ds2 = 0 in equation 1.1 for a
photon trajectory):

Rem =
∫ tobs

tem

c dt

a(t)
= c

H0

∫ z

0

dz′√
�m(1 + z′)3 +�	

, (1.11)

where a = (1 + z)−1. The angular-diameter distance dA, corresponding to the
angular diameter θ = D/dA occupied by a galaxy of size D, must take into
account the fact that we were closer to that galaxyvii by a factor (1 + z) when
the photons started their journey at a redshift z, so it is simply given by dA =
Rem/(1 + z). But to find dL we must take account of additional redshift factors.

If a galaxy has an intrinsic luminosity L, then it will emit an energy Ldtem

over a time interval dtem. This energy is redshifted by a factor of (1 + z) and is
observed over a longer time interval dtobs = dtem(1 + z) after being spread over
a sphere of surface area 4πR2

em. Thus, the observed flux will be

f = Ldtem/(1 + z)

4πR2
emdtobs

= L

4πR2
em(1 + z)2

, (1.12)

which implies that

dL = Rem(1 + z) = dA(1 + z)2. (1.13)

Unfortunately, for a flat universe with a cosmological constant, these distance
integrals cannot be expressed analytically. However, a convenient numerical
approximation, valid to 0.4% relative error in the range 0.2 ≤ �m ≤ 1 (where
�m is the total matter density) is1

dL = c

H0
a−1 [η(1,�m)− η(a,�m)] , (1.14)

where

η(a,�m)=2
√
s3+1

[
1

a4
−0.1540

s

a3
+0.4304

s2

a2
+0.19097

s3

a
+0.066941s4

]−1/8

,

(1.15)

and s3 = 1/�m − 1.

viiIn a flat Universe, photons travel along straight lines. The angle at which a photon is seen is not
modified by the cosmic expansion, since the Universe expands at the same rate both parallel and
perpendicular to the line of sight.
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Figure 1.5 The solid line (corresponding to the label on the left-hand side) shows log10

of the conversion factor between the luminosity of a source and its observed
flux, 4πd2

L (in Gpc2), as a function of redshift, z. The dashed line (labeled
on the right) gives the angle θ (in arcseconds) occupied by a galaxy of 1 kpc
diameter as a function of redshift.

The area dilution factor 4πd2
L is plotted as a function of redshift in the solid

curve of Figure 1.5. If the observed flux is measured over only a narrow band
of frequencies, one needs to take account of the additional conversion factor
(1 + z) = (dmem/dmobs) between the emitted frequency interval dmem and its
observed value dmobs. This correction yields the relation (df/dmobs) = (1 + z)×
(dL/dmem)/(4πd2

L).
In practice, observed brightnesses are often expressed using the AB magni-

tude system. The conversion from flux density to AB magnitude is

AB = −2.5 log
[
df

dmobs

]
− 48.6, (1.16)

where the flux density is expressed in units of erg s−1 cm−2 Hz−1.

1.4 Most Matter Is Dark

Surprisingly, most of the matter in the Universe is not the same ordinary mat-
ter of which we are made (see Figure 1.6). If it were ordinary matter (which also
makes stars and diffuse gas), it would have interacted with light, thereby re-
vealing its existence to observations through telescopes. Instead, observations
of many different astrophysical environments require the existence of some
mysterious dark component of matter that reveals itself only through its grav-
itational influence and leaves no other clue about its nature. Cosmologists are
like detectives who find evidence for some unknown criminal at a crime scene
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Figure 1.6 Mass budgets of different components in the present-day Universe and in
the infant Universe when the first galaxies formed (redshifts z = 10–50).
The CMB radiation (not shown) makes up a fraction (∼0.03%) of the budget
today but was dominant at redshifts z > 3,300. The cosmological constant
(vacuum) contribution was negligible at high redshifts (z 
 1).

and are anxious to find his or her identity. The evidence for dark matter is clear
and indisputable, assuming that the laws of gravity are not modified (although
a small minority of scientists are exploring this alternative).

Without dark matter we would never have existed by now, because ordinary
matter is coupled to the CMB radiation that filled the early Universe. The diffu-
sion of photons on small scales smoothed out perturbations in this primordial
radiation fluid. The smoothing length was stretched to a scale as large as hun-
dreds of millions of light-years in the present-day Universe. This is a huge scale
by local standards, since galaxies—like the Milky Way—were assembled out of
matter in regions a hundred times smaller than that. Because ordinary matter
was coupled strongly to the radiation in the early dense phase of the Universe,
it also was smoothed on small scales. If there were nothing else in addition to
the radiation and ordinary matter, then this smoothing process would have had
a devastating effect on the prospects for life in our Universe. Galaxies like the
Milky Way would never have formed by the present time, since there would
have been no density perturbations on the relevant small scales to seed their
formation. The existence of dark matter not coupled to the radiation came to
the rescue by remembering the initial seeds of density perturbations on small
scales. In our neighborhood, these seed perturbations led eventually to the for-
mation of the Milky Way galaxy inside which the Sun was made as one out of
tens of billions of stars, and Earth was born out of the debris left over from
the formation process of the Sun. This sequence of events would never have
occurred without the dark matter.

We do not know what constitutes the dark matter, but from the good match
obtained between observations of large-scale structure and the equations de-
scribing a pressureless fluid (see equations 2.3–2.4), we infer that it is likely
made of particles with small random velocities. It is therefore called “cold dark
matter” (CDM). The popular view is that CDM is composed of particles that
weakly interact with ordinary matter, much like the elusive neutrinos we know
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to exist. The abundance of such particles would naturally “freeze out” at a tem-
perature T > 1 MeV, at which the Hubble expansion rate is comparable to the
annihilation rate of the CDM particles. Interestingly, such a decoupling tem-
perature, together with a weak interaction cross section and particle masses
of mc2 > 100 GeV (as expected for the lightest, and hence stable, supersym-
metric particle in simple extensions of the standard model of particle physics),
naturally leads through a Boltzmann suppression factor ∼ exp(−mc2/kBT )

to �m ∼ 1. The hope is that CDM particles, owing to their weak but nonva-
nishing coupling to ordinary matter, will nevertheless be produced in small
quantities through collisions of energetic particles in future laboratory exper-
iments such as the Large Hadron Collider (LHC). Other experiments are at-
tempting to detect directly the astrophysical CDM particles in the Milky Way
halo. A positive result from any of these experiments will be equivalent to our
detective friend’s being successful in finding a DNA sample of the previously
unidentified criminal.

The most popular candidate for the CDM particle is a weakly interacting
massive particle (WIMP). The lightest supersymmetric particle (LSP) could be
a WIMP. The CDM particle mass depends on free parameters in the particle
physics model; the LSP hypothesis will be tested at the Large Hadron Collider
or in direct detection experiments. The properties of the CDM particles affect
their response to the primordial inhomogeneities on small scales. The particle
cross section for scattering off standard model particles sets the epoch of their
thermal decoupling from the cosmic plasma.

In addition to dark matter, the observed acceleration in the current expansion
rate of the Universe implies that the vacuum contributes ∼72% of the cosmic
mass density at present. If the vacuum density will behave as a cosmological
constant, it will dominate even more in the future (since ρm/ρv ∝ a−3). The
exponential future expansion will carry all galaxies outside the local group out of
our horizon within ∼1011 years,2 and will stretch the characteristic wavelength
of the cosmic microwave background to be larger than the horizon in ∼ 1012

years.3

The dark ingredients of the Universe can be probed only indirectly through
a variety of luminous tracers. The distribution and nature of the dark matter
are constrained by detailed X-ray and optical observations of galaxies and galaxy
clusters. The evolution of the dark energy with cosmic time will be constrained
over the coming decade by surveys of Type Ia supernovae, as well as surveys of
X-ray clusters, up to a redshift of 2.

According to the standard cosmological model, the CDM behaves as a col-
lection of collisionless particles that started out at the epoch of matter dom-
ination with negligible thermal velocities and later evolved exclusively under
gravitational forces. The model explains how both individual galaxies and the
large-scale patterns in their distribution originated from the small initial density
fluctuations. On the largest scales, observations of the present galaxy distri-
bution have indeed found the same statistical patterns as seen in the CMB,
enhanced as expected by billions of years of gravitational evolution. On smaller
scales, the model describes how regions that were denser than average
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Table 1.1 Standard Set of Cosmological Parameters (defined and adopted throughout
the book). Based on Komatsu, E., et al., Astrophys. J. Suppl. 180, 330 (2009).

�	 �m �b h ns σ8

0.72 0.28 0.05 0.7 1 0.82

collapsed owing to their enhanced gravity and eventually formed gravitation-
ally bound halos, first on small spatial scales and later on larger ones. In this
hierarchical model of galaxy formation, the small galaxies formed first and then
merged, or accreted gas, to form larger galaxies. At each snapshot of this cos-
mic evolution, the abundance of collapsed halos, whose masses are dominated
by dark matter, can be computed from the initial conditions. The common un-
derstanding of galaxy formation is based on the notion that stars formed out of
the gas that cooled and subsequently condensed to high densities in the cores
of some of these halos.

Gravity thus explains how some gas is pulled into the deep potential wells
within dark matter halos and forms galaxies. One might naively expect that the
gas outside halos would remain mostly undisturbed. However, observations
show that it did not remain neutral (i.e., in atomic form) but was largely ion-
ized by the UV radiation emitted by the galaxies. The diffuse gas pervading the
space outside and between galaxies is referred to as the intergalactic medium
(IGM). For the first hundreds of millions of years after cosmological recombi-
nation (when protons and electrons combined to make neutral hydrogen), the
so-called cosmic dark ages, the universe was filled with diffuse atomic hydro-
gen. As soon as galaxies formed, they started to ionize diffuse hydrogen in their
vicinity. Within less than a billion years, most of the IGM was reionized. This
reionization epoch marks a crucial transition in the history of the Universe and
is a prime foucs of both modern astrophysics research and this book.

The initial conditions of the Universe can be summarized on a single sheet
of paper. The small number of parameters that provide an accurate statistical
description of these initial conditions are summarized in Table 1.1 (see also
Appendix B). However, thousands of books in libraries throughout the world
cannot summarize the complexities of galaxies, stars, planets, life, and intelli-
gent life in the present-day Universe. If we feed the simple initial cosmic con-
ditions into a gigantic computer simulation incorporating the known laws of
physics, we should be able to reproduce all the complexity that emerged out of
the simple early Universe. Hence, all the information associated with this later
complexity was encapsulated in those simple initial conditions. We will follow
the process through which late-time complexity appeared and established an
irreversible arrow to the flow of cosmic time.viii

viiiIn previous decades, astronomers used to associate the simplicity of the early Universe with the
fact that the data about it were scarce. Although this was true at the infancy of observational cos-
mology, it is not true any more. With much richer data in our hands, the initial simplicity is now
interpreted as an outcome of inflation.
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The basic question that cosmology attempts to answer is: What is the
composition of the Universe and what initial conditions generated the observed struc-
tures in it? The first galaxies were shaped, more than any other class of astro-
physical objects, by the pristine initial conditions and basic constituents of the
Universe. Studying the formation process of the first galaxies could reveal
unique evidence for new physics that has so far remained veiled in older galax-
ies by complex astrophysical processes.
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Chapter Two

Linear Growth of Cosmological Perturbations

After cosmological recombination, the Universe entered the “dark ages,” during
which the relic CMB light from the Big Bang gradually faded away. During this
“pregnancy” period (which lasted hundreds of millions of years), the seeds of
small density fluctuations planted by inflation in the matter distribution grew
until they eventually collapsed to make the first galaxies. Here we describe the
first stages of that process and introduce the methods conventionally used to
describe these fluctuations.

2.1 Growth of Linear Perturbations

As discussed earlier, small perturbations in density grow owing to the unstable
nature of gravity. Overdense regions behave as if they reside in a closed Uni-
verse. Their evolution ends in a “big crunch,” which results in the formation of
gravitationally bound objects like the Milky Way galaxy.

Equation (1.6) explains the formation of galaxies out of seed density fluc-
tuations in the early Universe, at a time when the mean matter density was
very close to the critical value �m ≈ 1. Given that the mean cosmic density
was close to the threshold for collapse, a spherical region that was only slightly
denser than the mean behaved as if it was part of an� > 1 Universe and there-
fore eventually collapsed to make a bound object, like a galaxy. The material
from which objects are made originated in the underdense regions (voids) that
separate these objects (and which behaved as part of an � < 1 Universe), as
illustrated in Figure 1.2.

Observations of the CMB show that at the time of hydrogen recombination
the Universe was extremely uniform, with spatial fluctuations in the energy
density and gravitational potential of roughly one part in 105. These small fluc-
tuations grew over time during the matter-dominated era as a result of gravita-
tional instability and eventually led to the formation of galaxies and larger-scale
structures, observed today.

In describing the gravitational growth of perturbations in the matter-
dominated era (z � 3,300), we may consider small perturbations of a frac-
tional amplitude |δ| � 1 on top of the uniform background density ρ̄ of cold
dark matter. The three fundamental equations describing conservation of mass
and momentum along with the gravitational potential can then be expanded to
leading order in the perturbation amplitude. We distinguish between physical
(or proper) and comoving coordinates (the latter expand with the background
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Universe). In vector notation, the fixed coordinate r corresponds to a comoving
position x = r/a. We describe the cosmological expansion in terms of an ideal
pressureless fluid of particles, each of which is at fixed x, expanding with the
Hubble flow v = H(t)r, where v = dr/dt .

Onto this uniform expansion we impose small fractional density perturba-
tions

δ(r) = ρ(r)
ρ̄

− 1, (2.1)

where the mean fluid mass density is ρ̄, with a corresponding peculiar velocity
that describes the deviation from the Hubble flow u ≡ v − H r. The fluid is
then described by the continuity and Euler equations. In comoving coordinates,
where the bulk velocity vanishes, we have

∂δ

∂t
+ 1

a
∇ · [(1 + δ)u] = 0, (2.2)

∂u
∂t

+Hu + 1

a
(u · ∇)u = −1

a
∇φ − 1

aρ̄
∇(δp). (2.3)

The gravitational potential φ is given by the Newtonian Poisson equation in
terms of the density perturbation:

∇2φ = 4πGρ̄a2δ. (2.4)

The pressure p depends on the species under consideration. For cold dark mat-
ter, it vanishes; for an ideal gas of baryons at a fixed temperature, the pressure
perturbation is (δp) = c2

s δρ̄. The sound speed for a monatomic gas that obeys
the ideal gas equation of state p = nkTe and undergoes Hubble expansion is

c2
s = dp/da

dρ/da
= kBTe

µmp

(
1 − 1

3

d log Te
d log a

)
, (2.5)

where Te is the gas kinetic temperature, and µ is the mean molecular mass in
units of mp. (For primordial neutral gas including a mass fraction Yp = 0.24
of helium, µ = 1.22.) In this section we adopt this expression for the sound
speed, though we note that it assumes that the temperature traces the density
field (see §2.2.1 for a more exact treatment).

This fluid description is valid for describing the evolution of collisionless
cold dark matter particles until different particle streams cross. The crossing
typically occurs only after perturbations have grown to become nonlinear with
|δ| > 1, and at that point the individual particle trajectories must in general be
followed.

The combination of the preceding equations yields, to leading order in δ,

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGρ̄δ − c2

s k
2

a2
δ, (2.6)

where the last term is the pressure force, which vanishes for cold dark mat-
ter. In general, this linear equation has two independent solutions, only one
of which grows in time. From random initial conditions this “growing mode”
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comes to dominate the density evolution. Thus, until it becomes nonlinear, the
density perturbation maintains its shape in comoving coordinates and grows
in amplitude in proportion to a growth factor D(t). The growth factor in a flat
(matter-dominated) Universe at z < 103 is given by 1

D(t) ∝
(
��a

3 +�m
)1/2

a3/2

∫ a

0

a′3/2 da′
(
��a′3 +�m

)3/2 . (2.7)

In the matter-dominated regime of the redshift range 1 < z < 103, the growth
factor is simply proportional to the scale factor a(t). The normalization is usu-
ally chosen to be relative to the perturbation amplitude at the present day; we
will discuss how to determine this factor §2.1.3.

In a flat Universe with a cosmological constant, this integral cannot be writ-
ten in closed form without special functions. However, an approximation accu-
rate to ∼2% in the range �m > 0.1 is D(z) = D(z)/(1 + z) with2

D(z) = 5�m(z)

2

[
�m(z)

4/7 −��(z)+ (1 +�m(z)/2)(1 +��(z)/70)
]−1

,

(2.8)
where (if �m +�� = 1)

�m(z)= �m(1 + z)3

�m(1 + z)3 +��
, (2.9)

��(z)= ��

�m(1 + z)3 +��
, (2.10)

and �� is the present-day energy density in a cosmological constant scaled
to the critical density. Here D(z) is normalized to equal unity in a matter-
dominated Universe. At the high redshifts of most interest to us, this is a rea-
sonable approximation.

Interestingly, in this matter-dominated regime the gravitational potential φ ∝
δ/a does not grow in comoving coordinates, which implies that the potential
depth of fluctuations remains frozen in amplitude as fossil relics from the in-
flationary epoch during which they were generated. Nonlinear collapse changes
the potential depth only by a factor of the order of unity, but even inside col-
lapsed objects its rough magnitude remains as testimony to the inflationary
conditions. This explains why the characteristic potential depth of collapsed
objects such as galaxy clusters (φ/c2 ∼ 10−5) is of the same order as the po-
tential fluctuations probed by the fractional variations in the CMB temperature
across the sky. At low redshifts z < 1 and in the future, the cosmological con-
stant dominates (�m � ��), and the density fluctuations freeze in amplitude
[D(t) → constant] as their growth is suppressed by the accelerated expansion
of space.

It is usually convenient to express the density field as a sum over a com-
plete set of periodic Fourier modes, each with a sinusoidal (wavelike) depen-
dence on space with a comoving wavelength λ = 2π/k and wavenumber k.
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Mathematically, we writei

δk =
∫
d3x δ(x)eik·x, (2.11)

δ(x) =
∫

d3k

(2π)3
δke

−ik·x, (2.12)

where x is the comoving spatial coordinate. The characteristic amplitude of each
k-mode defines the typical value of δ on the spatial scale λ. It is straightforward
to show that equation (2.6) applies to each Fourier mode individually, so the
factor D(t) also describes their growth (in the linear regime), and the evolution
of the density field in Fourier space is easy to follow. In particular, note that
different spatial scales evolve independently in the linear regime.

It is also useful to consider the velocity field u. To linear order, the continuity
equation (2.2) becomes ∇ · u = −a(dδ/dt), or in Fourier space

−ik · uk = − a

D

dD

dt
δk, (2.13)

where we have assumed that δk is a pure growing mode. This equation has the
solution

uk = −i aHf (�)
k

δkk̂, (2.14)

where f (�) = (a/D)(dD/da) ≈ �0.6
m to a very good approximation (note that

it is almost independent of ��). Interestingly, peculiar velocity perturbations
grow proportionally to density fluctuations, and their growing modes are par-
allel to the wavevector. Note also that uk ∝ δk/k, which implies that peculiar
velocities on a given scale are sourced by gravitational fluctuations on larger
scales than those of the density field.

2.1.1 The Power Spectrum of Density Fluctuations

The initial perturbation amplitude varies with spatial scale; typically, large-scale
regions have a smaller perturbation amplitude than do small-scale regions. The
statistical properties of the perturbations as a function of spatial scale can best
be captured by their Fourier transforms in comoving wavenumbers. This ap-
proach has the convenient property that the spatial scales are fixed in time rather
than evolving as the perturbation expands or collapses.

Because we cannot observe how particular regions mature and grow over
time, we are typically concerned not with the amplitude of individual density
perturbations or modes but with the properties of their statistical ensemble.
Most often, two complementary statistical measures are used. The first is the
correlation function,

ξ(x) = 〈δ(x)δ(0)〉 , (2.15)

iNote that cosmologists typically absorb the volume factors in the Fourier transform into δk, which
has units of volume.



chapter2 August 11, 2012

LINEAR GROWTH OF COSMOLOGICAL PERTURBATIONS 29

where the angular brackets represent averaging over the entire statistical en-
semble of points separated by a comoving distance x, and where we made use
of the translational invariance of statistical averages in centering our coordi-
nate system on the second point. The correlation function expresses the degree
to which a particular overdensity is more likely to be surrounded by other over-
dense regions. Note that for an isotropic distribution of perturbations, ξ is a
function only of the magnitude of the spatial separation, x = |x|.

The second measure is the power spectrum, P(k), defined by

P(k) = 〈
δkδ

∗
k′
〉 = (2π)3δD(k − k′)P (k), (2.16)

which has units of volume. This is simply related to the variance of the ampli-
tude of waves on a given scale. Again, it is a function only of k = |k| for an
isotropic universe.

In fact, the correlation function and power spectrum are intimately related.
If we write the former using the Fourier transform of δ(x), we obtain

ξ(x)=
〈∫

d3k

(2π)3
δke

ik·x
∫

d3k′

(2π)3
δ∗

k′

〉
(2.17)

=
∫

d3k

(2π)3

∫
d3k′

(2π)3
eik·x 〈

δkδ
∗
k′
〉

(2.18)

=
∫

d3k

(2π)3
eik·xP(k), (2.19)

where in the first line we have used the fact that δ(0) is real. Thus ξ(r) and
P(k) are simply Fourier transforms of each other. Theoretical calculations are
generally simplest using the Fourier representation and power spectrum, but
the two approaches have different error properties, so both are used regularly
in the literature.

Inflation generates perturbations in which different k-modes are statistically
independent, and each has a random phase constant in its sinusoid. This makes
the density field following inflation a Gaussian random field, and its statistical
properties are perfectly described by the power spectrum (see §2.1.3). In other
words, all higher-order moments and correlations are simply functions of the
power spectrum (or correlation function): no additional parameters are needed
to understand the distribution, at least until nonlinear evolution becomes im-
portant (which does induce higher-order correlations purely through gravita-
tional instability). A very small amount of primordial non-Gaussianity can be
accommodated by existing observations; the nonlinear phase of gravitational
collapse generates more.

Moreover, in the standard cosmological model, inflation produces a very
simple primordial power-law spectrum P(k) ∝ kns with ns ≈ 1. Quantum
fluctuations during cosmic inflation naturally result in a nearly scale-invariant
spectrum because of the near constancy of the Hubble parameter for a nearly
steady vacuum density. This spectrum has the special property that gravita-
tional potential fluctuations of all wavelengths have the same amplitude at the
time when they enter the horizon (namely, when their wavelength matches the
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distance traveled by light during the age of the Universe), so this spectrum is
called scale invariant. This is easy to see: the mean square amplitude of mass
fluctuations within spheres of comoving radius 
 is (δM/M)2 ∝ k3P(k) for
k ∼ 2π/
. Therefore, the corresponding fluctuation amplitude of the gravita-
tional potential, ∼ (GδM/
) ∝ 
(1−ns)/2, is independent of scale if ns = 1. This
spectrum has the aesthetic appeal that perturbations can always be small on the
horizon scale. A different power-law spectrum would lead to an overdensity of
the order of unity across the horizon, and result in black hole formation, either
in the future or past of the Universe.

However, the power spectrum becomes more complex as perturbations grow
at later times in a CDM universe. In particular, the modified final power spec-
trum is characterized by a turnover at a scale on the order of the horizon cH−1 at
matter-radiation equality, and a small-scale asymptotic shape of P(k) ∝ kns−4.
The turnover results from the fact that density perturbations experience almost
no growth during the radiation-dominated era, because the Jeans length at that
time (∼ ct/

√
3; see the next chapter) is comparable to the scale of the hori-

zon, inside of which growth is enabled by causality. Therefore, modes on a spa-
tial scale that entered the horizon during the early radiation-dominated era got
trapped at their initial small density contrast and so show a smaller amplitude
relative to the power-law extrapolation of long-wavelength modes that entered
the horizon during the matter-dominated era.

For a scale-invariant index ns ≈ 1, the small-scale fluctuations have the same
amplitude at horizon crossing, and with nearly no growth they have the same
amplitude on all subhorizon mass scales at matter-radiation equality. The as-
sociated constancy of the fluctuation amplitude on small mass scales (in real
space), δ2 ∝ P(k)k3 ∼ constant, implies a small-scale asymptotic slope for P(k)
of ≈−3. The resulting power spectrum after matter-radiation equality is often
parameterized by a transfer function that accounts for changes in the shape of
the dark matter power spectrum up to this point. The transfer function is de-
fined so that

P(k, z) = T 2(k)
D2(z)

D2(zeq)
Ppri(k), (2.20)

where Ppri(k) is the primordial power spectrum. Note that the transfer function
is time independent (but scale dependent) because it describes all the evolution
from inflation through the era of matter-radiation equality. The growth factor,
however is scale independent (but time dependent) because dark matter pertur-
bations do not have any scale dependence during the matter era. The transfer
function is crudely described by the fitting function3

T 2(k)Ppri(k) ∝ kns /(1 + αpk + βpk
2)2, (2.21)

with αp = 8(�mh2)−1 Mpc and βp = 4.7(�mh2)−2 Mpc2. This function pro-
vides a reasonable fit to the overall shape of the power spectrum, but small-
scale features and subtle modifications not captured by this simple formula are
extremely important as well. These include the effects of neutrinos with finite
mass (which wash out small-scale structure, thanks to the relativistic motions of
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Figure 2.1 Left: The matter power spectrum in our fiducial cosmology at z = 0, 5,
10, and 25, from top to bottom. Right: The corresponding transfer function.
Computed using the publicly available code CAMB (http://camb.info).

these particles) and the influence of baryons, which we discuss in detail next.4

Figure 2.1 shows the resulting matter power spectra and transfer functions at
z = 0, 5, 10, and 25, using our fiducial cosmological parameters. Note the oscil-
latory features near k ∼ 0.1h Mpc−1, which are called baryon acoustic oscillations,
whose source we discuss next.

2.1.2 Relative Streaming of Baryons and Cold Dark Matter

Species that decouple at a particular time from the cosmic plasma (including
the dark matter and the baryons) will show fossil evidence for acoustic oscil-
lations in their power spectrum of inhomogeneities owing to sound waves in
the radiation fluid to which they were coupled at early times. This phenomenon
can be understood as follows. Imagine a localized point like perturbation from
inflation at t = 0. The small perturbation in density or pressure will send out
a sound wave that will reach the sound horizon cst at any later time t (see also
the discussion in §1.2.3;): in the radiation fluid, where cs ≈ c/

√
3, this sound

horizon will be near the causal horizon as well. The perturbation will therefore
correlate with its surroundings up to the sound horizon, and all k-modes with
wavelengths equal to this scale or its harmonics will be correlated. The result is
a series of peaks in the power spectrum corresponding to the harmonics of this
physical scale, as shown in Figure 2.1.

These peaks from radiation coupling to the dark matter sector are on very
small spatial scales (for weakly interacting particles, they correspond to mass
scales of planets or smaller).5 The mass scales of the perturbations that grew
to become the first collapsed objects at z < 100 crossed the horizon in the
radiation-dominated era after the dark matter had already decoupled from the
cosmic plasma and so were largely unaffected by this streaming.
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However, prior to cosmological recombination, the baryons and the cosmic
background radiation were tightly coupled and behaved as a single fluid, sep-
arate from the dark matter. Because this was relatively late in the history of
star formation, the physical scales of these correlations are reasonably large:
∼150 Mpc today. These large-scale features can be incorporated into the trans-
fer function and, because their locations can be predicted from first principles
for a given cosmological model, act as “standard rulers” that are useful in mea-
suring the fundamental parameters of our Universe. The induced correlations
occur on such large scales that they do not themselves appreciably affect struc-
ture formation at high redshifts.

However, a related effect is potentially very important.6 When the gas de-
coupled from the radiation at z ≈ 103, it was streaming relative to the dark
matter with a root-mean-square (rms) speed of vbc ≈ 10−4c = 30 km s−1. This
speed is much larger than the sound speed, so it has important implications
for the accretion of gas onto dark matter structures (see §3.2.2). Here we will
show how these effects can be incorporated into perturbation theory to describe
gravitational instability.

Using the continuity equation for the baryons and cold dark matter sepa-
rately, we can write the Fourier transform of the relative velocity between the
two species (to linear order) as

ubc(k) = k
ik2

[θb(k)− θc(k)], (2.22)

where θ ≡ a−1∇ · u. From equation (2.14), the power spectrum of this relative
velocity is then

�2
vbc(k) = k3

2π2
Ppri(k)

[
θb(k)− θc(k)

k

]2

, (2.23)

and the total variance is
〈
u2

bc(x)
〉 = ∫

(dk/k)�2
vbc(k). Figure 2.2 shows the vari-

ance of the velocity difference perturbations (in units of c) per ln k as a function
of the mode wavenumber k at z = 103. The power extends to scales as large
as the sound horizon at recombination, ∼ 140 Mpc, but declines rapidly at
k > 0.5 Mpc−1, which indicates that the velocity of the baryons relative to the
dark matter was coherent over the photon diffusion (or Silk damping) scale of
several comoving megaparsecs. This scale is larger by two orders of magnitude
than the size of the regions out of which the first galaxies were assembled at
later times. Therefore, in the rest frame of those galaxies, the background in-
tergalactic baryons appeared to be moving coherently as a wind. In the next
chapter, we will examine whether this wind had a significant effect on the as-
sembly of baryons onto the earliest galaxies.

In the presence of this relative motion between baryons and cold dark mat-
ter, the perturbation analysis becomes somewhat more complex. The simplest
approach is to treat the two species as having a spatially constant bulk velocity
vbc that decays with redshift as 1/a as the neutral gas falls into the gravitational
potential wells of the dark matter (see equation 2.22). The assumption of a spa-
tially constant background velocity is valid on scales smaller than the coherence
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Figure 2.2 The variance of the velocity difference perturbations (in units of c) between
baryons and dark matter per ln k as a function of comoving wavenumber
k at z = 103. Reprinted Figure 1 with permission from Tseliakhovich, D.,
& Hirata, C., Phys. Rev. D82, 3520 (2010). Copyright 2010 by the American
Physical Society.

length of the velocity field (i.e., several megaparsecs). In the rest frame of the
baryons, the analogs to equation (2.2) and (2.3) are (note that we require seper-
ate equations for each type of matter)

∂δc

∂t
= i

a
ubc · kδc − θc, (2.24)

∂θc

∂t
= i

a
ubc · kθc − 3H 2

2
(�cδc +�bδb)− 2Hθc, (2.25)

∂δb

∂t
= −θb, (2.26)

∂θb

∂t
= −3H 2

2
(�cδc +�bδb)− 2Hθc + c2

s k
2

a2
δb. (2.27)

The first terms on the right-hand side of the cold dark matter equations remain
here because the bulk velocity is large and so cannot be ignored during the
linearization of the basic fluid equations. When they are large compared with
the velocity divergence term, the relative streaming will have a significant effect
on structure formation. This occurs at a scale

kubc ∼ aH〈
u2

bc

〉1/2 ∼ 180

(
30 km s−1

〈
u2

bc(zrec)
〉1/2

) (
1 + z

50

)−1/2

Mpc−1, (2.28)

where we have scaled to the typical bulk velocity at recombination and used
ubc ∝ (1+z)−1. The suppression scale is larger at higher redshift, which means
that the acoustic feature will affect structure formation to some degree at even
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Figure 2.3 The isotropically averaged power spectrum of the matter distribution at z =
40 with and without the relative streaming motions (dashed and solid lines,
respectively). Reprinted Figure 2 with permission from Tseliakhovich, D.,
& Hirata, C., Phys. Rev. D82, 3520 (2010). Copyright 2010 by the American
Physical Society.

larger scales than this estimate shows (see also §3.2). Note as well that the rel-
ative velocity term is much, much smaller than the divergence term on scales
larger than the coherence length, which has k ∼ 1 Mpc−1, so this system of
equations is reasonably accurate on large scales as well.

Figure 2.3 shows the effect of these velocities on the total matter power spec-
trum at high redshifts: because the baryons constitute ∼18% of the matter, the
dark matter power spectrum changes significantly on the relevant scales.

2.1.3 Normalizing the Power Spectrum

Although the shape of the power spectrum is well determined by linear per-
turbation theory in an expanding universe, the overall amplitude of the power
spectrum is not specified by current models of inflation and is usually set by
comparision with the observed CMB temperature fluctuations or with mea-
sures of large-scale structure based on surveys of galaxies, clusters of galaxies,
or the intergalactic gas.

The most popular large-scale structure normalization is through the observed
mass fluctuation amplitude (at the present day) on 8h−1 Mpc, roughly the scale
of galaxy clusters. To relate this quantity to the power spectrum, we must con-
sider the statistical distribution of the smoothed density field. We define a
window (or filter) function W(r) normalized so that

∫
d3r W(r) = 1, where

the smoothed density perturbation field is
∫
d3rδ(x)W(r). The simplest ob-

served quantity is a measure of the masses (relative to the mean) inside spheres
of radius R; in this case we use a “spherical top-hat” window (similar to a
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three-dimensional cookie cutter), in which W = constant inside a sphere of
radius R, and W = 0 outside.

The normalization of the present day power spectrum at z = 0 is then speci-
fied by the variance of this density field when smoothed on the particular scale
of 8h−1Mpc, σ8 ≡ σ(R = 8h−1Mpc). For the top-hat filter, the smoothed per-
turbation field is denoted by δR or δM , where the enclosed mass M is related
to the comoving radius R by M = 4πρ̄mR3/3, in terms of the current mean
density of matter ρ̄m. We then write the variance

〈
δ2
M

〉
(relative to the mean) asii

σ 2(M)=
〈

1

V

∫
d3xδ(x)W(x)

1

V

∫
d3x ′δ(x′)W(x′)

〉
(2.29)

= 1

V 2

∫
d3x d3x ′W(x)W(x′)ξ(|x − x′|) (2.30)

=
∫

d3k

(2π)3
P(k)

|Wk|2
V 2

, (2.31)

whereWk is the Fourier transform of the window function. For the usual choice
of a spherical top hat, this variance becomes

σ 2(M) ≡ σ 2(R) =
∫ ∞

0

dk

k
�2(k)

[
3j1(kR)

kR

]2

, (2.32)

where j1(x) = (sin x − x cos x)/x2, and �2(k) = k3P(k)/2π2 is the so-called
dimensionless power spectrum. The term �2 expresses the contribution, per
log wavenumber, of the power spectrum to the net variance.

While the normalization of the power spectrum requires only σ8, we will
see in the next chapter that the function σ(M) plays a major role in fixing the
abundance of collapsed objects. We therefore show it in Figure 2.4 as a function
of mass and redshift for our standard cosmological model. Note that σ 2 ∝ δ2 ∝
D(t)2, so the time dependence is trivial (at least in linear theory).

For modes with random phases, the probability that different regions with
the same comoving size M will have a perturbation amplitude between δ and
δ + dδ is Gaussian with a zero mean and a variance σ 2(M),

p(δ)dδ = 1√
2πσ 2

e−δ
2/2σ 2

dδ. (2.33)

These so-called Gaussian perturbations are a key prediction of inflation; they
have the convenient property that the statistical distribution of densities is de-
scribed entirely by the power spectrum (through σ 2).

2.2 The Thermal History during the Dark Ages

In addition to the density evolution, the second key “initial condition” for galaxy
formation is the temperature of the hydrogen and helium gas that will collapse

iiNote that σ 2 can equally well be considered a function of spatial scale R.
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Figure 2.4 The root-mean-square amplitude of linearly extrapolated density fluctuations
σ as a function of massM (in solar massesM�, within a spherical top-hat fil-
ter) at different redshifts z. Halos form in regions that exceed the background
density by a factor of the order of unity. This threshold is surpassed only by
rare (many-σ ) peaks for high masses at high redshifts. When discussing the
abundance of halos, we will factor out the linear growth of perturbations and
use the function σ(M) at z = 0. The comoving radius of an unperturbed
sphere containing a mass M is R = 1.85(M/1012M�)1/3 Mpc.

into the first galaxies. If it were isolated, the gas would simply cool adiabatically
with the overall expansion of the universe. In general, for an ideal gas this cool-
ing rate can be written as (γ − 1)(ρ̇b/ρb)Te, where ρb is the baryon density, and
γ = 5/3 is the adiabatic index of a monatomic gas. For gas at the mean density,
the factor (ρ̇b/ρb) = −3H owing to the Hubble expansion.

However, the gas is not thermally isolated: it may exchange energy with the
ambient radiation field. Although cosmological recombination at z ∼ 1100 re-
sults in a nearly neutral universe, a small fraction ∼10−4 of electrons remain
free until the era of the first galaxies. These free electrons scatter off CMB pho-
tons and bring the gas closer to equilibrium with the radiation field.

A free electron moving at a speed v � c relative to the cosmic rest frame
would probe a Doppler-shifted CMB temperature with a dipole pattern,

T (θ) = Tγ

(
1 + v

c
cos θ

)
, (2.34)

where θ is the angle relative to its direction of motion, and Tγ is the average
CMB temperature. Naturally, the radiation will exert a frictional force on the
electron opposite its direction of motion. The CMB energy density within a solid
angle d� = d cos θ dφ (in spherical coordinates) will be dε = aradT

4(θ) d�/4π
(where arad is the radiation constant). Since each photon carries a momentum
equal to its energy divided by c, the electron will be slowed along its direc-
tion of motion by a net momentum flux c(dε/c) × cos θ . The product of this
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momentum flux and the Thomson (Compton) cross section of the electron (σT )
yields the net drag force acting on the electron,

me
dv

dt
= −

∫
σT cos θ dε = − 4

3c
σT aradT

4
γ v. (2.35)

The rate of energy loss by the electron is obtained by multiplying the drag force
by v, which yields

d

dt
E = − 8σT

3mec
aradT

4
γ E, (2.36)

where E = (1/2)mev2. For a thermal ensemble of electrons at a nonrelativistic
temperature T , the average energy is 〈E〉 = (3/2) kBTe. If the electrons reach
thermal equilibrium with the CMB, then the net rate of energy exchange must
vanish. Therefore, there must be a stochastic heating term that balances the
cooling term when T = Tγ . The origin of this heating term is obvious. Electrons
starting at rest will be pushed around by the fluctuating electric field of the CMB
until the ensemble reaches an average kinetic energy per electron of 〈E〉 =
(3/2) kBTγ , at which point the ensemble stays in thermal equilibrium with the
radiation.

The temperature evolution of gas at the mean cosmic density, which cools
only through its coupling to the CMB and its adiabatic Hubble expansion (with
no radiative cooling due to atomic transitions or heating by galaxies), is there-
fore described by the equation

dTe

dt
= x

(1 + x)

[
Tγ − Te

tC(z)

]
− 2HTe, (2.37)

where tC is the Compton cooling time,

tC ≡
(

8σT aradT
4
γ

3mec

)−1

= 1.2 × 108

(
1 + z

10

)−4

yr, (2.38)

and x is the fraction of all electrons that are free. For an electron–proton gas,
x = ne/(ne + nH), where ne and nH are the electron and hydrogen densities
respectively, and Tγ ∝ (1 + z). The second term on the right-hand side of equa-
tion (2.37), −2HTe, yields the adiabatic scaling Te ∝ (1 + z)2 in the absence of
energy exchange with the CMB.

The relative importance of these two heating and cooling mechanisms there-
fore depends on the residual fraction of free electrons after cosmological re-
combination. If we ignore helium for simplicity, the rate at which electrons
recombine is roughlyiii

dx

dt
= −αB(Te)x2n̄H, (2.39)

iiiAt high redshifts, recombination is delayed by the large photon density and line emission. De-
tailed calculations at z � 100 require tracking the complex network of recombination reactions.



chapter2 August 11, 2012

38 CHAPTER 2

10

T 
(K

)

100

Te

Tγ

102

(a)

1

103

104

10

z
1000 10

x 
100

(b)

10–3

10–2

10–1

10–1

1

10–4

z
1000

Figure 2.5 Thermal and ionization histories of the Universe before the first stars formed
(panels a and b, respectively). In the left panel, the solid and dashed curves
show Te and Tγ , respectively. Note that the ionized fraction x decreases
rapidly after recombination at z ∼ 1100 and then “freezes out” at z ∼ 300.
Meanwhile, Compton scattering keeps Te ≈ Tγ until z ∼ 200, after which
the declining CMB energy density and small residual ionized fraction are no
longer sufficient to maintain thermal contact between the gas and CMB. At
later times, Te ∝ (1 + z)2, as appropriate for an adiabatically expanding non-
relativistic gas. These results were produced with the publicly available code
RECFAST (http://www.astro.ubc.ca/people/scott/recfast.html).

where αB ∝ T −0.7
e is the case-B recombination coefficient.iv With our preferred

cosmological parameters, the fractional change in x per Hubble time is there-
fore

ṅe

Hne
≈ 7x(1 + z)0.8. (2.40)

Electrons “freezeout” and cease to recombine effectively when this factor be-
comes on the order of unity; after that point, the Hubble expansion time is
shorter than the recombination time. More precise numerical calculations give
x ≈ 3 × 10−4 at z ≈ 200, as shown in Figure 2.5.

Inserting this value into equation (2.37), we find that the small fraction of
residual electrons enforces thermal equilibrium between the gas and CMB
down to z ≈ 200, when Compton heating finally becomes inefficient. Figure 2.5
shows a more exact calculation: note how the gas and CMB temperatures be-
gin to depart at z ∼ 200, and the gas begins to follow the expected adiabatic
evolution Te ∝ (1 + z)2 at z ∼ 100.

ivThis ignores recombinations to the ground state, which generate a new ionizing photon and so
do not change the net ionized fraction. See §9.2.1 for more discussion of the recombination rate.
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Note, however, that Compton cooling can become important again if the Uni-
verse is “reionized” by stars or quasars; once x ≈ 1, the Compton cooling time
is still shorter than the age of the Universe (and hence significant relative to
adiabatic cooling) down to a redshift z ∼ 6.

2.2.1 Fluctuations in the IGM Temperature

Equation (2.37) describes the evolution of the mean IGM temperature. How-
ever, two factors can induce inhomogeneities in this field. First, the CMB tem-
perature varies slightly across the Universe, so each electron will scatter off a
different Tγ . Second, the adiabatic expansion term depends on the local den-
sity. In an overdense region, where gravity slows the expansion (or even causes
contraction), the cooling is slower (and may turn into heating); in an under-
dense region, the cooling accelerates. Thus, the IGM will be seeded by small
temperature fluctuations that reflect its density structure.

To describe these fluctuations, we write δT as the fractional temperature fluc-
tuation and δγ as the photon density fluctuation and note that (for a blackbody)
δγ = 4δTγ , where the latter is the photon temperature fluctuation. Then, the
analog of equation (2.37) is

dδT

dt
= 2

3

dδb

dt
+ x(t)

tC(z)

[
δγ

(
T̄γ

T̄e
− 1

)
+ T̄γ

T̄e
(δTγ − δT )

]
. (2.41)

Here the first term describes adiabatic cooling due to expansion (allowing for
variations in the expansion rate), and the second accounts for variations in the
rate of energy exchange through Compton scattering (which can result from
variations in either the gas or photon temperatures); overbars denote the mean
values for the CMB and electron temperatures.

Meanwhile, the fluctuations in the baryon temperature influence the density
evolution as well. If we allow arbitrary fluctuations in the temperature field,
rather than forcing them to trace the density fluctuations, equation (2.6) then
reads

∂2δ

∂t2
+ 2H

∂δ

∂t
= 3

2
H 2 (�cδc +�bδb)− k2

a2

kBT̄e

µmp
(δb + δT ). (2.42)

This, result together with equations (2.41), (2.37), and (2.39) for the temperature
and ionized fraction evolution, provides a complete set of equations for tracing
the density and temperature evolution, in the absence of relative streaming. If
streaming is included, the final term in equation (2.27) must be replaced by the
final term in equation (2.42).

Figure 2.6 shows the resulting power spectra for δc, δb, δT , and δTγ at four
different redshifts. Note how the photon perturbations are strongly suppressed
on small scales (below the sound horizon) thanks to their large pressure. Near
recombination, the baryonic perturbations are also suppressed on these scales,
especially in the temperature. After recombination, the baryons fall into the
dark matter potential wells, where their perturbations grow rapidly, and tem-
perature fluctuations also grow quickly thanks largely to the variations in the
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Figure 2.6 Power spectra for density and temperature fluctuations versus comoving
wavenumber at four different redshifts. The curves show the CDM den-
sity (solid), baryon density (dotted), baryon temperature (short dashes) and
photon temperature (long dashes). These curves do not include the relative
streaming of the baryons and cold dark matter. Naoz, S., & Barkana, R., Mon.
Not. R. Astron. Soc. 362, 1047 (2005). Copyright 2005 by the Royal Astronom-
ical Society.

adiabatic cooling rate. The turnover at very small scales in the baryonic power
spectrum is due to the finite pressure of the gas. The baryon acoustic oscilla-
tions are also visible near k ∼ 0.01 Mpc−1.
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Chapter Three

Nonlinear Structure and Halo Formation

In the last chapter, we followed the evolution of structure in the linear regime,
when the perturbations are small. Of course, most of the objects we study with
telescopes are far outside this regime, with typical densities many thousands of
times the cosmic mean. In this chapter, we take the next steps toward under-
standing these objects by studying the evolution of perturbations in the nonlin-
ear regime. We focus for the most part on analytic models that shed light on
the physical processes involved.

The advent of computer technology has made numerical studies of nonlinear
evolution almost routine, and many of today’s theoretical calculations follow
this path. The analytic approaches we describe inform these calculations, but
the numerical simulations allow us to sharpen our conclusions and predictions.
We discuss this synergy and describe “semianalytic” models that can be written
analytically but whose ultimate justification lies in their good agreement with
numerical simulations. We describe the fundamental aspects of computational
methods in the last section of the chapter.

3.1 Spherical Collapse

Existing cosmological data suggest that the dark matter is “cold,” that is, its
pressure is negligible during the gravitational growth of galaxies. This makes
the nonlinear evolution relatively simple, as it depends purely on the gravita-
tional force. We can therefore make some progress in understanding galaxy
formation by considering models for this gravitational growth that are suffi-
ciently simple to extend into the nonlinear regime.

For simplicity, let us consider an isolated, spherically symmetric density or
velocity perturbation of the smooth cosmological background and examine the
dynamics of a test particle at a radius r relative to the center of symmetry. Birk-
hoff’s theorem (see §1.2.2) implies that we may ignore the mass outside this
radius in computing the motion of our particle. The equation of motion de-
scribing the system reduces to the usual Friedmann equation for the evolution
of the scale factor of a homogeneous Universe, but with a density parameter �
that now takes into account the additional mass interior to the shell and its mod-
ified expansion velocity. In particular, despite the arbitrary density and velocity
profiles given to the perturbation, only the total mass interior to the particle’s
radius and the peculiar velocity at the particle’s radius contribute to the effective
value of �. We may thus find a solution to the particle’s motion that describes
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its departure from the background Hubble flow and its subsequent collapse or
expansion. This solution holds until our particle crosses paths with one from a
different radius, which happens rather late for most initial conditions.

As with the Friedmann equation for a smooth Universe, it is possible to refor-
mulate the problem in a Newtonian form. At some early epoch corresponding
to a scale factor ai � 1, we consider a spherical patch of uniform overdensity δi ,
making a so-called top-hat perturbation. If �m is essentially unity at this time
and if the perturbation is a pure growing mode, then the initial peculiar velocity
is radially inward with magnitude δiH(ti)r/3, where H(ti) is the Hubble con-
stant at the initial time, and r is the radius from the center of the sphere. This
result can easily be derived from mass conservation (the continuity equation) in
spherical symmetry. The collapse of a spherical top-hat perturbation beginning
at radius ri is described by

d2r

dt2
= H 2

0�� r − GM

r2
, (3.1)

where r is the radius in a fixed (not comoving) coordinate frame, H0 is the
present-day Hubble constant, and the unperturbed Hubble flow velocity (to
which the previously mentioned peculiar velocity should be added) is given by
dr/dt = H(t)r . The total mass enclosed within radius r isM = (4π/3)r3

i ρi(1+
δi), where ρi is the background density of the Universe at time ti . We next de-
fine the dimensionless radius x = ai(r/ri) and rewrite equation (3.1) as

1

H 2
0

d2x

dt2
= −�m

2x2
(1 + δi)+��x. (3.2)

Henceforth we will assume a flat universe with �� = 1 − �m. Our initial con-
ditions for the integration of this orbit are

x(ti) = ai, (3.3)

dx

dt
(ti) = H(ti)x(ti)

(
1 − δi

3

)
= H0ai

(
1 − δi

3

)√
�m

a3
i

+��, (3.4)

where H(ti) = H0[�m/a3
i + (1 − �m)]1/2 is the Hubble parameter for a flat

Universe at the initial time ti . Integrating equation (3.2) we obtain

1

H 2
0

(
dx

dt

)2

= �m

x
(1 + δi)+��x

2 +K, (3.5)

where K is a constant of integration. Evaluating this expression at the initial
time and dropping terms of order ai (with δi ∝ ai), we find

K = − 5δi
3ai

�m. (3.6)

If K is sufficiently negative, the particle will turn around, and the sphere will
collapse to zero size at a time

H0tcoll = 2
∫ amax

0
da

(
�m/a +K +��a

2)−1/2
, (3.7)
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where amax is the value of a that sets the denominator of the integrand to zero,
and we have used the fact that δi � 1. (The integral itself determines the total
expansion time; the factor of 2 accounts for the time from maximum expansion
to collapse.) The analogy to a test particle escaping a point mass in equation (3.1)
is illuminating here: in that case the constant K is simply proportional to the
total energy per unit mass of the system, which determines whether the particle
escapes to infinity. Here, a large negative K (enough to overcome the effective
repulsive force from the cosmological constant) implies the same recollapse.

It is easier to solve the equation of motion analytically for the regime in which
the cosmological constant is negligible, �� = 0 and �m = 1 (adequate for de-
scribing redshifts 1 < z < 103). There are three branches of solutions: one in
which the particle turns around and collapses, another in which it reaches an
infinite radius with some asymptotically positive velocity, and a third intermedi-
ate case in which it reaches an infinite radius but with a velocity that approaches
zero. In fact, although we have cast this problem as a test particle in an over-
dense or underdense region, we could have developed exactly the same equa-
tions by carving out a spherical region from a truly uniform medium. Then,
the three possibilities would simply correspond to a closed, an open, and a flat
Universe (with �� = 0). The three solutions may be written as

r = A(1 − cos η)

t = B(η − sin η)

}
Closed (0 ≤ η ≤ 2π), (3.8)

r = Aη2/2

t = Bη3/6

}
Flat (0 ≤ η ≤ ∞), (3.9)

r = A(cosh η − 1)

t = B(sinh η − η)

}
Open (0 ≤ η ≤ ∞), (3.10)

where A3 = GMB2 applies in all cases even though the constants have different
values in each one. All three solutions have r3 = 9GMt2/2 as t goes to zero,
which matches the linear theory expectation that the perturbation amplitude
get smaller as one goes back in time. In the closed case, the shell turns around
at time πB and radius 2A (when its density contrast relative to the background
of an �m = 1 Universe is 9π2/16 = 5.6), and collapses to zero radius at time
2πB. Interestingly, these collapse times are independent of the initial distance
from the origin: perturbations with fixed initial density contrast collapse ho-
mologously, with all shells turning around and collapsing at the same time.
Figure 3.1 illustrates the stages of this collapse process.

This is the fully nonlinear solution for the simplified problem of collapse of a
purely spherical top-hat perturbation. Of course, the real density distribution of
the Universe is much more complicated. Although we cannot describe analyti-
cally the full nonlinear evolution of density perturbations, we can fully describe
their linear evolution. A compromise is then to use this linear evolution to iden-
tify regions (such as galaxies) where spherical nonlinear evolution is not a bad
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Figure 3.1 Stages of the spherical collapse model. At first, the overdensity (in gray) ex-
pands, though its excess gravity quickly slows that expansion below that of
the Hubble flow. When the real fractional overdensity reaches 9π2/16 ≈ 5.6
(corresponding to a linearized overdensity of 1.06), the expansion stops at
turnaround and then begins to recollapse. When the overdensity reaches
18π2 ≈ 178 (corresponding to a linearized overdensity of 1.69), the pertur-
bation virializes as a collapsed dark matter halo.

approximation. It is therefore useful to determine the mapping between the
linear density field described by perturbation theory and the nonlinear densities
in the spherical model.

To do this, we are faced with the problem of relating the spherical collapse
parameters A,B, and M to the linear theory density perturbation δ. This ex-
ercise is straightforward for the case of �� = 0 and �m = 1 or K = 0 (K >

0 [K < 0] produces an open [closed] model). By substituting equation (3.8) into
equation (3.5) at the turnaround radius, we find

A = ri

2ai

(
5δi
3ai

)−1

(3.11)

B = 1

2H0

(
5δi
3ai

)−3/2

. (3.12)

In an �m ≈ 1 Universe, where 1 + z = (3H0t/2)−2/3, we find that a shell
collapses at redshift 1 + zc = 0.5929δi/ai . Using the fact that in linear theory,
perturbations grow as δ ∝ t2/3 ∝ a in the matter-dominated era, the quantity
δ/a is constant with time. Thus, a shell collapsing at redshift zc had a linearized
overdensity extrapolated to the present day of i

δcrit(zc) = 1.686

D(zc)
≈ 1.686(1 + zc), (3.13)

where D(z) is the linear growth factor (see equation 2.7), although the true
density (computed with the full nonlinear theory) differs. This critical density
plays a key role in calculations of the halo abundance.

Of course, we do not expect a real object to collapse to a zero size; anisotropies
and angular momentum in the initial distribution will prevent perfect collapse.
Instead, we envision that the material will virialize, with strong particle interac-
tions transforming the bulk kinetic energy of collapse into random velocities.

iLinear evolution also gives δ0 = 1.063(1 + zc) at turnaround.
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The result is a dark matter halo with a centrally concentrated mass distribution;
we discuss the properties of such halos in §3.3

While this derivation has been for spheres of constant density, we may treat
a general spherical density profile δi(r) in some circumstances. A particular
radial shell evolves according to the mass interior to it; therefore, we define the
average overdensity δi ,

δi(R) = 3

4πR3

∫ R

0
d3rδi(r), (3.14)

so that we may use δi in place of δi in the preceding formulas. If δi is not
monotonically decreasing with R, then the spherical top-hat evolution of two
different radii will predict that they cross each other at some late time; this is
known as shell crossing and signals the breakdown of the solution. Even well-
behaved δi profiles will produce shell crossing if shells are allowed to collapse
to r = 0 and then reexpand, since these expanding shells will cross infalling
shells. In such a case, first-time infalling shells will never be affected prior to
their turnaround; the more complicated behavior after turnaround is a manifes-
tation of virialization. While the end state for general initial conditions cannot
be predicted, various results are known for a self-similar collapse, in which δ(r)
is a power law, as well as for the case of secondary infall models at z > 1 when
�m ≈ 1.1

3.2 Cosmological Jeans Mass

Of course, the most interesting components of galaxies—stars, quasars, and
people—are made not of dark matter but of baryons. As the density contrast
between a spherical gas cloud and its cosmic environment grows, two main
forces come into play. The first is gravity, and the second involves the pressure
gradient of the gas. The second modifies the simple picture of spherical collapse
for the baryonic matter.

We can obtain a rough estimate of the relative importance of these forces
from the following simple considerations (see Figure 3.2). The increase in gas
density near the center of a cloud sends out a pressure wave that propagates
outward at the speed of sound cs ∼ (kBT /mp)

1/2, where T is the gas tempera-
ture. The wave tries to even out the density enhancement, consistent with the
tendency of pressure to resist collapse. At the same time, gravity pulls the cloud
together in the opposite direction. The characteristic timescale for the collapse
of the cloud is given by its radius R divided by the free-fall speed ∼(2GM/R)1/2,
which yields tcoll ∼ (G〈ρ〉)−1/2, where 〈ρ〉 = M/(4πR3/3) is the characteristic
density of the cloud as it turns around on its way to collapse.ii

If the sound wave does not have sufficient time to traverse the cloud dur-
ing the free-fall time, namely R > cstcoll, then the cloud will collapse. Under

iiSubstitution of the mean density of the earth into this expression yields the characteristic time it
takes a freely falling elevator to reach the center of the earth from its surface (∼1/3 of an hour), as
well as the order of magnitude of the time it takes a low-orbit satellite to go around the earth (∼1.5
hours).
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Figure 3.2 The Jeans criterion for gravitational collapse of baryonic material. In (a),
the outward pressure gradient exceeds the inward gravitational force, so the
region is stable. In (b), the opposite is true, and the resulting instability
causes runaway collapse. Note that if the pressure changes over time, a time-
averaged pressure restoring force must be used, as described in §3.2.1.

these circumstances, the sound wave moves outward at a speed that is slower
than the inward motion of the gas, and so the wave is simply carried along to-
gether with the infalling material. However, the collapse will be inhibited by
pressure for a sufficiently small cloud with R < cstcoll. The transition between
these regimes is defined by the so-called Jeans radius, RJ ∼ cstcoll, which deter-
mines how large a perturbation must be before gravitational instability triggers
collapse.

More precisely, in a static, infinite, uniform gas (with density ρ and sound
speed cs) that obeys Newtonian gravity the Jeans length λJ is defined as the criti-
cal wavelength that separates oscillatory and exponentially growing density per-
turbations. A detailed stability analysis yields

λ2
J = πc2

s

Gρ
. (3.15)

The Jeans mass is defined as the mass within a sphere of radius λJ/2, or

MJ = 4π

3
ρ

(
λJ

2

)3

. (3.16)

This corresponds to associating the region in which a sine or cosine wave is
positive (of width λJ/2) as the “object” that is collapsing. In a perturbation with
a mass greater than MJ, the self-gravity cannot be supported by the pressure
gradient, and so the gas is unstable to gravitational collapse. The Newtonian
derivation of the Jeans instability suffers from a conceptual inconsistency, as
the unperturbed gravitational force of the uniform background must induce
bulk motions. However, this inconsistency is remedied when the analysis is
done in an expanding Universe.

The perturbative derivation of the Jeans instability criterion can be carried out
in a cosmological setting by considering a sinusoidal perturbation superposed
on a uniformly expanding background. Here, as in the Newtonian limit, there is
a critical wavelength λJ that separates oscillatory and growing modes. Although
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the expansion of the background slows down the exponential growth of the
amplitude to a power law, the fundamental concept of a minimum mass that
can collapse at any given time remains the same.

We follow the notation of §2.1 and consider a mixture of dark matter and
baryons with density parameters�c(z) and�b(z), respectively. We write�m(z)
for the total matter density. We will examine the evolution of a single Fourier
mode on a scale much smaller than the horizon. In comoving coordinates, we
then want to solve equation (2.6) for the critical wavenumber for collapse. (Here
for simplicity we are ignoring the relative streaming of the baryons and dark
matter as well as temperature fluctuations, but see further.) The Jeans wave-
length λJ = 2π/kJ is obtained by setting the right hand side of equation (2.6) to
zero, and solving for the critical wavenumber kJ:

kJ = 2

3

aH

cs
. (3.17)

The critical wavelength λJ (and therefore the massMJ) is clearly time dependent
in general.

For a concrete estimate, we need an expression for the sound speed. We adopt
an ideal gas equation of state for the baryons with an adiabatic index (or specific
heat ratio) γ = 5/3. Initially, at time t = ti, we suppose that the gas temperature
is uniform Tb(R, ti) = Ti. As described in §2.2, at very high redshifts the baryon
temperature traces the CMB temperature, Tb ∝ Tγ ∝ (1 + z), while at z < zt ∼
100 baryons cool adiabatically, Tb ∝ ρ

(γ−1)
b ∝ (1+z)2. We will therefore account

for both possibilities with a parameter βT so that Tb ∝ (1 + z)βT−1. In that case,
we can include gas temperature perturbations as well and write equation (2.42)
as

δ̈b + 2Hδ̇b = 3

2
H 2 (�bδb +�cδc)

− kBTi

µmp

(
k

a

)2 (ai

a

)(1+βT ) (
δb + 2

3
βT [δb − δb,i]

)
. (3.18)

Here µ = 1.22 is the mean atomic weight of the neutral primordial gas in units
of the proton mass. The last term on the right-hand side takes into account
the extra pressure gradient force in ∇(ρbT ) = (T∇ρb + ρb∇T ) arising from
the temperature gradient that develops in the adiabatic limit. We infer from
equation (3.18) that as time proceeds, perturbations with increasingly smaller
initial wavelengths stop oscillating and start to grow.

To estimate this scale, we assume δb ∼ δc and consider sufficiently high red-
shifts at which the Universe is matter dominated (so that �m ≈ 1). Following
cosmological recombination at z ≈ 103, the residual ionization of the cosmic
gas keeps its temperature locked to the CMB temperature (via Compton scat-
tering) down to a redshift of z ≈ 200 (see §2.2 and Figure 2.5) In this redshift
range, βT = 0 and

kJ ≡ (2π/λJ) = [2kBTγ,0/3µmp]−1/2
√
�mH0, (3.19)
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where Tγ,0 is the CMB temperature today. Then, the Jeans mass is redshift
independent and obtains a value (for the total mass of baryons and dark matter)

MJ ≡ 4π

3

(
λJ

2

)3

ρ̄c = 1.35 × 105

(
�mh

2

0.15

)−1/2

M�, (3.20)

where ρ̄c is the average comoving matter density.
At z < 100, the gas temperature declines adiabatically with βT = 1, and the

total Jeans mass obtains the value

MJ = 4.54 × 103

(
�mh

2

0.15

)−1/2 (
�bh

2

0.022

)−3/5 (
1 + z

10

)3/2

M�. (3.21)

These equations set the minimum threshold mass for gas clumps to have
formed in the early Universe. We emphasize that the values depend on the
IGM temperature, which we have assumed either traces the CMB or cools
adiabatically. We will see in later chapters that radiative processes—especially
photoionization—can strongly influence the IGM temperature, increasing the
Jeans mass dramatically.

So far, we have ignored similar effects in the dark matter component: al-
though these collisionless particles do not feel a pressure force, their intrinsic
velocity dispersion plays a role analogous to pressure, and a similar criterion
for collapse exists. However, in popular cold dark matter models with weakly
interacting massive particles, the Jeans mass of the dark matter alone is negli-
gible but nonzero, of the order of the mass of a planet like Earth or Jupiter.2 All
halos between this minimum clump mass and ∼105M� are expected to con-
tain mostly dark matter and little ordinary matter. Warm dark matter, with a
moderately large velocity dispersion, could change this expectation and—if its
Jeans mass exceeds that of the baryons—substantially modify the early phases
of structure formation.

3.2.1 The Filtering Mass

Even within linear theory, the Jeans mass is related to the evolution of pertur-
bations only at a given time. When the Jeans mass itself varies with time, the
overall suppression of the growth of perturbations depends on a time-weighted
Jeans mass. The proper time-weighted mass is called the filtering mass3 MF =
(4π/3) ρ̄ (πa/kF )3, written in terms of the comoving wavenumber kF associ-
ated with the “filtering scale.” This scale can be derived as follows.

Consider a growing mode perturbation in the dark matter δc and baryons δb
in the limit where the baryons are gravitationally unimportant (�b � �m). In
this regime, the linear perturbation equations admit of a simple solution in the
special case where the Jeans wavenumber kJ is constant in time,

δb(t, k) = δc(t, k)

1 + k2/k2
J

, (3.22)

where the dark matter fluctuation grows in proportion to the linear growth fac-
tor, δc ∝ D(t) ( equation 2.7). In the general case where the Jeans wavenumber
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kJ is time dependent, we can identify the proper time averaging by considering
the perturbative effect of gas pressure on large scales. We therefore expand the
ratio δb(t, k)/δc(t, k) in powers of k2 with δb(t, k = 0) = δc(t, k = 0). The ratio
between the linear overdensity of the baryons and dark matter in the limit of
small k can then be written as

δb

δc
= 1 − k2

k2
F

+ ..., (3.23)

or, equivalently, as

δb(t, k)

δc(t, k)
= 1 − A(t)

D(t)
k2, (3.24)

where A(t) ≡ D(t)/k2
F can be found by substituting the latter relation into the

coupled linear growth equations for δb and δc and ignoring terms of order k4 or
higher (equation 2.6). This substitution gives the differential equation

d2A

dt2
+ 2H

dA

dt
= c2

s

a2
D(t). (3.25)

The filtering wavenumber kF is the solution to this equation. Writing it in terms
of the Jeans wavenumber kJ (using the latter’s relation to cs in equation 3.17),
we obtain

1

k2
F (t)

= 1

D(t)

∫ t

0
dt ′ a2(t ′)

D̈(t ′)+ 2H(t ′)Ḋ(t ′)
k2

J (t
′)

∫ t

t ′

dt ′′

a2(t ′′)
. (3.26)

At high redshifts (where �m → 1), this relation simplifies to

1

k2
F (t)

= 3

a

∫ a

0

da′

k2
J (a

′)

(
1 −

√
a′

a

)
. (3.27)

Figure 3.3 contrasts the time-averaged filtering mass (computed using a full
perturbative analysis, without the simplifications of equation 3.27) with the in-
stantaneous Jeans mass (thin solid and dot-dashed curves, respectively). Note
how the Jeans mass declines with cosmic time as the Universe cools, but the
filtering mass remains roughly constant over this wide redshift interval. The
filtering mass is initially much smaller than the Jeans mass because the baryon
fluctuations are suppressed after recombination and must then catch up to the
dark matter. But the filtering mass remains roughly constant with redshift,
whereas the Jeans mass declines rapidly as the Universe expands and cools.
By z ∼ 10, the Jeans mass is several times smaller than the filtering mass.

It is conventional to assume that the Jeans or filtering mass accurately re-
flects the threshold for baryonic structure formation. However, linear theory
specifies only whether an initial perturbation, characterized by the parameters
k, δC,i, δb, i, and ti, begins to grow, and the preceding analysis is perturbative
(valid only as long as δb and δc are much smaller than unity). As δb and δc grow
and become larger than unity, the density profiles start to evolve, and dark mat-
ter shells may cross baryonic shells owing to their different dynamics. Hence
the amount of mass enclosed within a given baryonic shell may increase with
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Figure 3.3 The Jeans and filtering masses as a function of redshift. The dot-dashed
curve shows the Jeans mass computed with equation (3.17), while the thin
solid curve shows the filtering mass from equation (3.27). The other lines

include baryon streaming: the dashed and dotted take vbc = 〈
v2

bc

〉1/2
and

2
〈
v2

bc

〉1/2
, while the thick solid line averages over the entire velocity distrib-

ution. Tseliakhovich, D., Barkana, R., & Hirata, C., Mon. Not. R. Astron. Soc.
418, 906 (2011). Copyright 2011 by the Royal Astronomical Society.

time, until eventually the dark matter pulls the baryons with it and causes their
collapse even for objects nominally below the filtering mass. To determine the
minimum mass of the resulting nonlinear baryonic object following the shell
crossing and virialization of the dark matter, we typically appeal to the spherical
collapse model described in the previous section.

3.2.2 Primordial Streaming of Baryons and Halo Formation

As we saw in §2.1.2, the baryonic gas also has a substantial velocity relative to
the baryons at early times. Figure 2.2 shows the variance of the velocity differ-
ence perturbations (in units of c) per ln k as a function of the mode wavenum-
ber k at z = 103. The power declines rapidly at k > 0.5 Mpc−1, indicating that
the velocity of the baryons relative to the dark matter was coherent over the pho-
ton diffusion (Silk damping) scale of several megaparsecs. This scale is much
larger than the filtering mass, so to these halos the background intergalactic
baryons appeared to be moving coherently as a wind. It is therefore impor-
tant to examine whether this wind had a significant effect on the assembly of
baryons onto the earliest galaxies.

By z ∼ 50, the typical streaming velocity ∼1.5 km s−1 corresponded to an
equivalent gas temperature Tbc ∼ mpv

2
bc/kB = 270 K[(1 + z)/50]2, well above

the IGM temperature. Effectively, the relative velocity acts as an increased
sound speed (since it needs to be dissipated on virialization of the gas) and
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Dark matter
potential well

Baryons

Figure 3.4 Cartoon representation of the effects of the relative streaming of baryons and
dark matter on halo formation. In the absence of these motions (left), dark
matter potential wells (which formed before recombination) attract nearby
baryons, quickly building up their gas content so long as their total mass ex-
ceeds the filter mass. But when these motions are present (right), the baryons
may move so quickly that they do not respond strongly to the dark matter po-
tential unless they happen to pass very close to its center. In this case, bary-
onic accretion onto dark matter halos can be strongly suppressed (and can
even affect dark matter accretion, by decreasing the total halo mass).

prevents the baryons from settling into the shallowest potential wells: very
roughly, the sound speed in equations (2.6) and (3.17) should be replaced by
v2

eff ≡ (v2
bc + c2

s ) to account for this. Figure 3.4 illustrates this correction in a
cartoon fashion.

The effect on the filtering mass is quite dramatic. Following the perturbative
procedure outlined in §3.2.1 with the full set of linear perturbation
equations (2.24)–(2.27), and including the temperature fluctuations as in §2.2.1,
we can then determine the effective filtering mass as a function of the stream-
ing velocity vbc. The thick solid curve in Figure 3.3 shows this quantity averaged
over the full streaming velocity distribution (the dashed and dotted lines show
the results at specific velocities). These increase the minimum mass for bary-
onic accretion by nearly an order of magnitude (on average) over naive expec-
tations, though of course the actual value will depend on the local streaming
velocity. (We will return to this suppression in the next section from a slightly
different angle; see Fig. 3.9.)

3.3 Halo Properties

When an object above the Jeans mass collapses, the dark matter forms a halo in-
side of which the gas may cool, condense to the center, and eventually fragment
into stars. The dark matter cannot cool, since it has very weak interactions. As a
result, a galaxy emerges with a central core occupied by stars and cold gas and
is surrounded by an extended halo of invisible dark matter. Because cooling
eliminates the pressure support from the gas, the only force that can prevent
the gas from sinking all the way to the center and ending up in a black hole
is the centrifugal force associated with its rotation around the center (angular
momentum). The slight (∼5%) rotation, given to the gas by tidal torques from
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nearby galaxies as it turns around from the initial cosmic expansion and gets
assembled into the object, is sufficient to stop its infall on a scale that is an
order of magnitude smaller than the size of the dark matter halo (the so-called
virial radius). On this stopping scale, the gas is assembled into a thin disk and
orbits around the center for an extended period of time (see §8.4), during which
it tends to break into dense clouds that fragment further into denser clumps.
Within the compact clumps that are produced, the gas density is sufficiently
high and the gas temperature is sufficiently low for the Jeans mass to be the
order of the mass of a star. As a result, the clumps fragment into stars, and a
galaxy is born; we discuss the physics of this process in Part II.

These dark matter halos therefore form the fundamental units within which
astronomical objects form, and it is important to understand their properties.
By solving the equation of motion (3.1) for a spherical overdense region, we can
relate the characteristic radius and gravitational potential well of each of these
galaxies to their mass and their redshift of formation. In principle, a spherical
region would collapse to a point mass, but of course the real world is not so
idealized. As already mentioned, even a slight violation of the exact symmetry
of the initial perturbation can prevent the top hat from collapsing entirely. In-
stead, the halo reaches a state of virial equilibrium through violent dynamical
relaxation. We are familiar with the fact that the circular orbit of Earth around
the Sun has a kinetic energy that is half the magnitude of the gravitational po-
tential energy. According to the virial theorem, this happens to be a property
shared by all dynamically relaxed, self-gravitating systems.

We may therefore use U = −2K to relate the potential energy U to the
kinetic energy K in the final state of a collapsed halo. This implies that the
virial radius is half the turnaround radius (where the kinetic energy vanishes).
Within the context of the spherical collapse model in §3.1, let us suppose that
virialization occurs when the spherical perturbation would otherwise collapse
completely, at twice the turnaround time. In a flat matter dominated universe
(appropriate at the high redshifts of most interest to us), a ∝ t2/3, so the Uni-
verse would have expanded by a factor 22/3 between turnaround and virializa-
tion, and its mean density would have fallen by a factor of 4. Thus the final
density of the virialized object relative to the critical density is


vir(�m = 1) ≡ ρvir(zvir)

ρ̄crit(zvir)
=

(
9π2

16

)
× 8 × 4 = 18π2 ≈ 178, (3.28)

where the first factor is the overdensity at turnaround (see §3.1), the second
is the inverse of the change in volume from turnaround, and the last is the
change in the mean density of the Universe over the collapse interval. Note
that the virial overdensity at collapse implies that the dynamical time within the
virial radius of galaxies, ∼ (Gρvir)

−1/2, is on the order of a tenth of the age of
the Universe at any redshift.

In a Universe with�m+�� = 1 the virial overdensity at the collapse redshift
has the fitting formula4


c = 18π2 + 82d − 39d2 , (3.29)
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Figure 3.5 Virial radius over a wide range of halo masses and redshifts (equation 3.30).
The dotted, short-dashed, long-dashed, solid, and dot-dashed curves take z =
30, 20, 10, 5, and 0, respectively.

where d ≡ �m(z)− 1 is evaluated at the collapse redshift, and �m(z) is defined
in equation (2.9).

A halo of mass M collapsing at redshift z � 1 thus has a virial radius

rvir = 0.784
[
�m

�m(z)


c

18π2

]−1/3 (
M

108M�

)1/3 (
1 + z

10

)−1

h−2/3 kpc (3.30)

and a corresponding circular velocity

Vc =
(
GM

rvir

)1/2

= 23.4
[
�m

�m(z)


c

18π2

]1/6 (
M

108M�

)1/3

×
(

1 + z

10

)1/2

h1/3 km s−1
. (3.31)

We may also define a virial temperature

Tvir = µmpV
2
c

2kB
= 1.98 × 104

( µ
0.6

) [
�m

�m(z)


c

18π2

]1/3

×
(

M

108M�

)2/3 (
1 + z

10

)
h2/3 K (3.32)

Note that the value of µ depends on the ionization fraction of the gas; a fully
ionized primordial gas has µ = 0.59, while a gas with ionized hydrogen but
only singly ionized helium has µ = 0.61, and a fully neutral primordial gas has
µ = 1.22. For context, Figures 3.5, 3.6, and 3.7 show these quantities over a
wide range of halo masses and redshifts.
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Figure 3.6 Circular velocity over a wide range of halo masses and redshifts (equa-
tion 3.31). The dotted, short-dashed, long-dashed, solid, and dot-dashed
curves take z = 30, 20, 10, 5, and 0, respectively.
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Figure 3.7 Virial temperature over a wide range of halo masses and redshifts (equa-
tion 3.30). The dotted, short-dashed, long-dashed, solid, and dot-dashed
curves take z = 30, 20, 10, 5, and 0, respectively. For simplicity we assume
fully ionized gas in all these halos, though the low-mass objects may actually
accrete neutral gas.

The binding energy of the halo is approximately

Eb = 1

2

GM2

rvir
= 5.45 × 1053

[
�m

�m(z)


c

18π2

]1/3 (
M

108M�

)5/3 (
1 + z

10

)
h2/3erg.

(3.33)
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Note that if the ordinary matter traces the dark matter, its total binding energy is
smaller thanEb by a factor of�b/�m, and could be lower than the energy output
of a single supernova (∼1051 erg) for halos near the filtering mass (although,
as we will see later, cooling is likely to increase this binding energy by quite a
large factor).

Although spherical collapse captures some of the physics governing the for-
mation of halos, structure formation in cold dark matter models proceeds hier-
archically. At early times, most of the dark matter was in low-mass halos, and
these halos then continuously accreted and merged to form high-mass halos.
Numerical simulations of hierarchical halo formation indicate a roughly uni-
versal spherically averaged density profile for the resulting halos, though with
considerable scatter among different halos. This so-called NFW (or Navarro-
Frenk-White) profile has the approximate form5

ρ(r) = 3H 2
0

8πG
(1 + z)3

�m

�m(z)

δc

cNx(1 + cNx)2
, (3.34)

where x = r/rvir, and the characteristic density δc is related to the concentration
parameter cN by

δc = 
c

3

c3
N

ln(1 + cN)− cN/(1 + cN)
. (3.35)

The concentration parameter itself depends weakly on the halo mass M and
more strongly on the formation redshift, with a value ∼4 for newly collapsed
halos and a larger value < 20 at later times.

An even better (but more complex) fit to state-of-the-art CDM simulations is
obtained with the Einasto profile6,

ln
[
ρ(r)

ρ−2

]
= − 2

α

[(
r

r−2

)α
− 1

]
, (3.36)

where α ≈ 0.16 and r−2 is the radius where the logarithmic slope of the density
profile equals the isothermal sphere value, (d ln ρ/d ln r) = −2. At this radius
r2ρ peaks at a density value of ρ−2 = ρ(r−2). For the NFW profile, r−2 = rvir/cN.
We show these two profiles in Figure 3.8; note that they differ substantially only
close to the halo center.

As an example of the utility of these parameterizations, consider the effects
of the relative streaming of baryons and dark matter on gas accretion into ha-
los (as in §3.2.2). As described earlier, the effective pressure resisting collapse
is parameterized by the mass density times v2

eff = c2
s + v2

bc. Gravity will over-
come this effective pressure only if the crossing time r/veff exceeds the free-fall
time, 1/

√
Gρvir ∼ r/Vc, or, equivalently, if veff < Vc for the halo. Figure 3.9

shows a similar estimate for the minimum halo mass required to accrete bary-
onic material in the presence of streaming. The streaming velocity marked
on the vertical axis is evaluated at z = 100, with vbc ∝ (1 + z)−1 as the gas
falls into the dark matter potential wells at lower redshifts. The horizontal line

marks the expected
〈
v2

bc

〉1/2 = 3 km s−1 at z = 100. Each curve shows the
minimum mass at the labeled redshift for a reasonable range of streaming
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Figure 3.8 Parameterizations for the “universal” dark matter halo profile. The NFW pre-
scription (equation 3.34) is shown with the solid line, while the Einasto pro-
file (equation 3.36) is shown with the dotted line. We scale both to the point
at which the logarithmic slope equals −2. For the NFW profile, this is at
r = rvir/cN, where cN is the concentration.

velocities; the symbols show the results of detailed numerical simulations at
z = 24 (squares) and z = 14 (diamonds), which match this simple estimate rea-
sonably well. Note that the streaming has little effect on halos withM > 106 M�
and is more important at higher redshifts, where the streaming velocities are
larger.

3.4 Abundance of Dark Matter Halos

In addition to characterizing the properties of individual halos, it is critical that
any theory of structure formation predict the abundance of halos, namely, the
number density of halos as a function of mass, at any redshift. This prediction
is an important step toward inferring the abundances of galaxies and galaxy
clusters. While the number density of halos can be measured for particular
cosmologies in numerical simulations, an analytic model helps us gain physical
understanding and can be used to explore the dependence of abundances on all
the cosmological parameters.

A simple analytic model that successfully matches most of the numerical
simulations was developed by Bill Press and Paul Schechter in 1974.7 The
model is based on the ideas of a Gaussian random field of density perturba-
tions, linear gravitational growth, and spherical collapse. Once a region on the
mass scale of interest reaches the threshold amplitude for collapse according
to linear theory, it can be declared a virialized object. Counting the number of
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Figure 3.9 Effect of baryon–dark matter streaming on the minimum (Jeans) mass of a
halo into which gas can assemble later and form stars (with the horizontal
bar at 3 km s−1 marking the expected rms value). Each line represents the
necessary halo mass for baryon collapse at the labeled redshift. Diamonds
represent the final halo masses found in collapse simulations of a region
with σ8 = 0.9 (z = 14 with no streaming), squares represent masses from
accelerated collapse simulations of a region with σ8 = 1.4 (z = 24 with
no streaming), and the lines delineate the prediction of the simple analytic
model described in the text. The halo masses do not increase significantly at
low streaming velocities. Halos collapsing at high redshift are more affected
by relative streaming, as the physical streaming velocities are higher at these
early times. Stacy, A., Bromm, V., & Loeb, A., Astrophys. J. 730, L1 (2011).
Reproduced by permission of the AAS.

such density peaks per unit volume is straightforward for a Gaussian probabil-
ity distribution.

To determine the abundance of halos at a redshift z, we use δM , the density
field smoothed on a mass scale M , as defined in §2.1.1. Since δM is distributed
as a Gaussian variable with zero mean and a standard deviation σ(M) (which
depends only on the linear power spectrum; see equation 2.33), the probability
that δM is greater than some fixed δ equals

∫ ∞

δ

dδM
1√

2π σ(M)
exp

[
− δ2

M

2 σ 2(M)

]
= 1

2
erfc

(
δ√

2 σ(M)

)
. (3.37)

The basic ansatz is to identify this probability with the fraction of dark matter
particles that are part of collapsed halos of mass greater than M at redshift z.
Note that a given region smoothed on mass M could be part of an even larger
overdensity above the threshold, which is why we have the fraction of particles
in halos above this mass threshold.
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We need two additional ingredients to complete the model. First, we set the
threshold density to δcrit(z) (see equation 3.13), which is the critical density of
collapse found for a spherical top hat. Crucially, δcrit is the linearized density
associated with collapse in this nonlinear model, so it is directly comparable to
the linearized treatment of the density field in the Gaussian approximation.

The second key ingredient is to note that even regions with δM < 0 can
actually be part of collapsed objects, if they are part of a region with δ > δcrit

on a scale M ′ > M . The original Press and Schechter paper solved this in an
ad hoc fashion by multiplying the fraction in equation (3.37) by a factor of; 2
this guarantees that every dark matter particle is part of a halo (of some M >

0) even if its immediate environment is underdense. Thus, the final formula
for the mass fraction in halos above M at redshift z, or the collapse fraction
is

fcoll(> M|z) = erfc
(

δcrit(z)√
2 σ(M)

)
. (3.38)

We will revisit the ad hoc factor of 2, and provide a more satisfying explanation
for the adjustment, in the following sections.

One should note that at a redshift z, the probability distribution of δM is ac-
tually a Gaussian with variance σ 2(M)D2(z), because σ 2 is conventionally eval-
uated at the present day. The growth factor D2(z) then scales this to the actual
density field at redshift z, provided we use the usual normalization D(z = 0) =
1. This is possible because the growth factor is independent of physical scale: all
Fourier modes grow by an identical factor during the matter era according to
linear theory. However, we conventionally associate these redshift-dependent
factors with δcrit. Essentially, we imagine that we are working entirely with the
linearized density field at z = 0 and allowing the threshold over which halos
form to vary with redshift.

Differentiating the fraction of dark matter in halos above mass M yields the
mass distribution. Letting n(M) dM be the comoving number density of halos
of mass between M and M + dM , we have

n(M) =
√

2

π

ρm

M

−d(ln σ)
dM

mc e
−m2

c/2 , (3.39)

where mc = δcrit(z)/σ (M) is the number of standard deviations away from zero
that the critical collapse overdensity represents on mass scale M and ρm is the
comoving matter density. Note that n(M) is often written as dn/dM in order to
emphasize that it is a differential mass function, but we will generally use the
more compact notation in this book.

Thus, the halo abundance depends on the two functions σ(M) and δcrit(z),
each of which depends on the fundamental cosmological parameters and the
initial conditions of inflation. Figure 3.10 shows some example halo mass dis-
tributions at a variety of redshifts; note that the figure uses a slightly improved
version of the mass function that we will discuss in the next sections.
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Figure 3.10 Top: The mass fraction incorporated into halos per logarithmic bin of halo
mass, (M2dn/dM)/ρm, as a function of M at different redshifts z. Here
ρm = �mρc is the present-day matter density, and n(M)dM is the comoving
density of halos with masses betweenM andM+dM . The halo mass distri-
bution was calculated based on an improved version of the Press-Schechter
formalism for ellipsoidal collapse that better fits numerical simulations (see
§3.4.3). Bottom: comoving number density of halos per logarithmic bin of
halo mass, Mdn/dM (in units of Mpc−3), at various redshifts.

3.4.1 The Excursion Set Formalism

Although the original Press-Schechter model is founded on an important phys-
ical insight, it turns out to be profitable to rephrase the problem in an entirely
different way.8 This provides two benefits: first, it yields a much more satisfying
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derivation of the factor of 2 correction, and second, it provides a number of new
insights into the spatial distribution and histories of dark matter halos.

In particular, the Press-Schechter formalism makes no attempt to describe
the correlations among halos or between different mass scales. For example,
while it can generate a distribution of halos at two different epochs, it says
nothing about how particular halos in one epoch are related to those in the
second. For many applications, we would like some method to predict, at least
statistically, the growth of individual halos via accretion and mergers. Even re-
stricting ourselves to spherical collapse, such a model would have to utilize the
full spherically averaged density profile around a particular point. The potential
correlations between the mean overdensities at different radii make the statis-
tical description substantially more difficult.

The excursion set formalism seeks to describe the statistics of halos by con-
sidering the statistical properties of δM , the average overdensity within some
spherical window of characteristic massM , as a function ofM (or, equivalently,
R). While the Press-Schechter model depends only on the Gaussian distribu-
tion of overdensity for one particular M , the excursion set approach considers
all M as a set. Again, the connection between a value of the linear regime δM
and the final state is made via the spherical collapse solution so that there is a
critical value δcrit(z) of δM that is required for a halo to virialize at a redshift z.

The basic idea is to view the density field around a given point, smoothed
on different scales, as a diffusion process. Smoothed over a sufficiently large
mass, δM → 0. As we zoom in to smaller scales, we naturally expect δM to
deviate from zero, with a variance that must equal σ 2(M). It is easiest to view
this process in Fourier space: as we approach smaller scales, more and more
Fourier modes become important, adding fluctuations to the density field. The
particular set of modes contributing to a given spatial point will determine the
“trajectory” of δM as a function of smoothed mass. The key insight of the excur-
sion set approach is that we can consider this trajectory as a diffusion process
(because each k-mode is independent of all others) and thereby calculate its sta-
tistics. Conceptually, each set of Fourier modes that one adds as M decreases
provides a step in the random walk of the density field, so the key to a quantita-
tive understanding of halo abundances is in generating the distribution of these
random walks. Figure 3.11 illustrates this sequence for a few different sample
points (or trajectories). The point will be part of a halo of mass M if its trajec-
tory in this random walk first passes above the virialization threshold at that
mass M .

The subtlety in this approach lies in defining the smoothed density field; re-
call that it is the full (linearized) density field convolved with a window function
W(R) (see equation 2.31). For most choices of window function, the quantities
δM are correlated from one M to another so that it is difficult to
calculate the desired statistics directly. However, for one particular choice of
a window function, the correlations between different M greatly simplify, and
many interesting quantities may be calculated.9 We take advantage of the fact
that in linear theory, each Fourier mode evolves independently, with no correla-
tions between different scales k, and we use a k-space top-hat window function,
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Figure 3.11 Several random walk trajectories for the overdensity as a function of σ 2(M),
assuming a sharp k-space filter (or uncorrelated step sizes). The scale is
arbitrary here; δc denotes a threshold of interest (i.e., δcrit in the Press-
Schechter model). Note the wide variation between the trajectories and the
rapid variations with scale: a particular trajectory may cross the threshold
on multiple scales. In the excursion set model, however, we consider the
barrier to be absorbing, so that a trajectory is marked by its first up-crossing.
The two solid trajectories have equal probabilities of occuring, which allows
us to compute the halo abundance using the “mirror” trick described in
the text.

namely, Wk = constant for all k less than some critical kc and Wk = 0 for
k > kc. In that case, each step in the random walk corresponds to increasing kc.
For this filter,

δM ∝
∫
k<kc(M)

d3k

(2π)3
δk, (3.40)

which means that the overdensity on a particular scale is simply the sum of the
random variables (each Gaussian distributed) δk interior to the chosen kc.

Because the filter is sharp, we simply add new Fourier modes to change the
scale M . In linear theory, these evolve independently of the larger-wavelength
modes already inside the filter, so the difference between δM1 and δM2 (where
M1 > M2) is statistically independent of the value on the larger mass scale:
i.e., each “step” in the walk is uncorrelated with previous steps. In particular,
the difference is just the sum of the δk in the spherical k-shell between kc(M1)

and kc(M2), which is independent of the sum of the δk interior to the smaller
kc(M1). We thus have a simple random walk, albeit one where the step size
varies with kc. Meanwhile, the distribution of δM (given no prior information
about the random walk at larger M) is still a Gaussian of zero mean and a
variance of σ 2(M) (see equation 2.32).

Unfortunately, this filter is fundamentally inconsistent with the threshold
δcrit. The k-space top-hat filter has a spatial form W(r) ∝ j1(kcr)/kcr , where
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j1(x) is the first spherical Bessel function (see equation 2.32).iii Thus, in real
space, this set of modes exhibits a (decaying) sinusoidal oscillation rather than
the sharp real-space top hat used to derive δcrit. The problem is a basic one,
ubiquitous in Fourier transforms: we cannot hope to have the simultaneous
advantages of real-space top hats (specifically, the simple spherical collapse cri-
terion) and k-space top hats (uncorrelated steps in the random walk). Neverthe-
less, we may brush this inconsistency aside and assume that the two different
filters are “close enough” to be compatible—we use both sharp k-space filter-
ing for the random walks and a sharp top hat to define the critical virialization
density. The only justification for such an approach is its eventual success and
its simplicity: although one can construct more self-consistent approaches, they
ultimately fare no better.

It is now easy to rederive the Press-Schechter mass function, including the
previously unexplained factor of 2. iv The fraction of mass elements included in
halos of mass less thanM is just the probability that a random walk will remain
below δcrit(z) for all kc less than Kc, the filter cutoff appropriate to M . This
probability must be the complement of the sum of the probabilities that (a)
δM ≥ δcrit(z) and that (b) δM < δcrit(z), but δM ′ ≥ δcrit(z) for some M ′ > M . The
first is immediately obvious: since the distribution of δM is simply Gaussian
with variance σ 2(M), the fraction of random walks falling into class (a) is
simply

pa = 1√
2πσ 2

∫ ∞

δcrit(z)

dδ exp{−δ2/2σ 2(M)}. (3.41)

The second class can also easily be computed with a clever “mirror” argument
originally due to Chandrasekhar (see Figure 3.11). In fact, these two cases have
equal probabilities: any random walk belonging to class (a) may be reflected
around its first up-crossing of δcrit(z) to produce a walk of class (b), and vice
versa. Hence, the fraction of mass elements included in halos of mass less than
M at redshift z is simply

fcoll(< M) = 1 − 2pa, (3.42)

which may be differentiated to yield the Press-Schechter mass function,
equation (3.39). This approach better shows the physical origin of the extra
factor of 2 needed to obtain equation (3.38): many of the mass elements may
appear to be in local underdensities but have actually already been incorporated
into larger collapsed halos.

iiiThis implies a comoving volume 6π2/k3
c or mass 6π2ρm/k

3
c . The characteristic radius of the filter

is ∼ k−1
c , as expected.

ivHere we will derive the mass function using a special trick; the general approach to its solution is
described later in §9.4.1.
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3.4.2 The Extended Press-Schechter Formalism: Conditional Mass
Functions and Accretion Histories

The other advantage of the excursion set approach is that it allows us to examine
how halos relate to one another other and evolve over time.10 First, consider
how halos at one redshift are related to those at another. Suppose that a halo
of mass M2 exists at redshift z2. Then, we know that the random function δM
corresponding to a mass element within the halo first crosses δcrit(z2) at kc2
corresponding to M2.

Given this constraint, we may study the distribution of kc where the function
δM crosses other thresholds (keep in mind that δcrit is a function of redshift, so
these other thresholds tell us about either the progenitors or “descendants” of
the given halo). It is particularly easy to construct the probability distribution
for when trajectories first cross some δcrit(z1) > δcrit(z2) (which implies that
z1 > z2, corresponding to the halo’s progenitors); clearly, this must occur at
some kc1 > kc2 or M1 < M2. Figure 3.11 shows an example of such a pair of
objects and thresholds.

Fortunately, this problem reduces to the previous one if we simply translate
the origin of the random walks from (kc, δM) = (0, 0) to (kc2, δcrit[z2]). We
therefore compute the distribution of halo massesM1 that a mass element finds
itself in at redshift z1, given that it is part of a larger halo of mass M2 at a later
redshift z2 < z1:

dP

dM1
(M1, z1|M2, z2) =

√
2

π

[
δcrit(z1)− δcrit(z2)

σ 2(M1)− σ 2(M2)

] ∣∣∣∣dσ(M1)

dM1

∣∣∣∣ exp
{
− [δcrit(z1)− δcrit(z2)]2

2[σ 2(M1)− σ 2(M2)]
}
. (3.43)

This equation may be rewritten as saying that the quantity

ṽ = δcrit(z1)− δcrit(z2)√
σ 2(M1)− σ 2(M2)

(3.44)

is distributed as the positive half of a Gaussian with unit variance; equation
(3.44) may be inverted to find M1(ṽ).

We can interpret the statistics of these random walks as those of merging
and accreting halos. For a single halo, we may imagine that as we go back in
time, the object breaks into ever smaller pieces, similar to the branching of a
tree. Equation (3.43) provides the distribution of the sizes of these branches at
some given earlier time. One can then imagine using this description of the
ensemble distribution to generate random realizations of the merger histories
of single halos—or “merger trees.” One recursively steps back in time, at each
step breaking the final object into two pieces and choosing a value from the
distribution of equation (3.43) to determine the mass ratio of the two branches.

Unfortunately, this recursion has proven to be difficult in practice. Part of
the problem is conceptual: one might want to define “merger rates” by tak-
ing the limit of equation (3.43) as z2 → z1. However, one immediately finds
that the resulting rate is not symmetric in the Press-Schechter theory: the rate
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at which objects of mass M merge with objects of mass M ′ is not equal to the
rate at which objects of mass M ′ merge with objects of mass M ! The root of
the problem is that, even with the excursion set approach, the Press-Schechter
formalism does not divide dark matter particles into discrete objects; rather,
it simply computes the statistical properties of the ensemble. Unfortunately,
quantities like the merger rate implicitly assume that the objects do sit in dis-
crete objects and ignore smooth accretion of diffuse matter.N -body simulations
are the most reliable tool for following the merger statistics.

Nevertheless, we may use the distribution of the ensemble to derive some ap-
proximate analytic results that at least provide a helpful guide. A useful example
is the distribution of the epoch at which an object that has mass M2 at redshift
z2 has accumulated half its mass. The probability that the formation time is
earlier than z1 can be defined as the probability that at redshift z1 a progenitor
whose mass exceeds M2/2 exists:

P(zf > z1) =
∫ M2

M2/2

M2

M

dP

dM
(M, z1|M2, z2)dM, (3.45)

where dP/dM is given in equation (3.43). The factorM2/M corrects the count-
ing from mass weighting to number weighting; each halo of massM2 can have
only one progenitor of mass greater than M2/2. Differentiating equation (3.45)
with respect to time gives the distribution of formation times. Overall, the ex-
cursion set formalism provides a reasonable approximation to more exact nu-
merical simulations of halo assembly and merging histories.

3.4.3 Improvements to the Press-Schechter Formalism

The preceding simple ansatz was refined over the years to provide a better
match to numerical simulations. In particular, the Press-Schechter mass func-
tion substantially underestimates the abundance of rare massive halos (espe-
cially at high redshift) and overestimates the abundance of low-mass halos.

There are two key areas in which the Press-Schechter approach can clearly be
improved. The first is the mismatch in filter choice between the uncorrelated
random walks and the spherical collapse model. However, more self-consistent
ab initio approaches do not significantly improve the results, even at the cost of
substsantially increased complexity.

The second area is a refinement of the spherical collapse model itself: as
we will see in the next chapter, dark matter structures rarely collapse symmet-
rically, so it is possible to improve the threshold density δcrit(z) by including
a more accurate physical description. The best motivated such approach is to
allow ellipsoidal collapse, in which the three axes of the object collapse at differ-
ent times. The torques driving this collapse are set by the halo’s environment,
which depends on the halo mass itself (as will be shown in §3.5). This means
that the collapse threshold δST

crit is a function of not only redshift but also halo
mass, so the absorbing barrier in the diffusion problem is no longer a constant.
In particular, the threshold increases as halos get smaller: this increases the
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abundance of massive halos and decreases the abundance of small halos, just
as needed.

However, the match to numerical simulations is still not perfect, so it is now
most common to use a fit to these results; fortunately, detailed simulations
show that the resulting function can still nearly be phrased as a function of mc.
Fits of the form11

nST(M) = A′
√

2a′

π

ρm

M

−d(ln σ)
dM

mc

[
1 + 1

(a′m2
c)
q ′

]
e−a

′m2
c/2 , (3.46)

which is closely motivated by ellipsoidal collapse, perform reasonably well; this
is known as the Sheth-Tormen model. A reasonably good fit to simulations can be
obtained by setting a′ = 0.707 and q ′ = 0.3 and ensuring the proper normaliza-
tion by adoptingA′ = 0.322.12 The parameters here are motivated by ellipsoidal
collapse; however, the fit to numerical simulations can be improved by varying
them slightly or introducing refined functional forms. For example, at very high
redshifts, the form of equation (3.10) can overestimate the abundance of very
massive, rare halos by < 50%.13

However, recent refined numerical simulations show that even more com-
plex fits, in which the universal dependence on mc breaks slightly, are necessary
for high precision work, with the fitting parameters depending on redshift.14

The functions that best fit numerical simulations continue to evolve somewhat
as those simulations improve—especially because the high redshift case is rel-
atively unexplored thus far—so we will use the simple form of equation (3.46)
for the calculations in this book. Results for the associated comoving density of
halos of different masses at different redshifts are shown in Figure 3.10.

Figure 3.12 also shows fcoll, or the fraction of mass above a given threshold
(here shown as a function of Tvir). The solid curves take the improved mass
function in equation (3.46), while the dotted curves take the simpler (but less
accurate) form of equation (3.38). The three sets of curves show the fraction in
halos with Tvir > 103, 104, and 105 K. We will see later that the middle value
here corresponds to the threshold for efficient star formation before reioniza-
tion, while the last is approximately the threshold for star formation after reion-
ization. Note that in all cases, fcoll increases extremely rapidly at high redshifts,
since (at least at z > 10) all these halos are far out on the exponential tail of the
mass function. Also note that the simple Press-Schechter prescription tends to
underestimate the abundance of high-mass halos—and thus drastically under-
estimates fcoll when halos are rare—but slightly overestimates the abundance
of low-mass halos (visible in the Tvir > 103 K curves near z ∼ 5).

3.5 Halo Clustering in Linear Theory

To this point, we have computed the average abundance of halos throughout the
universe. But, of course, the universe is not perfectly smooth on larger scales,
and we naturally expect large-scale overdensities to have an overabundance of
halos relative to the average, and large-scale underdensities (or voids) to have
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Figure 3.12 The collapse fraction of dark matter halos at high redshifts. The solid curves
show fcoll computed from the mass function of equation (3.46), which is
motivated by ellipsoidal collapse with parameters determined by a fit to nu-
merical simulations. From top to bottom the three curves show the fraction
of mass in halos with Tvir > 103, 104, and 105 K. The dotted curves use the
original Press-Schechter form in equation (3.38).

a deficit. This clustering is an extremely important aspect of halos in the real
universe, especially at high redshift.

The excursion set formalism allows us to describe this clustering in detail, at
least to linear order.15. A large-scale overdensity corresponds to δb > 0 across
a large but finite mass Mb and behaves similarly to a region carved out from a
universe with a higher value of�m. We then imagine our halos (with massM <

Mb) forming out of this material. We can solve the related diffusion problem
just as for the conditional mass function simply by changing the origin of our
random walks from δ = 0 andM → ∞ (or σ 2 → 0) to δb atMb (the boundaries
of our region). The small head start these modified initial conditions provide
halos in overdense regions can be extremely important: recall that the density
distribution itself is Gaussian, so the abundance of rare halos is exponentially
sensitive to the underlying density (see Figure 3.13). We now wish to describe
this dependence, often called the “peak-background split,” quantitatively.

First, we should keep in mind that the Press-Schechter approach provides
the comoving number density of halos or the number density of halos per unit
mass rather than the more observationally relevant number per volume V . An
overdense region with density δb = (ρ/ρ̄ − 1) > 0 fills a smaller volume, by a
factor (1 − δb). Thus, we expect the measurable halo density to be larger even if
the total number of halos remains constant:

(
δn

n

)
halo

= V

V (1 − δb)
− 1 = δb. (3.47)



chapter3 August 29, 2012

NONLINEAR STRUCTURE AND HALO FORMATION 67

Collapse threshold
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Figure 3.13 Modulation of dark matter halos by the underlying density field. Here, a sin-
gle long-wavelength mode is shown for simplicity. The dashed horizontal
line represents the density threshold for collapse (as in the Press-Schechter
model); the large-scale mode does not reach the threshold anywhere. How-
ever (to linear order), the superposed small-scale modes evolve indepen-
dently of the amplitude of this large-scale field. Where the large-scale field
has a high overdensity, it is much easier for the small-scale modes to pass
the collapse threshold. We therefore expect dark matter halos to be highly
clustered inside large-scale overdense regions.

This is the same factor by which the dark matter density itself changes, so if
this were the only effect, the halos would be an unbiased tracer of mass.

Next, we solve the usual diffusion problem with our modified initial condi-
tions; for simplicity we will assume that Mb is sufficiently large to have
σ 2(Mb) � σ 2(M). As with the conditional mass function, the solution is iden-
tical with the usual form except that

δcrit → δcrit − δb or mc → (δcrit − δb)/σ (M). (3.48)

Note here that, as is conventional in the excursion set approach, we will ex-
trapolate δcrit at the redshift of interest to the present day by dividing by the
growth factor (recall that this makes σ 2 redshift independent). We must there-
fore also (linearly) extrapolate the background density to the present; this is
δ0
b = δb(z)/D(z).

We can therefore immediately write the halo abundance in the region. How-
ever, it is most useful to consider a small overdensity δ0

b � δcrit and Taylor
expand about the average result. Expanding in a Taylor series,

dn

dM
(δ0
b) ≈ dn

dM
+ dn

dM dmc

dmc

dδ0
b

δ0
b + ..., (3.49)

and using the original Press-Schechter mass function for simplicity, changes
the halo abundance by a factor of

δn

n

∣∣∣∣
PS

= m2
c − 1

σmc
δ0
b. (3.50)

Canceling the growth factors that appear in both mc and δ0
b , we obtain

δn

n

∣∣∣∣
PS

= m2
c − 1

δcrit(z = 0)
δb(z). (3.51)
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Combining this effect with the change in volume (equation 3.47), we find

dn

dM
(δb) = dn

dM
[1 + bPS(m)δb], (3.52)

where

bPS(M) = 1 + m2
c − 1

δcrit(z = 0)
. (3.53)

Obviously, because mc depends on mass implicitly through σ(M), the bias also
depends on the halo mass. Recalling that σ is a decreasing function of mass,
we see that bPS will increase with halo mass: the abundance of larger halos fluc-
tuates more than the abundance of small halos, because massive halos are on
the exponential tail of the density distribution, so that the small boost provided
by the overdense region has a large effect. Similarly, mc is an increasing func-
tion of redshift, so halos of a given mass become more biased earlier in cos-
mic history, when they are rarer. As a result, it is not simply the total abun-
dance of halos that changes with background density: the shape of the mass
function also changes, leaning more heavily toward massive halos in dense
environments.

We have evaluated the bias for the Press-Schechter mass function; one can
perform a similar exercise with the more accurate mass functions described in
§3.4.3. For example, the mass function of equation (3.46) yields

bST(M) = 1 + a′m2
c − 1

δcrit(z = 0)
+ 2q ′/δcrit(z = 0)

1 + (a′m2
c)
q ′ . (3.54)

This result has the same qualitative trends as the earlier expression, although
massive halos tend to be somewhat less clustered and small halos somewhat
more. Figure 3.14 shows the bias for this model over the same mass and red-
shift ranges as in Figure 3.10. Note that galaxy-mass halos (M > 108 M�) can
be quite highly biased during the era of the first galaxies, while very small halos
are “antibiased” (bST < 1) at late times. These halos tend to form in underdense
regions, because those in overdense regions have already been swallowed by
larger halos. In other words, we see that massive, rare halos tend to live in over-
dense regions, with many neighbors, while halos below a characteristic mass
scale tend to form in isolation. This in turns means that, on average, massive
halos grow rapidly by merging with their many neighbors, while low-mass ha-
los will grow more sedately.

3.6 The Nonlinear Power Spectra of Dark Matter and Galaxies

3.6.1 The Halo Model

We have now assembled several powerful ingredients to describe the distribu-
tion of matter in the Universe: (i) the mean abundance of halos as a function of
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Figure 3.14 The linear bias of halos as a function ofM at different redshifts z according
to the Sheth-Tormen model (equations 3.46 and 3.54).

mass and redshift; (ii) the clustering of these halos; and (iii) the radial structure
of these halos (the NFW or Einasto profiles). The first two of these ingredients
are constructed from linear theory; the third is taken from numerical simula-
tions but is remarkably simple. We can now gather these tools into a first stab
at computing the statistical distribution of matter even in the nonlinear regime
through a powerful approach known as the halo model. 16

The idea is to construct the power spectrum (or, alternatively, the correlation
function) of dark matter by conceptually dividing all the matter in the Uni-
verse into halos of some—often very small—mass.v Because the “universal”
halo profile describes the structure of each of these halos, and the excursion set
formalism describes their abundance and statistical distribution, we can use
this picture to compute the correlations between any two dark matter particles
(see Figure 3.15).

In the following we use the simpler NFW halo form for concreteness, but
the improved Einasto profile is qualitatively similar (the difference is important
only on very small scales; see Figure 3.8). We first write the NFW profile for a
halo of virial mass M in the simplified form

ρ(r|m) = ρs

(r/rs)(1 + r/rs)2
, (3.55)

for r < rvir and zero otherwise, wherem labels the mass of the appropriate halo,
and rs = rvir/cN. We define a normalized density profile u = ρ/M , so that the
integral over all space is unity. To compute the power spectrum we will work in

vThis follows naturally in the excursion set formalism, where any trajectory must eventually exceed
an arbitrary threshold δcrit if σ 2 → ∞ for M → 0 in an arbitrary cold dark matter model.
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δ
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Two-halo term

One-halo term

Figure 3.15 Cartoon of the halo model for the cosmic density field. The model splits the
dark matter field into gravitationally bound halos (gray circles) with a range
of masses. Each of these follows a well-defined density structure, so one can
reconstruct the density field purely from the locations of the halos (bottom
plot). Correlations among the dark matter particles may then be quantified
in two steps: the one-halo term describes correlations among particles in
a single halo, while the two-halo term describes correlations among dark
matter particles in separate halos.

Fourier space; the Fourier transform of u(r|m) is

u(k|m)= 4πρsr3
s

m

{
sin(krs) [Si([1 + cN]krs)− Si(krs)]

− sin(cNkrs)

(1 + cN)krs
+ cos(krs)[Ci([1 + cN]krs)− Ci(krs)]

}
, (3.56)

where

Si(x)=
∫ x

0

sin t

t
dt, (3.57)

Ci(x)= −
∫ ∞

x

cos t

t
dt. (3.58)

This is a rather unwieldy expression but can easily be computed numerically. To
gain further insight, it is often useful to consider halos with Gaussian density
profiles and width rs ; then,

ug(k|m) = exp[−(krs)2/2]. (3.59)

This value is near unity for k � 1/rs before falling off at larger wavenumbers;
the shape of any realistic density profile is qualitatively similar. Figure 3.16
shows these halo profiles (both in the NFW and Gaussian forms) for a range of
halo masses at z = 6. Note that u is flat for k < r−1

vir in both cases and then falls
off steeply. The rate of decline depends on the halo structure and is somewhat
gentler with the power-law density profile of the NFW model (the oscillations
are due to the finite size of the halo). Note that the concentration of the larger
halos is near unity, so rs ≈ rvir; it is ∼7 for the smallest halo.
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Figure 3.16 Fourier transforms of the normalized halo density profiles for a series of
halos at z = 6. The solid lines show the profiles for halos following the
NFW form and m = 106, 107 108, 109, and 1010 M�, from right to left
(equation 3.56). The dotted lines show the Gaussian profiles of equation
(3.59), with the same value of rs .

Given our assumption that every dark matter particle lies within a halo, we
can construct the total density field by simply summing the profiles of all the
halos:

ρ(x)=
∑
i

ρ(x − xi |mi) (3.60)

=
∑
i

miu(x − xi |mi) (3.61)

=
∑
i

∫
dm

∫
d3x ′δ(m−mi)δ(x′ − xi )mu(x − x′|m), (3.62)

where i labels the different halos. In the last line, the integrals over mass and
space simply fix the coordinates and mass of the halo described by u.

Now, note the useful identity

〈∑
i

δ(m−mi)δ(x′ − xi )

〉
= n(m). (3.63)

This identity arises because the Dirac delta functions in each volume appear a
number of times equal to the number of halos (at each mass) per unit volume.
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Thus, the mean density is

ρ̄=
∫
dm

∫
d3x ′

〈∑
i

δ(m−mi)δ(x′ − xi )

〉
mu(x − x′|m) (3.64)

=
∫
dmmn(m). (3.65)

This result is then just the number density of halos multiplied by their mass:
recall that we assume that all dark matter particles are bound into halos of one
mass or another.

3.6.2 The Correlation Function

Next, let us use the same approach to calculate the second moment of the mass
distribution, the correlation function, ξ(x − x′) = 〈

δ(x)δ(x′)
〉
. Here we have two

integrals over space; the spatial average will act on〈∑
i,j

δ(m1 −mi)δ(x1 − xi )δ(m2 −mj)δ(x2 − xj )

〉
, (3.66)

where i and j label the halo sums at the two spatial points. Although analogous
to the average in ρ̄, this expression is much more complicated, and to evaluate
it we must split it into two components, motivated by our picture showing all
particles sitting inside halos (see Figure 3.15). In that model, the two particles
whose correlation we seek can have two qualitatively different configurations.
First, they can sit inside the same halo (so that the indices are the same, i = j ),
in which case the halo density profile uniquely fixes their correlation strength.
Here we are summing twice over the same halo, so this part of the average is

n(m)δ(m1 −m2)δ(x1 − x2) (3.67)

In the double integral, we therefore have∫
dmm2n(m)

∫
d3x1

∫
d3x2 δ(x1 − x2)u(x − x1|m)u(x′ − x2|m)

=
∫
dmm2n(m)

∫
d3x1u(x − x1|m)u(x′ − x1|m)

=
∫
dmm2n(m)

∫
d3yu(y|m)u(y + x′ − x|m) ≡ ρ̄2ξ1h(x − x′), (3.68)

where in the last line we let y = x − x1 and defined the one-halo correlation
function ξ1h. We see that this term is the convolution of two density profiles,
weighted by the square of halo mass, which is just the integral over all pairs of
particles within the halos.

The second possibility is that the two particles lie in separate halos; this case
corresponds to the off-diagonal i �= j part of the double sum. The spatial aver-
age compares the locations of two halos of known separation, and it becomes

n(m1)n(m2)[1 + ξhh(x1 − x2|m1,m2)] (3.69)
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where ξhh measures the correlations between the halos themselves. Fortunately,
we can easily compute this value, at least when linear theory applies: we know
the linear dark matter power spectrum and hence correlation function ξ(r), and
we know from §3.5 how the halo number densities reflect the underlying dark
matter density. Therefore,

ξhh(x − x′|m1,m2) = b(m1)b(m2)ξlin(x − x′). (3.70)

Note, however, that although equation (3.69) is general, equation (3.70) as-
sumes that fluctuations in the halo distribution remain linear. This is not nec-
essarily the case at high redshifts: even though the dark matter density fluctu-
ations are very small, the halos can be so biased that the halo fluctuations are
nonlinear (see Figure 3.14). One must be cautious with using linear theory in
this regime.

In any case, these off-diagonal terms become∫
dm1m1n(m1)

∫
dm2m2n(m2)

∫
d3x1

∫
d3x2 u(x − x1|m1)u(x′ − x2|m2)

×[1 + ξhh(x1 − x2|m1,m2)]
≡ ρ̄2[1 + ξ2h(x − x′)], (3.71)

where the two-halo correlation function ξ2h describes correlations between parti-
cles in different halos. For some physical insight, suppose that halos are sharply
peaked compared with the separation of interest, or |x − x′| � rvir. Then, we
can approximate the profiles as delta functions, and the integrals over x are
easy. We therefore obtain (in the linear regime of equation 3.70)

ξ2h(x − x′) ≈ ξ(x − x′)
∫
dm1

m1

ρ̄
b(m1)n(m1)

∫
dm2

m2

ρ̄
b(m2)n(m2). (3.72)

This is just the normal dark matter correlation function ξ , weighted by the
mass-averaged bias squared of all halos.

To compute this average, it is simplest to transform the integration variable
to mc:∫

dm
m

ρ̄

[
1 + m2

c − 1

δcrit(z = 0)

]
n(m)= 1 +

∫
dm

m

ρ̄

[
m2
c − 1

δcrit(z = 0)

]
n(m) (3.73)

= 1 +
√

2

π

∫
dmc

[
m2
c − 1

δcrit(z = 0)

]
e−m2/2 (3.74)

= 1, (3.75)

where in the second line we used mn(m)dm = ρ̄
√

2/πe−m2/2 dm. In hindsight,
this result is obvious: because all dark matter particles are in one halo or an-
other, the net bias of the halo population relative to the dark matter must be
unity!

Finally, combining the diagonal and off-diagonal terms, we obtain the total
nonlinear correlation function:

ξ(x − x′) = ξ1h(x − x′)+ ξ2h(x − x′). (3.76)
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Again, this form has a simple physical interpretation: the net result is the sum
of correlations of particles within halos and those between halos. The relative
importance of the two terms depends on the separation: when |x−x′| � rvir, the
particles sit inside a single halo, so ξ1h dominates; on much larger scales, ξ2h is
more important. On sufficiently large scales for linear theory to apply, the latter
is very easy to compute in terms of the linear theory dark matter correlation
function.

3.6.3 The Power Spectrum

To obtain the power spectrum, we simply take the Fourier transform of ξ . Be-
cause that is a linear operation, we again obtain separate one-halo and two-halo
terms, with a total power spectrum

P(k) = P1h(k)+ P2h(k). (3.77)

The one-halo term is straightforward, since it is a simple convolution:

P1h(k) =
∫
dm

m2n(m)

ρ̄2
|u(k|m)|2. (3.78)

The two-halo term is not so trivial. For simplicity, we focus on the linear
case in which equation (3.70) applies. First, note that it is a function only of the
separation, so we let x = 0 and write (suppressing the integrals over mass and
bias for now)

ξ2h(r)∝
∫
d3x1

∫
d3x2u(−x1|m1)u(r − x2|m2)ξlin(r) (3.79)

=
∫

d3k1

(2π)3
u(k1|m1)

∫
d3k2

(2π)3
u(k2|m2)

∫
d3k3

(2π)3
Plin(k3)e

ik2·r

×
∫
d3x1e

ix1·(k1+k3)

∫
d3x2e

−ix2·(k2+k3) (3.80)

=
∫

d3k3

(2π)3
u(−k3|m1)u(−k3|m2)Plin(k3)e

−ik3·r. (3.81)

In the second line, we took the Fourier transform of each piece and collected
exponentials, and in the last line we note that the integrals over eix·k are Dirac
delta functions (multiplied by [2π ]3). Inserting the mass integrals again, we
have

P2h(k) = Plin(k)

[∫
dm

m

ρ̄
b(m)n(m)u(k|m)

]2

, (3.82)

where Plin(k) is the linear theory power spectrum. Of course, when ξhh cannot
be written simply according to equation (3.70), the expression for P2h is more
complex, although the general form of equation (3.77) still applies.
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Figure 3.17 Dark matter density power spectrum predictions over a range of redshifts
in the context of the halo model. The solid curves show the halo model
prediction including only linear bias, while the dashed curves show the cor-
responding linear theory predictions. For the z = 6 curves, we also show
separately the one-halo and two-halo terms with the dotted curves; these
dominate at large and at small k, respectively.

Let us pause to summarize what we have accomplished. We began with the
linear theory predictions for halo abundances and clustering. Adding the den-
sity profile of each halo (chosen with reference to numerical simulations) to the
halo model ansatz allowed us to compute the nonlinear power spectrum of dark
matter from these linear theory predictions.

Figure 3.17 shows the resulting power spectra predictions at a range of red-
shifts as well as a comparison with the underlying Plin(k), including the linear
bias approximation. Not surprisingly, on sufficiently large scales the halo model
prediction matches Plin(k) precisely; on scales much larger than the halo size,
u(k|m) → 1. The factor in brackets in equation (3.82) then becomes the mass-
averaged bias, which is just unity, and so P2h ≈ Plin. Meanwhile, on these scales
P1h ≈ constant is small.vi At large k, the one-halo term—which describes the
structures within each halo—dominates; it becomes more and more important
as halos grow over time.

Unfortunately, in comparison with detailed numerical simulations at z > 6,
the halo model prediction is not particularly accurate on the “crossover” scales
between the one-halo and two-halo terms at high redshifts; the assumption of
linear bias breaks down in this regime. Although the dark matter fluctuations
themselves are small at z > 6 (see Figure 2.4), massive halos are very highly
biased (Figure 3.14). For example, at z = 10 the typical (linear theory) density

viNote that this is not universally true: in some applications of the galaxy power spectrum (see
§3.64), the constant value of P1h may not be small when the objects of interest are very rare.
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Figure 3.18 Average effective bias for halos with M > 2 × 109 M� as a function of
comoving spatial scale, estimated by comparing the nonlinear and linear
power spectra via b2

eff(k) = P(k)/Plin(k), where the “shot noise” term has
already been subtracted to obtain the clustering-driven component of the
power spectrum P(k). The three different curves vary the redshift of the
bias measurement. Fernandez, E. et al., Astrophys. J. 710, 1089 (2010). Re-
produced by permission of the AAS.

fluctuation on a comoving scale of 2π/k ∼ 1 Mpc is σ ∼ 0.3. But halos with
M > 108 M� have bST > 3, so their fluctuations are nonlinear. Although such
halos contain only a small fraction of the mass, their nonlinear clustering is
responsible for most of the structure at moderate to small scales.

One way to account for these nonlinear effects is to continue the expansion
of equation (3.49) to higher order in δb. However, that result is not easily in-
corporated into the halo model and the expansion becomes unwieldy
once bσ ∼ 1.

A more empirical approach is to allow for an “effective” scale-dependent
bias beff(k|m), which can be measured by comparison with numerical simula-
tions. This function approaches the standard linear bias at small k but increases
monotonically toward large k to reflect the nonlinear clustering of nearby halos.
Figure 3.18 illustrates this approach from one numerical simulation of high-
redshift structure formation. The curves show the average effective bias for ha-
los withM > 2 × 109 M� as a function of spatial scale, estimated by comparing
the nonlinear and linear power spectra via b2

eff(k) = P(k)/Plin(k). Note how
they approach constant values (corresponding to the linear theory estimate) at
k < 0.1 Mpc−1 but then increase rapidly toward smaller scales. Comparison
with Figure 3.16 shows that these scales are still much larger than the halos
themselves: the culprit is the nonlinear clustering of these very massive halos.
In practice, the effect on the total matter power spectrum is smaller, because
these halos are so unusual.
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3.6.4 The Galaxy Power Spectrum

The halo model approach is most often used to compute the power spectrum
of galaxies (or, more specifically, subsets of galaxies that match an observable
sample). Here we usually consider each galaxy to be a marker or signpost: we do
not care whether the galaxy is large or small, just that it belongs to our statistical
sample.vii

This condition necessitates just a few simple modifications to the preceding
formalism. For example, the two-halo term (equation 3.82) has a factor of m
inside each integral. This factor effectively counts the number of dark matter
particles inside each halo (since each has an identical mass). Instead of count-
ing pairs of particles, we care only about pairs of galaxies,

P
gal
2h (k) = Plin(k)

[∫
dm

〈N |m〉
n̄gal

n(m)beff(k|m)ugal(k|m)
]2

, (3.83)

where 〈N |m〉 is the mean number of galaxies in a dark matter halo of mass m,
and we have included the nonlinear bias correction beff. We have also added
two other small adjustments: we normalized to the average number density of
galaxies in the sample, n̄gal, rather than ρ̄, and we included the profile of galaxies
within the halo, ugal, rather than the dark matter density profile u. In the limit
in which linear theory is a good approximation, and on large scales krs � 1,

this expression is P gal
2h ≈ 〈b〉2

n Plin, where 〈b〉n is the bias averaged by number
of galaxies (rather than mass, as in equation 3.82), because we are considering
each galaxy as a single marker, regardless of its mass.

Similarly, the one-halo term has a factor of m2 reflecting the weighting of
pairs of particles within that halo. We need only to change that expression to

P
gal
1h (k) =

∫
dmn(m)

〈N(N − 1)|m〉
n̄2

gal

|ugal(k|m)|, (3.84)

where 〈N(N − 1)|m〉 counts pairs of galaxies.
Clearly, to compute the properties of a given sample we need an additional

function that relates galaxies to dark matter halos. This halo occupation distrib-
ution can involve a great deal of the physics of galaxy formation, which we will
discuss in later chapters. However, the basic principles are relatively simple; it
is the application to real surveys that involves the subtleties. First, let us assume
that each halo can have two types of galaxies: a “central” galaxy and satellites.
The former typically exists if the halo exceeds some minimum mass threshold
Mmin (for example, the Jeans mass that we have already discussed, or the cool-
ing mass that we will consider later); we can think of it as the halo’s “initial”
galaxy, tracing its history along the largest branch at each merger.

Satellites constitute the remaining population: they live inside “subhalos”
that have not yet merged completely with the primary halo. Numerical simu-
lations at low redshifts show that subhalos typically appear above some other

viiThis is not a necessary condition of course: one could easily compute clustering statistics weighted
by galaxy luminosity, for example. That is done in many applications where the galaxies are not
resolved; see §13.2 for an example.
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minimum mass Msat > Mmin, and their number Ns increases roughly propor-
tionally to the halo mass.17

However, at high redshifts satellites are much less common: halos simply
are not big enough to contain a substantial number of subgalaxies, and halos
are sufficiently small that even those with two merging galaxies may appear as
a single irregular source in a real survey. Thus, at high redshifts it often suffices
to take 〈N |m〉 = 1 if m > Mmin, and zero otherwise.

It is somewhat more difficult to compute the one-halo term. At low redshifts,
the number of satellites is found to be roughly a Poisson variable (which is rea-
sonable, since merging is a somewhat stochastic process), so that 〈Ns(Ns − 1)〉
= 〈Ns〉2. Including the central galaxy as an additional component implies that
〈N(N − 1)〉 = 〈N〉2 −1, which is sub-Poisson at the low-mass end. In the high-
redshift limit, where satellites are unimportant, the one-halo term in the galaxy
power spectrum disappears, because there is only one galaxy per halo and hence
no correlations.

In addition to these terms, which arise because galaxies trace the density
field, we must also add in stochastic “shot-noise” fluctuations arising from the
discrete nature of galaxies: any such measurement is fundamentally a counting
exercise, so we expect Poisson errors in the galaxy number counts to provide
an additional source of fluctuations. In a volume V , the variance in the galaxy
number counts is therefore ∼n̄galV , so the fractional density fluctuation in a
mode with wavenumber k will be 
2

shot ∼ 1/n̄galV ∼ k3/n̄gal. A more precise
derivation (see §10.4.1) shows Pshot(k) = 1/n̄gal, or


2
shot = k3

2π2n̄gal
. (3.85)

This noise term contains no useful physics and must be removed from an ob-
served power spectrum to study the interesting physical component tracing the
underlying density field. Fortunately, that is usually easy, so long as one has a
reasonable estimate for the sample’s true number density (i.e., n̄galVsurvey � 1).

3.7 Numerical Simulations of Structure Formation

Although the analytic models we have discussed in this chapter are useful, they
inevitably fall short of a complete description of the structure and dynamics of
dark matter and baryons in an expanding Universe. Each dark matter particle
responds to the gravitational force from every other particle within its causal
horizon, and the baryons are also affected by their gas pressure gradient (and
interaction with photons). A comprehensive description of this problem is far
beyond the capabilities of any analytic model.

Fortunately, the rapid increase in computing power over the past several
decades has enabled numerical calculations to address this challenge. Comput-
ers are particularly well suited to this endeavor, because they can easily calculate
the simple physical interactions between many particles. Although following
the behavior of individual dark matter particles is still not feasible, numerical
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simulations can now (as of 2012) follow the dynamics of ∼1010 particles over
long periods of cosmic history. The fundamental idea behind cosmological nu-
merical simulations is to discretize the density field ρ(x) into a large number of
particles or grid cells and follow their evolution, incorporating as many physical
processes (preferably from first principles) as possible. Such simulations allow
detailed comparisons of theoretical predictions with observations as well as the
study of “emergent phenomena” that depend on the interaction of many physi-
cal inputs and so cannot easily be predicted from analytic models. Nevertheless,
one must always bear in mind that a numerical simulation is ultimately no bet-
ter than the physics underlying its component algorithms, and it is crucial to
understand those inputs in assessing the the reliability of linking simulation
results to observables in the sky.

Numerical simulations have been instrumental in elucidating large-scale
structure, the Lyman-α forest, the formation of the first stars, and a number
of other topics that we will discuss. In the remainder of this section, we briefly
discuss their most important features and limitations. However, we defer dis-
cussion of computational radiative transfer to section 9.6 and focus here on
gravitational and gas dynamics.

3.7.1 Gravitational Dynamics: N -Body Codes

The simplest problem is to follow the gravitational interactions of cold collision-
less particles in an expanding Universe. If we have a collection of N particles
with particle massm, each labeled by index i and a comoving position and pecu-
liar velocity (xi , ui ), this problem amounts to solving the equations of motion
(cf. equations 2.2–2.3)

dxi
dt

= ui (3.86)

dui
dt

+ 2H(t)ui = −a−2∇φ, (3.87)

where the gravitational potential is determined by the Poisson equation (2.4).
To solve this problem, we discretize time into a sequence tn and assume that
we know the initial values [xi (t1), ui (t1)] for all particles. Then, we can solve
the future configuration by numerically integrating the preceding system of
equations.

The key point is to determine the force on each particle by choosing an in-
tegration scheme that is both stable and resistant to secular numerical errors.
The simplest such scheme is known as a leapfrog approach, because it uses two
different sets of discretized times for the input quantities. For example, sup-
pose we know the position at a time tn and wish to know it after a single time
step, at tn+1 = tn + 
t . As an intermediate step, we compute the position and
acceleration ai of particle i at tn+1/2 = tn +
t/2:

xi (tn+1/2)= xi (tn)+ ui (tn)
t/2, (3.88)

ai (tn+1/2)= a[xi (tn+1/2), tn+1/2], (3.89)
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where the acceleration at the intermediate time depends on the predicted lo-
cation of the particle at that time as well as on the locations of all the other
particles. We can then compute the new position and velocity at the final time
tn+1 using the acceleration at the intermediate time,

ui (tn+1)= ui (tn)+ ai (tn+1/2)
t, (3.90)

xi (tn+1)= xi (tn)+ [ui (tn)+ ui (tn+1)]
t/2. (3.91)

This approach is superior to Eulerian integration schemes because, by
evaluating the acceleration at the midpoint of the time step, it improves time-
reversibility and better preserves the phase space properties of the particle or-
bits.

This scheme requires computing

−∇φ(xi ) = −Gm
∑
j �=i

xi − xj
|xi − xj |3 (3.92)

at the location each particle. However, the computational time required to cal-
culate all these forces scales as N2 and is prohibitive even for modest-sized
systems. Modern codes use one or more tricks to simplify the calculation. The
most straightforward is a tree algorithm, which groups distant particles into sets
(with the group size generally increasing for more distant particles). The gravi-
tational force from each group can then be estimated using a multipole expan-
sion. Grouping algorithms can speed up the calculation to scale with particle
number as N logN .

A second trick is to use a Fast Fourier Transform (FFT) algorithm to com-
pute the force on a grid, a technique known as a particle-mesh (PM) algorithm.
In this approach, the particle-mass distribution is smoothed and mapped onto
a uniform mesh. Poisson’s equation can then be solved rapidly via an FFT, pro-
vided the computational box is assumed to have periodic boundary conditions.
The force at each grid point follows via an inverse Fourier transform. Finally,
the force at each particle location is computed via interpolation. This approach
scales linearly with particle number, but the practical limit is often dictated by
computer memory, since the mesh resolution ultimately determines the force
accuracy. This approach does not, however, deal with highly clustered particles
very well. A commonly used compromise, called P 3M , adopts direct summa-
tion at small separations and a series of adaptive grids on larger scales.

There are three effective resolution limits on N -body codes. The first is the
particle mass m, which obviously determines the smallest object that can be
followed. Typically, >103 particles are required to estimate the density profile
of a virialized halo reliably, and many orders of magnitude more are required
to resolve its substructure in detail.

A second limit emerges from the discretization of the density field: the point-
mass force calculation in equation (3.92) causes large artificial deflections when
particles pass very close to one another. This is unphysical because the mate-
rial should actually be distributed over larger volumes, which dramatically re-
duces the peak force. To alleviate this problem, codes introduce a force-softening
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parameter such that the force scales as 1/(r2 + ε2
F ), which limits the maximum

resolvable density contrast to (�̄/εF )3, where �̄ is the mean particle spacing.
Most modern codes take �̄/εF ∼ 20–50. For PM codes, the force limit is roughly
twice the grid spacing, because it depends on the gradient of the potential across
that grid.

The final limit comes from the requirement that the numerical integration
over time remain stable. Crudely, this requires that the time steps be sufficiently
close so that the first-order approximations intrinsic to the integration converge.
Equivalently, the series (cf. equations 3.90 and 3.91)

x(ti+1) = x(ti)+ u(ti)
t + 1

2
a(ti +
t/2)
t2 + ... (3.93)

must converge rapidly. Here the force per unit mass is typically evaluated at the
midpoint of the particle’s trajectory to improve stability and convergence. The
ratio of these terms suggests


t = εt
σ

|a| , (3.94)

where εt < 1 is an imposed tolerance parameter, and σ is the typical velocity
dispersion of the particles in the simulation. This modification is known as the
Courant-Friedrichs-Lewy condition (often referred to as the Courant condition).

3.7.2 Hydrodynamics: Grid-Based Approaches

Extending the calculation beyond dark matter significantly increases its com-
plexity, because the trajectories of baryons are shaped by hydrodynamic forces
in addition to gravity. In particular, converging gas flows can lead to the develop-
ment of sharp discontinuities (shock fronts) whose accurate treatment requires
high spatial resolution. The complete fluid equations can be written (in proper
coordinates) as

∂ρ

∂t
+ ∇ · (ρv)= 0, (3.95)

∂v
∂t

+ (v · ∇)v = −∇φ − 1

ρ
∇p, (3.96)

∂ε

∂t
+ v · ∇ε= −p

ρ
∇ · v + (H−�)

ρ
. (3.97)

These represent the conservation of mass, momentum, and specific energy (per
unit mass) ε, respectively. In the last equation, H and � are the radiative heat-
ing and cooling rates per unit volume, respectively, and we have ignored any
other internal heating mechanisms. Alternatively, the energy equation can be
replaced with an equation for the entropy per unit mass s,

ρT

(
∂s

∂t
+ v · ∇s

)
= (H−�). (3.98)

We have written these equations in an Eulerian form, in which the spatial co-
ordinate system is fixed. An alternative is a Lagrangian approach, in which the
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Figure 3.19 Numerical methods for solving hydrodynamics. At left, we show a grid-
based algorithm, where the continuous fluid quantities are discretized on
a grid, and the equations are solved along the grid faces. Mass flows are
described by exchanging material between the cells. Resolution is often in-
creased through adaptive mesh refinement, where a new grid is spawned once
certain criteria are reached (most commonly, a density or time-step crite-
rion). At right, we illustrate smoothed-particle hydrodynamics, in which the
matter field is discretized into a set of particles that can flow freely through
the simulation volume. Each particle corresponds to a fixed mass, distrib-
uted according to a smoothing kernel illustrated at bottom. Mass flows by
moving the particles around.

coordinates move with the fluid elements. In this case, the appropriate deriva-
tive is the convective derivative,

D

Dt
≡ ∂

∂t
+ v · ∇, (3.99)

so that, for example, equation (3.96) simplifies to

Dv
Dt

= −∇φ − 1

ρ
∇p. (3.100)

There are two common approaches to solving this system of equations; both
are illustrated in Figure 3.19. The first is to divide space into a uniform grid and
to solve the hydrodynamic equations for cell-averaged quantities at each grid
point. This Eulerian scheme is attractive because the mass, momentum, and
energy components of the fluid equations can all be cast as flux conservation
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laws
∂q

∂t
+ ∇ · F = 0, (3.101)

where q is the (cell-averaged) density ρ, momentum density ρux,y,z , or total
energy density ρ(ε + u2/2), and F represents the flux of this conserved density
across the cell boundaries. This formulation lends itself naturally to grid-based
methods: it means that to track the evolution of q at a particular location we
need keep track only of the flux F through each of the cell boundaries. Labeling
cells by an index k and assuming they are 
� across, we have

qk(t +
t) = qk(t)+ 
t


x

3∑
j=1

[Fj+(t)− Fj−(t)], (3.102)

where the indices j label the three axes of the cells, and Fj+ represents the flux
along the j direction between the cell of interest and the next cell in the posi-
tive j th direction (and Fj− the flux in the negative j th direction). Formulating
the fluid equations in this way has one important advantage over the usual dif-
ferential forms written earlier: when fluids develop sharp discontinuities, like
shocks, the latter break down in any scheme with finite resolution. However,
the integral forms like equation (3.101), which in the case of shocks are known
as the Rankine-Hugoniot jump conditions, properly conserve the fluid quantities
even if the detailed structures remain unresolved.

The subtlety in grid-based methods lay in ensuring numerical stability for the
solutions. For example, the most naive approach to estimating a fluid variable
Q at a cell interface is simply to take the midpoint of the cell-averaged quantities
in the neighboring cell (e.g., Qk+ = [Qk+1 +Qk]/2). However, this simple ap-
proach is in fact unstable, and more sophisticated algorithms are required. One
common strategy is to approximate the calculation as a Riemann problem (also
known as a shock tube), in which a fluid quantity is constant over two regions
with a discontinuity between them. Provided the system obeys conservation
laws of the form in equation (3.101), Riemann problems can be solved exactly
in terms of characteristics that propagate at known speeds in either direction;
this exact solution can then be leveraged to calculate the evolution efficiently
in more realistic circumstances. (For example, an initially uniform gas with a
sharp edge adjacent to vacuum would flow into the vacuum at the sound speed,
while a rarefaction wave would travel in the opposite direction through the gas,
also at the sound speed.)

One popular technique for leveraging the Riemann problem is known as
Godunov’s scheme. One approximates each cell as a uniform medium at its av-
erage value and then solves the Riemann problem at each of its interfaces. The
resulting waves can then be propagated into the cell and its new properties cal-
culated at a later time. To avoid collisions and interactions between the waves,
the time step must be limited by


t = εgrid
(
x/2)

cs
, (3.103)

where cs is the sound speed, and εgrid is a dimensionless constant.
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Another example is the piecewise parabolic method (PPM), which uses a par-
abolic function to interpolate a fluid variable across a cell and its immediate
neighbors (it is thus a third-order extension of the basic Godunov method).
The algorithm is constructed so as to mimic the propagation of nonlinear waves
in the fluid system and to accurately capture shocks. Unfortunately,
interpolation can also induce spurious oscillations when the fluid quantities
change rapidly (as they do, for example, in shocks). These, too, can make the
solutions unstable. One can therefore introduce a numerical dissipation
scheme to damp these fluctuations or, alternatively, enforce a flux (or
slope) limiter that forces spatial derivatives to remain within reasonable
bounds.

The disadvantage of grid-based approaches is that the grid resolution must be
uniform, whereas the desired resolution may vary across the simulation
volume—for example, the relevant spatial scales are much smaller near a col-
lapsed dark matter halo than in a large void. Thus, one “wastes” computational
resources in some regions. A common solution to this problem is adaptive mesh
refinement (AMR), in which finer grids are introduced as necessary to cover par-
ticular subvolumes of the computation.

The fundamental idea of AMR is to demand that the local grid spacing adjust
“on the fly” to the physical conditions within the fluid. For example, if a dark
matter halo collapses to high density and accretes baryons, the physical resolu-
tion must increase to follow the flow. Meanwhile, the time step required with a
smaller grid will shrink dramatically according to equation (3.103). AMR codes
spawn smaller meshes that are stepped at higher rates, while the background
grid continues its slow evolution in low-density regions. While AMR does al-
low a dramatic increase in the dynamic range of grid-based calculations, the
spawning of grids is an imperfect process that leads to some subtle numerical
problems when the resolution increases discontinuously, for example in pop-
ulating the initial conditions of small-scale modes originally absent from the
parent grid.

Although AMR solves the most glaring problem with grid-based approaches
in astrophysics, these codes suffer from some other important shortcomings.
Foremost among them is the violation of Galilean invariance inherent in such
methods (i.e., the results of the calculation depend on the reference frame):
because the advection terms in equations (3.95)–(3.97) are modeled explicitly,
they inevitably contain numerical errors that depend on the magnitude of the
bulk velocity relative to the velocity dispersion (which can be large—for exam-
ple, galaxies merge at velocities comparable to or greater than their own velocity
dispersions). This creates numerical viscosity and diffusion that violate Galilean
invariance. Without large physical transport coefficients, these numerical arti-
facts are in fact the leading order terms, so even the qualitative solutions may
be questionable under some circumstances. In general, some amount of dissi-
pation is helpful, but limited resolution or high-bulk velocities will cause over-
mixing. Similar artifacts also appear whenever the bulk velocity is much larger
than the thermal velocities; these can be remedied (but not entirely removed)
with a careful choice of the reference frame.
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3.7.3 Hydrodynamics: Particle-Based Methods

The alternative to grid-based approaches, smoothed-particle hydrodynamics
(SPH), discretizes the fluid field and implicitly adapts the resolution to the lo-
cal fluid properties (see Figure 3.19). SPH is more naturally suited to problems
with a high dynamic range of density, but it also faces its own set of challenges.

SPH methods formally aim to recover a smoothed version Qs of a fluid field
Q (such as density or temperature),

Qs(r) ≡
∫
d3r′Q(r)W(r − r′, h), (3.104)

where W(r, h) is a smoothing kernel, and h describes its characteristic width.
Most commonly, this kernel has a cubic spline form with W(r, h) = w(r/2h)
and

w(x) = 8

π




1 − 6x2 + 6x3, 0 ≤ x ≤ 1/2,

2(1 − x)3, 1/2 ≤ x ≤ 1,

0, 1 < x.

(3.105)

Note that each particle therefore has a finite “radius” 2h in this scheme.
Now, suppose that we know the fluid properties at a set of points ri . We as-

sociate particles with each of these points and assign mass mi so as to conserve
the total mass in the field and densities ρi such that the volume between the
particles is ∼mi/ρi . We can then estimate the smoothed field Qs by summing
over these particles, so that equation (3.104) becomes

Qs(r) ≈
∑
k

mk

ρk
Q(rk)W(r − rk, h). (3.106)

This sum is accurate so long as the kernel width h exceeds the (local) particle
spacing. More precisely, one can set the density of particle i asviii

ρi =
Nngb∑
k=1

mkW(ri − rk, hi), (3.107)

where hi is set so as to ensure that each particle has a fixed “mass” ρih3
i =

constant. This condition ensures that the number of neighbors Nngb within its
kernel is also nearly constant. This is the key advantage of SPH approaches: they
can automatically adjust the degree of smoothing to the density of particles,
focusing the “high-resolution” part of the calculation in volumes where it is
most needed.

Equation (3.106) is generally taken as the SPH estimate for any fluid field.
The derivatives of such a field can then easily be calculated (as they require only
the derivatives of the kernel W ), and from them one can construct discretized
versions of the fluid equations. For example, equation (3.96) becomes

Dvi
Dt

= −∇φ −
Nngb∑
k=1

mk

(
pi

ρ2
i

+ pk

ρ2
k

)
∇iW(ri − rk, h), (3.108)

viiiNote that we choose one scheme here for concreteness, but others are sometimes used as well.
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where ∇i is the gradient with respect to the ri coordinates. Unfortunately, this
straightforward approach contains a number of subtleties in its practical ap-
plication regarding bookkeeping between particles, smoothing lengths, and so-
forth. Here that subtlety is reflected in the loose notation W(ri − rk, h), which
does not specify the smoothing length to be used in the derivative (namely,
whether it applies to particle i or k).

The most popular astrophysical codes therefore take a slightly different ap-
proach by noting that the fluid equations (3.95)–(3.97) follow from the
Lagrangian

L =
∫
d3r ρ

( |v|2
2

− ε

)
, (3.109)

which itself can easily be discretized,

LSPH =
∑
i

(
mi |vi |2

2
−miεi

)
, (3.110)

where the thermal energy of a given particle is assumed to depend only on
its entropy. For now we will assume that entropy to be constant (i.e., we will
neglect shocks and other dissipative processes).

The advantage of this Lagrangian formulation is that it can straightforwardly
incorporate the constraint ρih3

i = constant to define the smoothing length, as
in any system of particles in elementary mechanics. Following the standard
Lagrangian procedure, we write the equation of motion for this system,

Dvi
Dt

= −∇φ −
Nngb∑
k=1

mk

[
fi
pi

ρ2
i

∇iW(ri − rk, hi)+ fk
pk

ρ2
k

∇iW(ri − rk, hk)
]
,

(3.111)
where

fi ≡
(

1 + hi

3ρi

∂ρi

∂hi

)−1

(3.112)

arises from the constraint. Note the similarity to equation (3.108): this slightly
more complicated form implicitly includes the particle accounting without
much increased complexity, and the direct derivation from a discretized La-
grangian manifestly conserves linear momentum, angular momentum, and
energy.

Although elegant, this approach has one key weakness: namely, by assum-
ing a constant entropy, it does not allow shocks or other forms of dissipation.
Equation (3.111) must then be supplemented with an artificial viscosity that re
introduces these features. Perhaps surprisingly, it is relatively easy to formulate
this viscosity in such a way that it generates the proper additional entropy at
shocks, so long as the prescribed viscosity conserves momentum and energy.
This follows because the shock jump conditions (and hence macroscopic fluid
variables) are independent of the transport coefficients such as the viscosity.
However, SPH codes cannot resolve the structure of the shock itself unless the
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viscosity parameter reflects the microphysics of the gas; typically, shocks are
much broader in SPH treatments than in grid-based codes. Another challenge
is to ensure that this artificial viscosity does not affect the dynamics in regions
outside of shocks.

The SPH approach requires a time integrator; because the fluid has been dis-
cretized into particles, the leapfrog methods described in §3.7.1 work equally
well here (though note that the irreversibility of most hydrodynamics processes
actually means that other methods work as well). The time steps must respect
the Courant condition of equation (3.94), but because the hydrodynamics equa-
tions also involve spatial derivatives, an additional limit applies as well, with
|v
t |/
r < 1. This, limit is usually written as


ti = εSPH
hi

cs,i
, (3.113)

where cs,i is the sound speed at the location of the ith particle. In practice,
because the particle sizes and sound speeds can vary dramatically in a cosmo-
logical system, most codes allow for different particles to have different time
steps, thus enabling the calculation to spend the bulk of its resources where
they are most needed.

In addition to having difficulties with resolving shocks, SPH codes also have
some problems following certain important fluid instabilities. Particle-based
schemes inevitably contain “noise” in their realizations of the density and ve-
locity fields, which in certain regimes can cause unphysical effects such as sup-
pressing the Kelvin-Helmholtz instability in shear flows. The noise can be re-
duced by introducing an artificial viscosity that smooths the fluid fields, but that
viscosity itself affects the instabilities as well. Clearly, one must pay careful at-
tention to matching the ideal computational method to any particular physical
problem.

It is also worth noting that although SPH simulations do intrinsically adapt
to high-density environments, they cannot “zoom” indefinitely. Once the time
step of equation (3.113) becomes too short—say, in runaway gravitational
collapse—it becomes impractical to continue the integration. The problem can
be circumvented by creating a sink particle that accretes mass (and possibly ex-
erts feedback in some prescribed manner) but whose internal structure is not
resolved. This technique is used in simulations of star formation and is an ex-
ample of subgrid models that represent physical processes unresolved by the sim-
ulation itself (see §3.7.4 for more discussion of these approaches).

Finally, SPH is ill-suited to problems in which the mixing of different fluids
is important (such as diffusion), because the particles are generally not allowed
to exchange mass. This drawback has more important ramifications than sim-
ply following mass around, however: entropy generation through gas mixing is
impossible to follow reliably with standard SPH codes.

Although SPH is by far the most popular particle-based solver, it is not the
only approach; the kernel is ultimately used only to partition the fluid field into
mass elements, and other schemes to accomplish the same purpose can also be
used. For example, one can compute a Voronoi tesselation for the volume. This
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algorithm assigns a volume to each particle that includes all regions closer to its
location than to any other particle, without any overlap between the particles.
The same Lagrangian technique described previously works with this modified
constraint to write the equations of motion for each particle.

A step beyond that is to combine the advantages of particle-and grid-based
approaches by constructing a “moving mesh” of grid cells using the Voronoi
tessellation technique to build the cells. Because the cell boundaries are well
defined (unlike in SPH), grid-based numerical algorithms can be used to com-
pute the fluxes of integral fluid properties across the Voronoi mesh cells. Codes
exploiting these techniques are just now becoming available.

3.7.4 The Limits of Numerical Simulations

Computational astrophysics has risen dramatically in importance over the last
several decades, and the continuing increase in computing power promises to
make these methods even more useful in the future. They have been instru-
mental in shaping our understanding of many aspects of astrophysics, includ-
ing the high-redshift Universe. Nevertheless, one should bear in mind that they
are only one tool in our arsenal for addressing challenging problems, and they
rarely provide a complete physical understanding of such problems. It is there-
fore important to identify their limitations for any particular problem and to
calibrate the significance of their results in that context.

We have already discussed some of the specific computational challenges
faced by the different approaches: for example, grid-based codes typically violate
Galilean invariance and have difficulty with supersonic flows, while SPH codes
do not resolve shocks properly or follow shear instabilities accurately. We have
also discussed how the finite grid size or particle number limits the spatial
resolution that any particular simulation can probe (though in a predictable
manner). But astrophysical applications present deeper problems as well.

Foremost among them is the enormous dynamic range required to simu-
late cosmological volumes from “first principles.” Ideally, we would like a sim-
ulation that resolves star formation inside dwarf galaxies but also contains a
representative volume of the intergalactic structures. We will see in chapter 9
that during cosmological reionization, this requires sampling a volume
> (100 Mpc)3. Meanwhile, star formation occurs down a scale ∼ R� = 2.3 ×
10−14 Mpc. Covering both at once requires a spatial dynamic range ∼ 1016 (or
1048 in mass!), far beyond the capabilities of even the largest computer clusters
today or in the foreseeable future.

Cosmological simulations must therefore inevitably incorporate subgrid mod-
els to approximate physics unresolved by the simulation. The importance of
these prescriptions depends on the dynamic range and goals of the simulation.
Most commonly, they parameterize processes inside galaxies, including the
following:

• Star formation: Cosmological simulations, and even simulations of indi-
vidual galaxies, are far from being able to resolve star formation—and, as
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discussed in later chapters, we are still far from understanding that process
even if we could zoom in to very small scales. Simulations must therefore
construct a subgrid model for star formation, usually calibrating it to an
empirical relation such as the Kennicutt-Schmidt law (see §8.5). The com-
puted star formation rates are therefore no more reliable than the empirical
or semianalytic model underlying the simulation.

• Black hole growth: An equally difficult problem is the accretion of gas onto
black holes, which typically occurs on solar system scales inside the com-
plex environments of galactic nuclei. Without resolving the detailed gas
dynamics at the center of galaxies (which can be done in specialized sim-
ulations, but not in their cosmological-scale counterparts), it is impossible
to determine the accretion rates onto these objects from first principles.
It is therefore necessary to impose a subgrid model to track the growth of
black holes and quasar activity.

• Galactic winds and feedback: We will see in chapter 6 (and §8.7) that feed-
back is likely ubiquitous in star-forming galaxies and crucial for regulat-
ing their star formation rates. The energy and momentum injected into
the gas by supernovae and radiation likely prevents much of the gas from
cooling into stars and removes material from the galaxy, enriching the in-
tergalactic medium (IGM) with metals. However, these processes are dif-
ficult to model even in very high-resolution simulations, and simple pre-
scriptions are usually implemented in cosmological simulations. The free
parameters are then calibrated to local observations of feedback on galactic
scales.

Even more difficult to model is feedback from supermassive black holes,
which can be very important energetically but has very limited observa-
tional constraints. Because the feedback occurs most often at the centers
of galaxies, the transport of the energy and momentum through the galaxy
is crucial for modeling it effectively. For example, nearby radio galaxies
launch powerful jets into the IGM, but it is not clear that these jets couple
strongly to their host galaxies. With only a crude physical understanding of
these processes, subgrid models that make strong assumptions about the
underlying coupling mechanisms (in the form of relativistic and nonrela-
tivistic outflows, radiative heating, radiation pressure, or cosmic rays) are
necessary.

• Clumping: We will see in chapter 9 that small-scale gas clumping is crucial
to understanding reionization, but many cosmological simulations do not
resolve the relevant physical scales (especially before reionization, when
the Jeans mass is small). Moreover, this small-scale structure will evolve
as the IGM temperature and pressure change. Often, a subgrid model is
inserted to describe this clumping: it can include the clumping from un-
resolved filaments and sheets in the cosmic web (see chapter 4) as well as
the photoevaporation of collapsed “minihalos” that are unable to form stars
because their low virial temperature does not allow the gas to cool further.
Some reionization simulations ignore hydrodynamics entirely and impose
all gas clumping through a simplified prescription.
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• Radiative heating and cooling: For most of the baryons in the universe, ra-
diative processes—either photoheating from ionization or cooling from
line transitions—are among the most important mechanisms setting their
thermal properties. These in turn depend not only on the metagalactic ra-
diation field (which must be imposed externally, unless radiative transfer
is included) but also on unresolved physics of the gas, including its metal
content and any multiphase medium. Although coarse resolution likely
suffices in the IGM, gas near or inside galaxies is subject to major uncer-
tainties from these effects.

The importance of these subgrid models cannot be understated: nearly all
the observable predictions of cosmological simulations rely on their parameteri-
zations. Indeed, it is no coincidence that the most influential cosmological sim-
ulations have often not been those with the most computing power; instead,
they have been the ones that made the most important advances in implement-
ing physically motivated subgrid models.

Another problem, particularly at high redshifts, is ensuring that the simula-
tion samples a representative volume of the Universe. Typically, this is accom-
plished by demanding that the largest density modes in the simulation remain
well in the linear regime at the time the simulation is ended. For technical rea-
sons (to make a FFT easy, and so that the density field “outside” the box can be
represented by the box itself), most cosmological simulations implement peri-
odic boundary conditions, in which opposite faces of the box are identified with
each other. This forces the mean density of the box to take on the average cos-
mological value, which at first blush automatically appears to make the box a
“representative” volume of the Universe. However, for highly clustered objects
(which includes galaxies at very high redshifts), this may be misleading, be-
cause even a small density boost in a long-wavelength mode can dramatically
affect the halo abundance. For sufficiently rare objects, most such objects may
actually lie inside large-scale overdensities; a periodic box at the mean density
can therefore not contain a fair sample of these halos. Fortunately, this effect
can easily be quantified using the conditional mass function in the excursion
set formalism (see §3.4.2).

For similar reasons, rare objects (like extremely massive halos) are very dif-
ficult to simulate, although they are also the most interesting because their ex-
treme properties often make them the easiest to observe. Typically, one studies
such an object with an adaptive technique, although SPH and AMR on their
own are rarely up to the task. Instead, an object of interest is identified (but
not resolved sufficiently) in a large-scale simulation, and then another higher-
resolution simulation is performed using the object’s large-scale environment
as boundary conditions.

In summary, computer simulations are no more intelligent than their cre-
ators, and they rely on the proper input physics to produce reliable answers.
Their construction and proper use therefore requires as broad and deep a phys-
ical understanding as any other area of theoretical astrophysics. Computers
follow the algorithms with which they are programmed, and they are limited
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by the approximate subgrid physics that was implemented in them. They are
therefore most effective at identifying and understanding so-called emergent
phenomena, in which complex systems grow from the interactions of simple
systems whose physics can individually be accurately described, or in making
high-precision predictions for well-understood phenomena. However, if the in-
put physics is incorrect—if the code uses incorrect initial conditions, or ex-
cludes any important physical process—the simulation is no better than an ana-
lytic model with similar flaws. A recent example is the recognition that baryonic
streaming—nominally a second-order effect and so ignored in cosmological
simulations of structure formation— potentially provides a crucial modulation
of the collapsed matter field (see §2.2.2 and 3.2.2).

In many astrophysical problems, these inputs are so poorly understood that
a computer simulation is no better than a simple toy model (and, most likely,
both more expensive and less flexible). We urge the reader to combat the nat-
ural human tendency to conflate accuracy with precision: a computer is capa-
ble of blindly following incorrect physical assumptions toward an incorrect—
but highly precise—solution (often accompanied by beautiful pictures and an-
imations). It is important for both observers and theorists to appreciate the
strengths and limitations of any theoretical calculation in detail before com-
paring its predictions with other calculations or observations.
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Chapter Four

The Intergalactic Medium

4.1 The Cosmic Web

Although much of astronomy focuses on the luminous material inside galax-
ies, the majority of matter today—and the vast majority at z > 6—actually lies
outside these structures, in the intergalactic medium (IGM). This material ul-
timately provides the fuel for galaxy and cluster formation and—because it is
much less affected by the complex physics of galaxies—offers a cleaner view of
the underlying physical processes of structure formation and of fundamental
cosmology. It is therefore of great interest to study the properties of the IGM,
especially during the era of the first galaxies (when the IGM underwent major
changes).

One of the great triumphs of modern numerical simulations is their descrip-
tion of the distribution of the intergalactic matter distribution in terms of a
cosmic web of sheets and filaments separating large voids that are nearly empty
of matter (see Figure 4.1). However, the formation of these structures is actu-
ally remarkably simple, and it can be understood with a simple extension of
linear perturbation theory called the Zel’dovich approximation1 as illustrated in
Figure 4.2.

Let us begin by considering the distribution of matter at a very early time ti .
We define q as the initial comoving position of each particle. If the Universe
were homogeneous, we could then write its later position as r(t) = a(t)q.

Now, suppose we allow perturbations in the density field. We think of these
perturbations as small displacements in the initial position of each particle, and
we can express these displacements as a function of the original location, p(q).
At later times, gravity causes these displacements to change according to the
local potential. As a simple approximation, let us assume that this evolution is
driven entirely by the initial potential �i . Then, we can write

r(t) = a(t)[q + b(t)p(q)], (4.1)

where b(t) is a new temporal function that describes the growth of these dis-
placements with time. Note that because we assume that the displacement field
is driven by the potential at a fixed time, the direction of the perturbation does
not change with time, only its amplitude. This approximation ignores the later
evolution in the potential driven by these perturbations, so it represents a lim-
ited extension of perturbation theory.

The coordinates q are known as Lagrangian coordinates, because they label
individual mass parcels; the Lagrangian coordinates of the parcels do not evolve
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125 h−1 Mpc

Figure 4.1 Slice through the Millennium Simulation, a massive computer simulation of
cosmological structure formation (see Color Plate 2 for a color version of this
figure). The color scale shows the dark matter density; note how matter is or-
ganized into dense filaments (in many cases, these are actually slices through
sheets of matter) separating nearly empty voids. Massive galaxies and galaxy
clusters form at the intersections of these filaments. Courtesy of V. Springel
(2005).

(a) (b)

Figure 4.2 Illustration of the Zel’dovich approximation for evolution of the cosmological
density field. In panel (a), we show the initial conditions for a calculation (ap-
proximating the density field as a set of discrete particles for simplicity). The
arrow indicates the direction of the displacement field at the location of each
particle. Panel (b) shows a later stage in the evolution. In the Zel’dovich ap-
proximation, each particle continues to move along the direction of its origi-
nal displacement (generated from the potential field at the initial time). As a
result, matter particles converge into sheets, filaments, and halos.
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with time. They are not the same as comoving coordinates x, which are defined
by r(t) = a(t)x(t). Comoving coordinates are an Eulerian system, meaning they
refer to a fixed spatial grid rather than labeling particles. The comoving position
can evolve as a particle moves, whereas the Lagrangian position q does not (see
also the discussion in §3.7.3).

Let us now consider the evolution of the density field in the Lagrangian
framework. Conservation of mass demands ρ(r, t)d3r = ρ̄d3q, where in the
Lagrangian system the density perturbations are contained entirely within the
spacings of the coordinate grid q. Thus, the Jacobian transformation gives

ρ(r, t)= ρ̄ det(∂qi/∂rj ) (4.2)

= ρ̄(t)

det[δij + b(t)(∂pj/∂qi)] , (4.3)

or to first order in b(t)p(q), the density perturbation δ ≡ ρ/ρ̄ − 1 is

δ = −b(t)∇q · p, (4.4)

where ∇q is the gradient with respect to the Lagrangian coordinate system.
It is convenient to Fourier transform the density field, as in equation (2.12),

except we separate the time dependence of the growing mode:

δ = D(t)

∫
d3k

(2π)3
δk,ie

−ik·x, (4.5)

where δk,i is the Fourier transform of δ(ti). Fourier transforming equation (4.4)
and comparing the result with this expression, we see first that for the time
dependence to match we must have b(t) = D(t), the normal growth factor.
Then,

p(q) = −i δk,i

k
k̂. (4.6)

Not surprisingly, this term has the same form as the peculiar velocity u in equa-
tion (2.14): the displacement field is simply the linear-order peculiar velocity of
each particle integrated over time.

By taking the dot product of k with equation (4.6), we see clearly that p(q)
is the gradient of a function. This implies that the matrix ∂pj/∂qi is a real,
symmetric matrix that can be diagonalized to obtain three real eigenvalues λ1 ≥
λ2 ≥ λ3 and their associated principal axes. As a result, the determinant in
equation (4.3) may be factored such that

ρ(r, t) = ρ̄(t)

[1 − b(t)λ1(q)][1 − b(t)λ2(q)][1 − b(t)λ3(q)] . (4.7)

This result has a straightforward physical interpretation. Consider an infinites-
imal cube surrounding each point in space and containing a set of neighboring
particles. The peculiar velocities of these particles deform the cube over time.
The principal axes of the transformation p(q) define the principal axes by which
this cube is deformed, and the eigenvalues λi are proportional to the growth rate
of the deformation along these axes.
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When D(t)λ1 = 1, the collection of particles has collapsed into a sheet per-
pendicular to the first principal axis. This approximation therefore predicts that
two-dimensional “sheets” or “pancakes” are the first nonlinear structures to
form. Once collapse occurs along a second axis, a one-dimensional filament
forms, and once the third axis collapses, a halo forms.i It is this physical picture
that motivates the ellipsoidal collapse models used to improve the excursion set
approach to halo abundances in §3.4.1.

This qualitative picture matches up nicely with the cosmic web seen in nu-
merical simulations, and indeed, the Zel’dovich approximation works surpris-
ingly well even into the nonlinear regime. There are two ways to understand
this impressive success. First, the Zel’dovich approximation requires only that
b(t)p � q. That is less restrictive than requiring δ � 1, because δ is a func-
tion of derivatives of p, which can get large well before the displacement field
itself does. Second, it is easy to see that the Zel’dovich approximation is exact
in one dimension. In that case, the gravitational dynamics just follow sheets of
matter, and the acceleration toward a sheet is independent of distance. Thus,
in one dimension, the net acceleration experienced at a point depends only on
the number of mass sheets on either side of it, which remains constant until
“shell crossing” at collapse. One can therefore extrapolate positions from the
initial displacement field with the constant velocity field b(t)p exactly, at least
until shell crossing. To the extent that collapse along the λ1 axis is much faster
than that along the other two axes, we expect the Zel’dovich approximation to
describe the initial collapse in the real Universe very well.

4.2 Lyman-α Absorption in the Intergalactic Medium

Although dark matter dominates the mass budget of the IGM, it is the baryons
that most concern us, because they provide the fuel for galaxy formation, in-
teract with the radiation from galaxies, and—most important—provide observ-
ables that allow us to trace the structure of the cosmic web. Now we are in a
position to study how these baryons are distributed in the Universe.

Hydrogen is the most abundant element in the Universe, making up ≈93%
of the atoms in the Universe (the remainder is almost all helium). This pre-
dominance of hydrogen is now a well-understood result of the hot Big Bang
model, in which nucleosynthesis (completed within the first few minutes af-
ter the Big Bang) efficiently combined all the remaining neutrons into helium
atoms but then got bottlenecked by the lack of stable isotopes with five or eight
nucleons. As a result, all the heavier elements were formed in the interiors of
stars within galaxies. We expect (and observations confirm) that the IGM is

iStrictly speaking, this complete collapse does not occur in the Zel’dovich approximation, because
the particles continue to travel in their original direction of motion. Thus, shortly after collapse to
a sheet, the particles cross each other, and the sheet expands again. Obviously, the problem lies in
assuming a constant peculiar velocity set by the initial potential; once collapse occurs, the potential
has changed significantly. The so-called adhesion model2 improves the Zel’dovich approximation
to account for this effect.
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n = 2

n = 1

Hydrogen

Lyman-α
λα = 1.216 × 10–5 cm

21 cm
e p

e p

Figure 4.3 Two important transitions of the hydrogen atom. The 21-cm transition of
hydrogen occures between the two hyperfine states of the ground energy
level (principal quantum number n = 1). In the higher energy state, the spin
of the electron (e) is aligned with that of the proton (p), and in the lower
energy state the two are antialigned. A spin flip of the electron results in the
emission of a photon with a wavelength of 21 cm (or a frequency of 1,420
MHz). The second transition is between the n = 2 and the n = 1 levels, and
results in the emission of a Lyman-α photon of wavelength λα = 1.216×10−5

cm (or a frequency of 2.468 × 1015 Hz).

even more dominated by hydrogen and helium than the Milky Way. We there-
fore focus on these two elements—and especially hydrogen—in our study of
that material.

Since the lifetime of energy levels with principal quantum number n > 1
is far shorter than the typical time it takes to excite them in the rarefied envi-
ronments of the Universe, hydrogen is nearly always found to be in its ground
state (lowest energy level) with n = 1. This implies that we should focus on
the transitions that involve the n = 1 state. In this book, we describe two such
transitions in detail, both depicted in Figure 4.3 (see also chapters 11 and 12).

The most widely discussed transition of hydrogen in cosmology is the Lyman-
α spectral line, in which an electron moves between the n = 1 and n = 2
electronic states and which was discovered experimentally in 1905 by Harvard
physicist Theodore Lyman. This line has traditionally been used to probe the
ionization state of the IGM in the spectra of quasars, galaxies, and gamma-
ray bursts. In 1965, Peter Scheuer3 and, independently, Jim Gunn and Bruce
Peterson4 realized that the cross section for Lyman-α absorption is so large that
the IGM should be opaque to it even if its neutral fraction is as small as ∼ 10−5.

Imagine a photon emitted at a wavelength λ < λα , where λα = 1216 Å is
the wavelength of the Lyman-α transition. As the photon travels through the
IGM, it redshifts along with the expanding Universe. Eventually, its wavelength
stretches near the Lyman-α resonance, where it can be absorbed by a hydrogen
atom and reemitted in a different direction. We therefore compute the optical
depth intercepted by the photon by integrating all the way across the resonance
line. We let λobs (mobs) be the observed wavelength (frequency).

The full cross section of a single atom is

σα(m) = 3λ2
α	

2
α

8π

(m/mα)
4

4π2(m − mα)2 + (	2
α/4)(m/mα)6

, (4.8)
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where 	α = (8π2e2fα/3mecλ2
α) = 6.25 × 108 s−1 is the Lyman-α (2p → 1s)

decay rate, fα = 0.4162 is the oscillator strength, and mα = (c/λα) = 2.47 ×
1015 Hz is the frequency of the Lyman-α line. The term in the numerator is
responsible for classical Rayleigh scattering.

In practice, the thermal velocities of the IGM atoms have a finite spread.
These motions, as well as peculiar velocities and (possibly) turbulence, move
the line center around in velocity space (see §11.1.1 for details). However, these
velocity shifts are small compared with the cosmological redshift, and we can
safely ignore them so long as the photon begins its journey with a wavelength
λ much farther from resonance than the line width (see §11.2 for a discussion
of the more general case).

We can then approximate the line as narrow,

σα(m) = 3	αλ
2
α

8π
δ(m − mα), (4.9)

where the prefactor is the integral of equation (4.8) over frequency. Then, if r
is the photon’s proper distance from the observer, and the neutral hydrogen
density is nH I(z) = xH InH(z), where xH I is the neutral fraction, and nH is the
number density of hydrogen nuclei,

τα =
∫
dr σα(r)nH I(r)

= c

H0

∫
da

a
σα(mobs/a)nH I(a)[�m/a3 +�	]−1/2

= 3	αλ
3
α

8π

xH InH(z)

H(z)
(4.10)

≈ 1.6 × 105xH I(1 + δ)

(
1 + z

4

)3/2

, (4.11)

where we have used dr = c dt = c da/ȧ = c (da/aH) with the Hubble pa-
rameter H = (ȧ/a) evaluated in the matter-dominated era. We have also let
nH(z) = n̄H(z)(1 + δ) in the last line, where n̄H is the mean cosmic density.
This average IGM optical depth in the Lyman-α transition is referred to as the
Gunn-Peterson optical depth.

Obviously, the IGM optical depth can be enormous even if the neutral frac-
tion is small. Any transmission across these wavelengths is therefore evidence
that the diffuse IGM is highly ionized.

In practice, the IGM absorption is observed against a luminous background
source (either a bright quasar or bright gamma-ray burst afterglow). The source
emits photons over an extended continuum, which allows us to see absorption
over a range of wavelengths. If the source resides at a redshift zs , its Lyman-α
transition appears at an observed wavelength λα(1 + zs). Photons redward of
this point begin their journeys at λ > λα and redshift as they travel, so they
never enter resonance with the Lyman-α line in the IGM (though they may be
absorbed by other species; see §4.6).
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Observed
intensity

λ

To observer

Neutral hydrogen clouds
cause absorption troughs

Photons redshift

Figure 4.4 The Lyman-α forest. At the top of the panel, light from a distant quasar
passes through several clouds of neutral hydrogen along the line of sight.
As these photons travel, they redshift. Photons beginning blueward of the
Lyman-α transition at the quasar eventually redshift through that resonance.
If they do so inside an H I cloud, they may be absorbed by those atoms,
creating an absorption feature in the quasar’s spectrum. The spectra of dis-
tant quasars therefore allow us to map the IGM’s density and ionization
structure.

Photons blueward of this point eventually redshift into resonance and (if the
gas is not too highly ionized) are absorbed. Each such photon redshifts into res-
onance at a particular distance from the observer (and source) that depends on
its initial wavelength: photons emitted far blueward of Lyman-α in the source
frame travel a great distance before their wavelength redshifts to 1216 Å, while
those emitted just blueward of it reach the resonance near the source. The pho-
ton is then absorbed if there is neutral hydrogen at this particular point in
the IGM—once it passes that point and redshifts further, it no longer inter-
acts with hydrogen atoms. Thus, each observed wavelength samples a different
point along the line of sight, and we can map the distribution of H I over a large
region along the line of sight to a particular source, as illustrated in Figure 4.4.

The resulting Lyman-α forest is so named because of the strong variability
of these absorption features. This variability is illustrated in Figure 4.5, which
shows three examples of Lyman-α forest spectra at moderately high redshifts
(z ∼ 4). Redward of 1216 Å (in the source frame), the quasar continuum is
largely unaffected by the IGM, but blueward of Lyman-α there is highly variable
absorption depending on the detailed structure along the line of sight. We now
understand this forest of features to originate from the cosmic web: as a line
of sight passes through the sheets, filaments, and voids of the cosmic web, the
optical depth fluctuates. It is this forest that provides most of our knowledge
about the IGM at moderate and low redshifts, and we will next study the physics
behind it.

While these features can be identified individually with high-resolution spec-
tra, at lower resolution they blend together as a “trough” of absorption. We
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Figure 4.5 Example Lyman-α forest spectra taken with the ESI spectrograph on the Keck
telescope. The highly variable absorption blueward of the Lyman-α rest wave-
length (at 1216 Å) is the Lyman-α forest, not noise. Redward of this transi-
tion, the quasar continuum is visible, with only a few absorption features
due to metal line absorbers in the IGM. Songaila, A., & Cowie, L., Astrophys.
J. 721, 1448 (2011). Reproduced by permission of the AAS.

therefore expect a break in the spectrum at λα(1+zs), with a depth that depends
on the ionized fraction of the IGM and zs (which affects the proper density of
hydrogen). At moderate and high redshifts (z > 3), this “Lyman break” is sub-
stantial enough to be useful as a redshift estimator. In fact, one of the premier
techniques for identifying high-z galaxies is by photometrically searching for
extended sources with strong flux redward of the wavelength corresponding to
the desired zs and little or no flux blueward of that wavelength (see §10.2.2).

Naively, how would one expect the optical depth to evolve? The redshift factor
(1 + z)3/2 reflects the evolution of the column density of hydrogen atoms and
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implies a slow increase for τα as redshift increases. But more important is the
factor xH I, which evolves with both the cosmic density and the ionizing back-
ground. As redshift increases, one might naturally expect the number of ioniz-
ing sources to decrease, because structure formation is less advanced. In that
case we would expect the optical depth to increase even faster than (1+z)3/2, and
the IGM eventually to become opaque. (In practice, the ionizing background ap-
pears to be roughly constant with redshift at 2 < z < 5, but it must eventually
decrease at higher redshifts.)

If a source were to be observed when the atomic fraction of hydrogen was
substantial, then all photons with wavelengths just short of 1216(1+zs)Å would
redshift into resonance, be absorbed by the IGM, and then be reemitted in
other directions. Eventually, this process would result in an observed complete
absorption trough blueward of λα in the source spectrum, known as a Gunn-
Peterson trough.

Figure 4.6 shows spectra of 19 quasars at z ∼ 6; note how, indeed, the frac-
tion of transmitted flux blueward of the Lyman-α line of each quasar decreases
toward the higher redshifts in this range. The spectra of the highest-redshift
quasars at z < 6.4 show hints of a Gunn-Peterson effect. Unfortunately, this
effect is difficult to interpret, because only a very small neutral fraction is re-
quired to saturate the Gunn-Peterson trough (see equation 4.11). We cannot
yet determine whether the IGM is slightly ionized or nearly neutral at this
time; we discuss the Lyman-α line at very high redshifts in §4.7 and again in
chapter 11.

Although the Lyman-α transition has so far proved the most useful in un-
derstanding the IGM, it is not the only approach. Its key feature is simply that
it is a spectral line, so that each observed wavelength corresponds to a differ-
ent distance from us. Any other spectral line has the same feature and can in
principle be used in the same way. Higher Lyman-series transitions are one
possibility: they are useful for some applications (see §4.7, for example), but
they suffer contamination from the Lyman-α forest and so are more difficult
to study. Another possibility is the 21-cm spin-flip line, a hyperfine transition of
the ground state of H I (see Figure 4.3). The disadvantage of this transition is
that it is extremely weak—with an optical depth about seven orders of magni-
tude smaller than Lyman-α. Thus, it is observable only when the H I density is
very large—either because the system itself is very dense or because the IGM
is nearly neutral. In either case, the Lyman-α optical depth τα � 1, so its trans-
mission is extremely small and not detectable for the same regime. The two
lines therefore complement each other as probes of the IGM. We will see in
chapter 12 that the spin-flip 21-cm transition has great potential for studying
the earliest phases of structure formation.

4.3 Theoretical Models of the Lyman-α Forest

To compute the optical depth distribution of the IGM it is therefore necessary
to know how the neutral fraction xH I varies through space. To a very good
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Figure 4.6 Observed spectra of 19 quasars with redshifts 5.74 < z < 6.42 from the
Sloan Digital Sky Survey (see Color Plate 3 for a color version of this figure).
For some of the highest-redshift quasars, the spectra show no transmitted
flux shortward of the Lyman-α wavelength at the quasar redshift, providing a
possible hint of the so-called Gunn-Peterson trough and indicating a slightly
increased neutral fraction of the IGM. It is evident from these spectra that
broadband photometry is adequate for inferring the redshift of sources dur-
ing the epoch of reionization. Fan, X., et al., Astron. J. 132, 117 (2006). Repro-
duced by permission of the AAS.

approximation, almost all regions are in ionization equilibrium, that is, the num-
ber of ionizations per second balances the number of recombinations,

nenpα(T ) = nH I� (4.12)
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where α(T ) is the (temperature-dependent) recombination coefficient, and the
ionization rate (per atom) isii

� =
∫ ∞

mL

dm
4πJ(m)σH I(m)

hm
, (4.13)

where J (m) is the specific intensity of the background field (in units
of erg cm−2 s−1 Hz−1 sr−1), and σH I is the cross section for ionization. This
integral counts the number of photons per second striking an atom, weighted
by the ionization cross section. As we will see, typical values for the ionization
rate are � ≈ 10−12 s−1, so we normalize � = �12 × 10−12 s−1 for convenience.
At this ionization rate, the typical timescale for a neutral atom to be photoion-
ized is 1/� ∼ 105 yr, which is much smaller than H−1(z). Thus, ionization
equilibrium is an excellent approximation.

In detail, both ne and the amplitude of the radiation background depend on
the ionization state of helium, which accounts for ∼ 10% of the total electrons
in the Universe. We should therefore write two analogs of equation (4.12), for
He I and He II, and solve the coupled system of equations given the radiation
background. Although this detail is important for precision calculations, it does
not qualitatively affect the methods or results, so we usually ignore helium in
the following presentation for pedagogical reasons.

The bound-free absorption cross section from the ground state of a hydro-
genic ion of species i with nuclear charge Z and an ionization threshold hmi is
given by5

σbf (m) = 6.30 × 10−18

Z2
cm2 ×

(mi
m

)4 e4−(4 tan−1 εbf )/εbf

1 − e−2π/εbf
for m ≥ mi , (4.14)

where

εbf ≡
√

m

mi
− 1. (4.15)

For neutral hydrogen, Z = 1, and mH I = (c/λc) = 3.29 × 1015 Hz (EH I =
hmH I = 13.60 eV); for singly ionized helium,Z = 2, and mHe II = 1.31×1016 Hz
(EHe II = hmHe II = 54.42 eV). Although hardly obvious, equation (4.14) follows
σbt ∝ m−3 near the ionization threshold.

The cross section for neutral helium is more complicated; when averaged
over its narrow resonances it can be fitted to an accuracy of a few percent up to
hm = 50 keV by the function6

σbf,He I(m)= 9.492 × 10−16 cm2 × [
(x − 1)2 + 4.158

]
×y−1.953 (

1 + 0.825y1/4)−3.188
, (4.16)

where x ≡ [(m/3.286 × 1015 Hz) − 0.4434], y ≡ x2 + 4.563, and the threshold
for ionization is mHe I = 5.938 × 1015 Hz (EHe I = hmHe I = 24.59 eV).

iiHere and later we make one subtle simplification by assuming that each photon can ionize only
one atom; in reality, the secondary electron liberated during the ionization can then ionize addi-
tional atoms. See §9.8.2 for more details.
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The radiative recombination coefficient α(T ) describes the rate at which elec-
trons and protons recombine (while emitting a photon). Of course, the recom-
bination can occur to any of the hydrogen atom’s energy levels; an important
special case is recombination to the ground state, which generates a new ioniz-
ing photon. Provided that photon is reabsorbed by the gas, such a recombina-
tion does not lead to a net increase in the neutral fraction. It is therefore often
useful to consider the case B recombination coefficient αB , which excludes re-
combinations to the ground state. For hydrogen,7

αB(T ) ≈ 2.6 × 10−13T −0.76
4 cm3 s−1, (4.17)

where T4 = T/104 K. The contrasting case, in which such photons escape the
region of interest, is referred to as case A and has a rate coefficient

αA(T ) ≈ 4.2 × 10−13T −0.76
4 cm3 s−1. (4.18)

Note that both rates are fairly slow in the IGM, except at high redshifts. At
the mean density of the IGM, the ratio of the case B recombination time, tBrec =
1/nHα, to the Hubble time tH is

tBrec

tH
≈ 0.8

(
8

1 + z

)3/2

. (4.19)

In other words, once an atom at the mean cosmic density is ionized at z < 7, it
may remain ionized forever.

The appropriate coefficient to use depends on the physical situation at hand.
If one is concerned with the average absorption in a uniform IGM, case B is
clearly the better choice, because photons from recombinations to the ground
state are absorbed somewhere else in the IGM. If, however, the IGM is very
clumpy so that most of the recombination photons are absorbed inside dense
neutral blobs without influencing the low-density IGM about which we
principally care, case A is a better choice. Similarly, if one considers ioniza-
tion equilibrium in a single dense cloud, case A may be more appropriate if
the recombinations occur preferentially on the “skin” of the cloud, so that the
resulting photons can easily escape to the external medium.

In the highly ionized limit of equation (4.12), we can equate np to the total
proton density (including those inside hydrogen atoms); in that case, using the
case B recombination rate,

xH I = neαB(T )�
−1 ∼ 4 × 10−6(1 + δ)

(
1 + z

4

)3

T −0.76
4 �−1

12 , (4.20)

where (1 + δ) = ρ/ρ̄. Note that for detailed calculations we should include the
electrons from ionized helium, but that makes only a minor difference at the
level of ∼ 10%.

Because observations show that �12 ∼ 1, we know that the gas is indeed
highly ionized, at least at moderate and low redshifts. Conveniently, substitut-
ing this value into equation (4.11), the optical depth for gas at the mean density
(and z ∼ 3) is of the of order unity, just in the range in which we can accu-
rately measure the absorption. The Lyman-α forest therefore allows us to map
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the cosmic web in exquisite detail, even though the gas itself is at extremely low
densities and neutral fractions.

4.3.1 The Temperature–Density Relation

To proceed further and evaluate τα as a function of density, we must determine
the temperature of the IGM gas. Thermal equilibrium is typically established
by three competing effects. The first two are cooling processes: the adiabatic
expansion of the Universe and Compton cooling (which is only important at
z > 6; see §2.2). Other mechanisms—such as line cooling—are much less
efficient.

However, photoionization heats the gas. A typical ionizing photon has hm >
hmi , so the free electron is left with some residual kinetic energy. The electron
then scatters through the IGM and deposits its energy as heat. The heating rate
per particle for H I (in K s−1) isiii

Hph,H I = xH I

∫ ∞

mH I

dm (4πJm)σH I(m)

(
hm − hmH I

hm

)
. (4.21)

(Note that it is often important to include helium here, as it remains in its singly
ionized state until z ∼ 3 and efficiently absorbs high-energy photons, but for
pedagogical simplicity we ignore it.)

The temperature of a given parcel of gas therefore evolves following

dT

dt
= −2HT + 2T

3

d ln(1 + δ)

dt
− T

d ln(2 − xH I)

dt
+ 2

3kBntot
(H−	), (4.22)

where the first two terms account for adiabatic expansion, the third for the
change in the total particle density, and the last for radiative heating and cool-
ing: H ≈ Hph in most cases, and 	 is dominated by Compton cooling (see
also §9.8.2). In this expression ntot is the total particle density (including free
electrons). We then imagine that the parcel begins as a neutral region and is
ionized over some period of time by luminous sources, until it reaches ioniza-
tion equilibrium with a (slowly evolving) metagalactic background. We would
like to understand how its temperature evolves through these two stages.

If we imagine that a gas parcel is initially neutral and then is rapidly ex-
posed to a strong ionizing background, all the gas will quickly be ionized. In
this regime, equation (4.22) simplifies substantially, because only the particle
number and photoheating terms are large. The final value is then simply the
average excess energy per ionization 〈Ei〉,

kB�T = 2

3

nH

ntot
〈Ei〉 . (4.23)

This deceptively simple expression actually hides a fair amount of physics in the
factor 〈Ei〉, which depends on how the spectrum of incident radiation interacts
with the gas parcel. Two limits are illuminating. First, if the parcel is optically

iiiAgain, here we assume that all the excess energy of the photon goes to heat the gas; in reality,
some helps ionize it and some collisionally excites neutral atoms. See §9.8.2.
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thin, then the weighting by σH I in equation (4.21) reduces the impact of high-
energy photons. In this case,

〈Ei,thin〉 ≈ 1

�

∫ ∞

mi

dm (4πJm)σH I(m)

(
hm − hmi

hm

)
. (4.24)

However, if the element is optically thick up to some maximum frequency (set
by the frequency dependence of the cross section, σH I ∝ m−3), then all photons
below this frequency are absorbed, and the weighting by σH I disappears.

These two limits can make a significant difference to the total temperature
increase: for a specific luminosity Lm ∝ m−α , we obtain

〈
Ei,thin

〉 = EH I/(α + 2).
In the particular case of Lm ∝ m−2 appropriate for a low-metallicity galaxy,〈
Ei,thin

〉
/EH I ≈ 1/4, if we include all photons between the H I and He II

ionization thresholds. In the optically thick limit, we have instead
〈
Ei,thick

〉 =
EH I/(α− 1). For Lm ∝ m−2, this yields

〈
Ei,thick

〉
/EH I ≈ 3/5 (again including all

photons in the range 13.6–54.4 eV). The net temperature change is then �T ≈
0.5(2/3kB) 〈E〉 ∼ 30,000 K for the optically thick case, significantly above the
value of ∼ 12,500 K for the optically thin case.

Because this energy input is identical for each particle (modulo the optical
depth of its environment), the temperature of a parcel should be independent
of its density immediately after ionization.iv However, after this initial phase of
ionization,Hph decreases dramatically, because xH I becomes very small.

At this point, the temperature approaches a quasi–steady state, varying only
slightly on cosmological scales as the expansion rate changes. The temperature
in this state does depend on density through the adiabatic cooling rate (the sec-
ond term on the right-hand side in equation 4.22)—underdense voids can be
considered (locally) to have a smaller �m, and so they expand faster. Thus, the
low-density regions cool fastest. Numerical calculations show that an equilib-
rium is reached in which

T ≈ T0(1 + δ)γ−1, (4.25)

where T0 is a normalization constant, and γ ≈ 1.6 long after reionization. Be-
cause the photoheating rate is independent of density, this slope depends only
on the varying dynamics of the expansion rate and so can be predicted robustly
using linear theory [δ ∝ D(t)]. The normalization of this temperature–density
relationv, however, depends on the amplitude of that photoheating rate, which
(by equation 4.21) is entirely determined by the spectral shape of the ionizing
background. Importantly, this normalization is independent of the amplitude
of the radiation background, because the heating rate per neutral atom is pro-
portional to Jm, but the neutral fraction is itself proportional to 1/Jm (through �

ivWe will see later, however, that there is on average a nontrivial temperature–density relation during
reionization, because the cosmic time at which elements are ionized depends on the density; see
§9.9.
vThis relation is sometimes referred to as the “IGM equation of state,” but that is a misnomer

because the relation implicitly averages over many different gas parcels, rather than following a
single one.
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Figure 4.7 Temperature–density relation at z = 4 in a cosmological simulation (points),
together with analytic prediction based on linear perturbation theory and
equation (4.22). Note the near-power-law relation, except at very high den-
sities, where the complex physics of nonlinear structure formation begins to
matter. Hui, L., & Gnedin, N. Y. Mon. Not. R. Astron. Soc. 292, 27 (1997).
Copyright 1997 by the Royal Astronomical Society.

in equation 4.20). Figure 4.7 shows an example of this temperature–density re-
lation. The points show individual cells from a cosmological simulation, while
the solid line shows an analytic prediction using linear perturbation theory and
equation (4.22), which leads to a solution of the form in equation (4.25). Note
the very tight relationship at low and moderate densities in the IGM. The flat-
tening at high densities is due to shock formation in filament and halo collapse,
which is not included in our model here.

4.3.2 The Fluctuating Gunn-Peterson Approximation

A simple model for the absorption pattern of the inhomogeneous IGM asso-
ciates each gas element with its “local” Gunn-Peterson optical depth in
equation (4.11). This is an oversimplification for two reasons: first, it ignores
the frequency structure of the line (in reality, the total τα at a given wavelength
arises from many neighboring gas elements), and second, it ignores the veloc-
ity structure of the IGM, which moves gas elements around in frequency space.
Nevertheless, the model provides a simple description and a reasonable approx-
imation to the parameter dependencies of the real Lyman-α forest.

With the assumption of ionization equilibrium (equation 4.20) and if we use
the approximate power-law form of the temperature–density relation
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Figure 4.8 Measurements of the ionizing background at moderate redshifts (points with
error bars), and models of it (curves). The measurements use the mean trans-
mission of the Lyman-α forest as described in this section as well as the prox-
imity effect (see §11.3.2). The curves base the emissivity and mean free path
inputs on measured values at z < 6 and use the method described in §4.4.
The solid line shows the total �, while the dashed curves peaking at z ∼ 4
and z ∼ 2 show the separate contributions from star-forming galaxies and
quasars, respectively. Haardt, F., & Madau, P., Astrophys. J. 746, 125 (2012)
observational measurements collected from references therein. Reproduced
by permission of the AAS.

(equation 4.25), equation (4.11) becomes

τα(δ, T ) ≈ 13
(1 + δ)2−0.76(γ−1)

�12

(
T0

104 K

)−0.76 (
1 + z

7

)9/2

. (4.26)

The (1 + δ) exponent ranges from ∼ 2 (for isothermal gas) to ∼ 1.5 (at the ther-
mal asymptote); it is greater than unity because of the recombination rate scal-
ing (which also induces the temperature dependence).

Equation (4.26) shows that at z ∼ 6 only the most underdense regions will
be visible (with τα < 1); gas at the mean density will be extremely opaque even
if the ionizing background is comparable to its values at lower redshifts. This
explains the deep absorption troughs in Figure 4.6. However, at z ∼ 3 the same
gas parcel at the mean density has τα ∼ 1: this is why the Lyman-α forest is
such a powerful tool at moderate and low redshifts, as shown in Figure 4.5.

Because τα depends only on fundamental cosmological parameters (which
are known reasonably well), the density and temperature of the IGM (which
can be modeled), and the unknown �, the transmission in the Lyman-α forest
provides a good measure of �. The points with error bars in Figure 4.8 show
several measurements of the ionizing background from z ∼ 2–6, most using
this method. To a reasonable approximation �12 ∼ 1 over the range z ∼ 2–5,
with uncertainties (both systematic and statistical) of a factor ∼ 2. The solid
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curves show a theoretical prediction of �(z), calculated following the methods
we will outline in the next several sections.

Equation (4.26) shows that the IGM absorption traces the density field of
the IGM, and hence the cosmic web. Because of this inhomogeneous absorp-
tion, the mean transmission averaged over broad spectral bands is smaller than
through a homogeneous one. To see this difference, let us define p(δ) as the
volume-averaged probability distribution of the IGM density. Then, the net
transmission is

Tα =
∫
dδ p(δ) exp[−τα(δ)] (4.27)

≡ exp(−τeff,α), (4.28)

where we have defined the effective optical depth in the line as τeff,α . This effec-
tive value must be smaller than the corresponding Gunn-Peterson absorption
τα(δ = 0) because of the well-known triangle inequality,〈

exp(−τα)
〉 ≥ exp(−〈τα〉). (4.29)

Essentially, because the absorption saturates in dense regions, an inhomoge-
neous medium has less overall absorption than a uniform medium. Most of
the transmission arises in the low-density voids, which can remain transparent
even if the gas at the mean density is optically thick.

4.3.3 The Column Density Distribution

The fluctuating Gunn-Peterson approximation is a useful model partly because
it suggests that the IGM optical depth varies continuously along the line of
sight, just as the density field of the cosmic web does. However, in practice
the Lyman-α forest appears as a set of discrete absorbers, because IGM den-
sity peaks (intercepted sheets and filaments) are rather sharp. Thus, it is often
useful to consider such systems as discrete absorbers.

We begin by assuming that the absorption by a given region will be domi-
nated by its densest portion (with peak fractional overdensity δ). To compute
the column density (and hence optical depth), we must assign this region a
length scale. The most natural size is the local Jeans length, which is simply
the length scale over which the pressure force balances gravity (see §3.2), LJ ∼
cstcoll ∼ cs(Gρ)

−1/2: a smaller cloud (at the same density ρ) will be smoothed
out by pressure, whereas a larger cloud will collapse gravitationally. If we as-
sume that the gas maintains photoionization equilibrium in the highly ionized
limit, the corresponding column density through the cloud isNH I = xH InHLJ,
or

NH I = 3.3 × 1014 cm−2(1 + δ)3/2
(

T0

104 K

)−0.26

�−1
12

(
1 + z

7

)9/2

. (4.30)

As described previously, the properties of these regions are measured from
their optical depth for Lyman-α absorption, which for a single absorbing sys-
tem is τα(m) = NH Iσα(m). To understand the density distribution of the IGM,
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Figure 4.9 Observational estimate of the Lyman-α forest column density distribution
function f (NH I) at z ≈ 3.7, fit as a series of broken power laws. The differ-
ent column densities are labeled according to their categories: Lyman-α for
optically thin forest systems, LLS for Lyman-limit systems, SLLS for “super
Lyman-limit systems”, and DLA for damped Lyman-α systems. The distrib-
ution in the remaining region, labeled λmfp is difficult to probe directly and
so is inferred indirectly. That region therefore has relatively large error bars
compared with regions of higher column densities (which are shown by the
shaded regions or points with error bars). Prochaska, J. X., O’Meara, J. M., &
Worseck, G., Astrophys. J. 718, 392 (2010). Reproduced by permission of the
AAS.

we therefore would like to measure the the number density of absorbers in a col-
umn density interval (NH I, NH I + dNH I) and in a redshift interval (z, z + dz),
d2N/dNH I dz. In the literature, the column density distribution is often re-
ported as f (NH I, z) = d2NH I/dnH I dX, where the coordinate X is defined via
the differential relation dX/dz = H0(1 + z)2/H(z). This coordinate is use-
ful because a population with constant comoving number density and con-
stant proper cross section will have f independent of redshift. In the past,
d2N/dNH I dz ∝ N

−β
H I, where β ≈ 1.5, was often used as a convenient and

simple fit to the forest data. However, Figure 4.9 shows a recent measurement
of this function at z ∼ 3.7, which indicates that a single power law may be too
simple an approximation, though a broken power law does fit quite well.

Typically, one estimates this distribution function by identifying each absorb-
ing system and fitting its column density. However, in practice, NH I can be
difficult to measure because of saturation. The equivalent width parameterizes
the amount of absorption by specifying the wavelength interval over which light
would be absent if the line profile were a step function,

W =
∫

[1 − e−τ(λ)] dλ. (4.31)
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When τ is small, W ∝ ∫
dλτ(λ) ∝ NH I, which makes the measurement

straightforward. This width corresponds to column densities NH I < 1014.5

cm−2, or τα < 1 at line center. These systems are known as Lyman-α forest ab-
sorbers, although the forest is also often taken to mean the full set of absorbers
(as we have used the term earlier in this chapter). They appear at the upper left
corner of Figure 4.9.

However, when τα � 1, the line center is strongly saturated but the
Lorentzian wings (see equation 4.8) have substantial optical depth and domi-
nate the total absorption; in that case, W ∝ N

1/2
H I. In particular, absorbers with

extremely high column densities (NH I > 1020.3 cm−2) have prominent damp-
ing wings from natural line broadening and are known as damped Lyman-α
absorbers (DLAs); they appear at the lower right in Figure 4.9, and an example
absorber is shown in the top panel of Figure 4.10. These systems, although rare,
are extraordinarily rich in information. They have multiple absorption compo-
nents (at slightly different velocities), a wide range of metal lines (with a wide
range of ionization states), and sometimes even molecular hydrogen.

DLAs are now understood to probe the interstellar medium of galaxies. The
lines therefore provide an intriguing selection technique for galaxies that is
largely orthogonal to standard methods: one that is weighted by geometric cross
section rather than by stellar luminosity. They are therefore typically low–surface
brightness galaxies with relatively low star formation rates, requiring exception-
ally deep observations to identify their emission in conventional galaxy surveys.
DLAs provide an unbiased census of the neutral gas in the Universe, because,
based on the observed column density distribution of H I absorbers, most of the
neutral hydrogen after reionization resides in DLAs. Interestingly, the fraction
of gas that remains neutral appears to vary little with redshift from z ∼ 5 to the
present day, although of course that must change at higher redshifts when the
IGM itself becomes predominantly neutral. For our purposes, DLAs are crucial
as the primary reservoir of neutral gas after the end of reionization.

At somewhat lower column densities, the damping wings are less apparent,
but the column density can indirectly be estimated through its effect on ioniz-
ing photons. At the ionization threshold, τH I = 1 for NH I,LLS ≡ 1/σH I(mH I) =
1.6 × 1017 cm−2. Systems above this column density limit are opaque to ion-
izing photons; we refer to this regime as self-shielding and these opaque sys-
tems as Lyman-limit systems (LLSs). The former term suggests that gas on the
outskirts of the system absorbs a large fraction of the incident ionizing back-
ground, shielding the interior from ionizing photons.

For this reason, these systems are relatively easy to identify even at high
redshifts, because their optical thickness to ionizing photons causes a contin-
uum depression in the flux of the background source blueward of 912 Å in
the rest frame of the absorber. An example is shown in the right panel of Fig-
ure 4.5; the sharp break at this wavelength indicates the presence of an LLS,
and the depth of the absorption tells us the column density of the absorber. Be-
cause of this continuum suppression at very short wavelengths, these systems
constitute the one family of hydrogen absorbers whose abundance at z > 5
has been measured. These, and their somewhat higher column cousins called
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Figure 4.10 Example IGM Lyman-α absorbers measured by the ESI spectrograph on the
Keck telescope. Top: A damped Lyman-α absorber (DLA). The two curves
show fits to the absorber; note the long damping wings. Bottom: A Lyman-
limit system (LLS) that is opaque to ionizing radiation (with λ < 912 Å).
The horizontal bars redward of 912 Å show fits to the quasar continuum;
the dashed line blueward of this wavelength shows the expected flux. The
observed flux is much smaller because of the LLS, whose location is marked
with the vertical line. Songaila, A., & Cowie, L., Astrophys. J. 721, 1448
(2011). Reproduced by permission of the AAS.

super Lyman-limit systems, appear from 1017.8 cm−2 < NH I,LLS < 1020.3 cm−2 in
Figure 4.9.

Unfortunately, in the intermediate regime where the line center is saturated
but the wings remain weak,W ∝ lnNH I. When the opacity to ionizing photons
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is also small, it is very difficult to measure the true column density of a line.vi

This intermediate range approximately spans H I column densities of 1014.5–
1017.5 cm−2. Their abundance must usually be inferred indirectly; Figure 4.9
shows the allowed range of density distributions at z ∼ 3.7 by the series of
dashed lines.

If the column density distribution function is known, one can estimate the
total optical depth τeff,α in the forest by integrating over all the lines,

τeff,α = (1 + z)

λα

∫
dNH I

d2N

dNH I dz
W(NH I). (4.32)

Note that τeff,α is not simply the average of the optical depths of all the lines,
because the observed transmission depends exponentially on τα . Importantly,
however, τeff,α does not require a measurement of d2N/dNH I dz: as the total ab-
sorption, it can be estimated even from low-resolution measurements or when
the forest is so thick that Lyman-α absorbers cannot be separated. This makes
it a very useful quantity at high redshifts, where the forest is nearly saturated
(see §4.7).

Observations show that at z < 5.58

τeff,α = (0.85 ± 0.06)
(

1 + z

5

)4.3±0.3

. (4.33)

At z > 5.5 the optical depth appears to increase even more rapidly and is nearly
saturated at z ∼ 6; we discuss this regime in §4.7.

4.3.4 Mapping the Cosmic Web

As described previously, the forest is the premier tool for measuring the prop-
erties of the IGM at z < 5, because it provides such a detailed view of its struc-
tures. The only drawback is the relative dearth of background sources against
which absorption can be measured: “bright” quasars or gamma-ray burst after-
glows are rare, so to date almost all the information has come from studying a
small number of individual one-dimensional skewers of the cosmic web.

Thus, an important caveat for Lyman-α forest studies of the high-z Universe
is that although detailed structures are visible along the line of sight, inverting
these to obtain the three-dimensional structure is difficult because of aliasing
(see Figure 4.11). This refers to the possibility that random arrangements of
small-scale oscillations inclined to the line of sight will mimic large-scale os-
cillations along the line of sight; for example, if the crests of two k-modes are
aligned with the plane of the sky (but at a wide radial separation) and intersect
the Lyman-α forest skewer, they will appear to an observer as two crests of a
single large-wavelength oscillation along the line of sight.

To quantify the importance of aliasing, we begin with the correlation func-
tion: statistical isotropy guarantees that it is identical in every direction and

viThe problem is ameliorated somewhat for higher Lyman series lines, which have smaller optical
depths, but observing these lines presents other challenges.
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Figure 4.11 Illustration of aliasing in the Lyman-α forest. The observer can measure
structure only along the line of sight. However, density modes transverse
to that skewer can still leave imprints in the one-dimensional field where
they intersect it. The superposition of many such modes can mimic large-
scale fluctuations along the line of sight, aliasing power from small to large
scales.

so can be measured with data along only the line of sight. This function is
related to the three-dimensional power spectrum P3D through a Fourier trans-
form (equation 2.19). However, if we use the Lyman-α forest data alone to mea-
sure a power spectrum, we obtain only a one-dimensional power spectrum, P1D.
This is not the same as P3D, as the following argument illustrates. Let k‖ and x
be the wavenumber and distance coordinate along the line of sight. Then,

P1D(k1)=
∫
dx ξ(x)eik1x (4.34)

=
∫
dx eik1x

∫
d3k

(2π)3
P3D(k)e

−ikx . (4.35)

Note that because x is along the line of sight, the y and z coordinates vanish in
the second exponential. Now, integration over x yields a factor 2πδ(k− k1) and
implies that

P1D(k1)=
∫
dky dkz

(2π)2
P3D(

√
k2

1 + k2
y + k2

z ) (4.36)

=
∫ ∞

|k1|
dk⊥
2π

k⊥P3D(k⊥), (4.37)

where we have simplified the integral by transforming to polar coordinates
(k⊥, θ) and integrating over θ . This form shows the difficulty in measuring
long-wavelength modes: the observed one-dimensional power at a scale k1 picks
up contributions from all wavenumbers greater than this value—and weighted
toward the high-k contribution: if P3D ∝ k−n, then the observed P1D ∝ k2−n.

Thus, the Lyman-α forest is best at constraining cosmological information
on small physical scales. Of course, it is precisely these scales that are most
difficult to model, so numerical simulations are necessary for quantitative con-
straints on, for example, the matter power spectrum. This procedure also helps
constrain astrophysical parameters that affect the forest—most importantly,
the ionizing background (which sets the overall normalization) and the
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temperature (which sets the maximum wavenumber of interest through ther-
mal broadening and Jeans smoothing of the IGM features). Aliasing is partic-
ularly important at high redshifts, where the forest is saturated, so that small
fluctuations are magnified in importance.

With the advent of large-scale deep surveys, there are now plans to observe a
dense array of skewers associated with a large number of quasars and to map
the related large-scale structure in three dimensions. This exciting prospect will
provide much better constraints on the sought-after baryon acoustic oscillations
that appear on very large scales.

4.4 The Metagalactic Ionizing Background

If we presume that one can model the structure of the IGM reliably, the primary
physical input determining the opacity of the Lyman-α forest is the ionization
rate �, which in turn depends on the angle-averaged specific intensity of the
radiation background, J (m) (equation 4.13).

The equation of cosmological radiative transfer determining the evolution of
J (m) can be derived from simple arguments. First, consider the total number
of photons in an infinitesimal volume �V and frequency range �m at a time
t , N = nm�V�m, where nm is the photon number density per unit frequency
m. At some later time t +�t , this total number N must be conserved provided
photons are not absorbed or created, although both the photon frequencies and
volume will have changed by the cosmic expansion. For example, the frequency
interval becomes

�m(t +�t)≈�m(t)+�t
d�m

dt
(4.38)

≈�m(1 −H�t). (4.39)

Performing a similar operation on the volume factor and using the constancy
of N , we find

dnm

dt
= −2Hnm. (4.40)

Noting that nm is a function of both frequency and time, we therefore have

∂nm

∂t
= Hm

∂nm

∂m
− 2Hnm. (4.41)

Finally, transforming to the specific intensity Jm = (c/4π)hmnm, and allowing
for absorption and emission along the ray (just as in the standard radiative
transfer equation), we find

∂Jm

∂t
− mH

∂Jm

∂m
+ 3HJm = −cκmJm + c

4π
εm, (4.42)

where κm is the absorption coefficient, and εm is the proper emissivity (in units
of erg s−1 cm−3). Here, the second term on the left-hand side accounts for the
cosmological redshift, and the third for the dilution of the photons due to the
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Figure 4.12 Radiative transfer of ionizing photons through the IGM. Here, a central
source emits photons through the clumpy IGM. Photons near the ion-
ization threshold (a) are easily absorbed even by low–column density sys-
tems, called Lyman-limit systems. These systems are typically transparent to
higher-energy photons (b), which require higher column densities for a sub-
stantial optical depth. Nevertheless, these photons can still be absorbed by
the accumulated opacity of low–column density systems (c). If even these
clouds are rare, photons will simply redshift until they pass below the ion-
ization threshold (d). Calculating these opacities is difficult because they
depend on the background from many nearby quasars—which in turn de-
pends on the mean free path of the photons, and hence the ionization state
of the clouds.

cosmic expansion, while the first term on the right-hand side describes absorp-
tion as the photon passes through the IGM gas.

Integration of this equation gives the intensity at an observed wavelength m
and redshift z:

Jm(z) = c

4π

∫ ∞

z

dz′
∣∣∣∣ dtdz′

∣∣∣∣
(

1 + z

1 + z′

)3

εm′(z′)e−τeff,H I(m
′,z′), (4.43)

where m′ = m(1 + z′)/(1 + z) is the frequency of the photon at z′ that will have
frequency m at z, and τeff,H I ≡ − ln〈exp(−τH I〉) is the effective optical depth
of an ionizing photon as it travels through the Universe (defined similarly as
in equation 4.28). As usual, here we have ignored helium, which should be
included in the optical depth calculation and strongly affects high frequencies
(see §4.5). This optical depth depends on frequency and on the ionization state
of the IGM, as depicted in Figure 4.12. If the mean free path of an ionizing
photon is very short, so that cosmological effects can be neglected, and if we
assume that τeff,H I = r/λ(m, z), so that it scales linearly with distance traveled,
this equation simplifies to

J (m, z) =
∫ ∞

0
4πr2dr

εm(z)

(4πr)2
e−r/λ(m,z) = 1

4π
εm(z)λ(m, z), (4.44)

which shows that the two key inputs for this calculation are simply a measure
of the absorption and the emissivity. This is a reasonable approximation at high
redshifts, except for the highest-energy photons.
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The emissivity clearly depends only on the sources—galaxies and quasars—
and understanding this coefficient is a key goal of the following chapters. In
brief, stellar sources typically have relatively soft spectra: hot stars with a sur-
face temperature ∼ 30,000 K, for example, have their blackbody peak at E ∼
7 eV, and their emission luminosity declines sharply at higher photon ener-
gies. The spectrum of solar-mass stars cuts off well before the Lyman limit and
does not contribute significantly to the ionizing photon budget. Thus, because
hot massive stars have such short lifetimes, only actively star-forming galaxies
contribute to the metagalactic background. However, even their photons must
escape absorption by the gas and dust inside their interstellar medium; this
appears to be a difficult step in most known galaxy populations, where the so-
called escape fraction is only a few percent and provides a key uncertainty in ab
initio estimates of the ionizing background (see §9.2.2).

Quasars, the second important class of sources, are somewhat easier to
model, partly because they are brighter and hence easier to observe. Their in-
tense, high-energy radiation fields—typically with power-law spectra extending
to X-ray energies—produce many more ionizing photons per unit bolometric
energy output and probably allow a much larger fraction of these photons to
escape to the IGM. In practice, both kinds of sources appear to be important at
moderate redshifts (see Figure 4.8). However, beyond z ∼ 4 the bright quasar
population begins to decline precipitously, while the comoving star formation
rate remains similar in magnitude. The natural expectation is therefore that
galaxies become increasingly important at high redshifts.

4.4.1 The Mean Free Path of Ionizing Photons

The optical depth factor is determined by absorption in the IGM—and hence
the Lyman-α forest. If we ignore line absorption processes, so that only bound-
free opacity contributes to τeff,H I, we can easily write an expression for the mean
free path from the column density distribution. The total opacity of the IGM per
unit redshift at a frequency m is just the sum of the opacities of all the individual
absorbers,

dτeff,H I(m)

dz
=

∫
dNH I

d2N

dNH I dz
[1 − exp{−τ(m, NH I)}], (4.45)

where the optical depth of an absorber to ionizing photons is τ(m, NH I) =
NH IσH I(m). To estimate the mean free path, we simply convert this expression
to a comoving path length:

λ(m, z) = dr/dz

dτH I,eff(m)/dz
, (4.46)

where dr/dz is the comoving line element.
Given the distribution function of Lyman-α absorbers, this is a well-posed cal-

culation, so it might appear to be straightforward to predict the mean free path
from first principles. However, recall that τα is itself a function of �, which in
turn depends on λ(m, z). Self-consistently predicting the attenuation—and with
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Figure 4.13 Metagalactic ionizing background spectrum at z = 1.1, 3.0, 4.9, and 6.9, in
the same theoretical model as Figure 4.8. The units correspond to Jm,−22 =
Jm/(10−22 erg cm−2 s−1 Hz−1 sr−1). The dark and light lines show models
with galaxies and quasars, and only quasars, respectively. The vertical lines
bracket the Lyman-series transitions of H I and He II. Haardt, F., & Madau,
P., Astrophys. J., 746 125 (2012). Reproduced by permission of the AAS.

it the ionizing background—is therefore a rather complex problem that must be
attacked iteratively. Figure 4.8 shows the resulting �(z) from one such calcula-
tion. The solid curve shows the net ionizing background, while the two dashed
curves show the contributions from quasars and star-forming galaxies (the for-
mer peaks at z ∼ 2; the latter assumes an escape fraction that increases rapidly
toward higher redshifts). Note that the total quasar emissivity is well measured
to z ∼ 5, and the rapid decline at high redshifts z > 3 is unavoidable. Thus, it
appears that stars and quasars are both important for the ionizing background,
each dominating at a different cosmological epoch.

Figure 4.13 shows the metagalactic ionizing background spectrum in the
same calculation at four different redshifts. In each panel, the dark and light
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curves show models with and without star-forming galaxies; including these
dramatically softens the spectrum, especially at high redshifts. The light vertical
lines demarcate the wavelength range between the Lyman-α line and ionization
edge for H I and He II. This calculation includes line transfer effects, which are
quite important in these regimes when the gas is not fully ionized (see §6.1.4).
The sharp break at the H I ionization edge occurs because the Universe is so
optically thick to these photons.

Does most of the opacity originate from these high–column density systems
with τH I > 1 or from the accumulated opacity of lower–column density sys-
tems? Let us suppose for simplicity that d2N/dNH I dz = A[NH IσH I(m)]−β
≈ Aτ

−β
H I(m/mH I)

−3β , where τH I is defined at the ionization threshold; as dis-
cussed previously, a single power law with β ≈ 3/2 provides a crude but rea-
sonable approximation to the observed distribution. The mean free path is then
(for 1 ≤ β ≤ 2)

λ(m)=
[

A

σH I(mH I)

]−1 (
m

mH I

)−3(1−β) [∫ ∞

0
dτH I τ

−β
H I(1 − e−τH I)

]−1

(4.47)

≈ 1

�G(2 − β)
λLLS

(
m

mH I

)−3(1−β)
. (4.48)

Here, �G(x) is the Gamma function (not to be confused with the ionization
rate). We have assumed that the absorbers span the range from τH I � 1 to
τH I � 1 (with a single power law), and λLLS is the mean free path at the ion-
ization edge including absorption only from systems with τH I > 1 (we nor-
malize to this value because it is relatively easy to measure). For β = 1.5,
λ(mH I) ≈ 0.56λLLS, so ∼ 56% of the absorption comes from the opaque sys-
tems. However, Figure 4.9 shows that at z ∼ 3.7 the observed distribution flat-
tens significantly throughout (at least) the upper end of the LLS regime, with
β ≈ 1.2. In that case, λ(mH I) ≈ 0.86λLLS, and the high–column density systems
provide much more of the opacity. The evolution and distribution of these LLSs
is therefore crucial to understanding the ionizing background.

Clearly, the mean free path is much longer for high-energy photons: with the
canonical value β = 3/2 we have λ ∝ m3/2. This is a much weaker dependence
than the λ ∝ m3 expected in a uniform IGM—its clumpiness is crucial in reg-
ulating the high-energy background. Indeed, only DLAs can efficiently absorb
photons in the X-ray regime.

The redshift evolution of LLSs therefore provides important insight into the
ionizing background, even if these systems may not dominate the total absorp-
tion. Fortunately, as we saw in §4.3.3, they are relatively easy to identify even at
high redshifts. Recent surveys have established the LLS abundance reasonably
well at 0 < z < 6; the additional assumption that d2N/dNH I dz ∝ N

−β
H I with

β ≈ 1.1–1.5 (and constant with redshift) yields a mean free path at the Lyman
edge of9

λ(mH I) ≈ (50 ± 10)
(

1 + z

4.5

)−4.44±0.3

proper Mpc. (4.49)
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Extrapolation to z ∼ 6 (10) yields a mean free path of ∼ 7 (1) proper Mpc—
during the era of the first galaxies, ionizing photons suffered much more at-
tenuation than at later times. This obviously led to strong fluctuations in the
ionizing background and substantially affected the process of reionization. We
will consider the importance of LLSs in more detail later: in essence, they reg-
ulated the end of reionization and provided the “matching condition” from the
epoch of reionization to later times (see §9.5).

Despite the relative ease of finding LLSs, their physical nature remains ob-
scure. Although the self-shielded absorbers are opaque to photons at the ion-
ization edge, the strong frequency dependence of the ionization cross section
implies that they are transparent to higher-energy photons. Typically, this im-
plies that LLSs are themselves highly ionized. If we assume that a system with
column densityNH I is opaque to all photons with m < mmin and that ε(m) ∝ m−α ,
we have an effective ionization rate reaching the interior of the absorbers � ∝
[NH IσH I(mH I)](−α+3β−6)/3, so according to equation (4.20) the residual neutral
fraction is

xH I ∼ 2.2 × 10−4T −0.59
4 �

−1/3
12 [NH IσH I(mH I)](−α+3β−6)/3. (4.50)

Here, we have set our fiducial value of δ to match that of an LLS (at the ioniza-
tion edge) at z ∼ 3 using the relation

1 + δLLS = 320 T 0.17
4 �

2/3
12

(
1 + z

4

)−3

, (4.51)

which follows from equation (4.30) if we set NH I = NH I,LLS.
Equation (4.51) shows that at moderate redshifts these objects have overden-

sities comparable to those inside virialized halos. As such, they are difficult to
model and require high-resolution numerical simulations of the structure of
gas around galaxies, coupled with a large enough cosmic volume, to represent
adequately the cosmic radiation field. Explanations for their origin range from
low-mass dark matter halos without substantial star formation to the accretion
of cold gas onto galactic halos from filaments in the cosmic web.

To complicate matters further, the very nature of these LLSs may evolve at
higher redshifts. Even if we assume optimistically that the ionizing background
remains constant, equation (4.51) shows that δLLS ∼ 20 at z ∼ 10. This illus-
trates how dangerous it can be to make inferences about the epoch of reioniza-
tion from extrapolations of features at low or moderate redshifts.

4.4.2 Fluctuations in the Ionizing Background

Because ionizing photons can travel only finite distances and are generated by
discrete sources, one naturally expects fluctuations in the amplitude (and possi-
bly shape) of the ionizing background. In practice, these are very small at z < 5,
because λ is relatively large (see §4.4.1), and the ionizing sources are relatively
common (particularly galaxies, provided their escape fraction of ionizing pho-
tons is nonzero). But these fluctuations inevitably become important at higher
redshifts (especially toward the epoch of reionization).
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These fluctuations are sourced by both large-scale density fluctuations and
stochastic variations in the number counts of the sources; the latter are most
important when the number of sources within ∼ λ3 is small. The effects of the
density field can be simply esimated by computing the variance of the source
population over one attenuation length, b̄σ (R = λ), where b̄ is the average bias
of the sources. At z ∼ 3, taking b̄ ∼ 3 and λ ∼ 300 Mpc, we obtain fractional
fluctuations of ∼ 2%, which is indeed close to more precise numerical estimates
and is mostly negligible. However, at z ∼ 6, the same average bias but with
λ ∼ 50 Mpc implies fluctuations of ∼ 10%. At earlier times, or if the mean free
path is even smaller, these fluctuations will only increase. This change in fluctu-
ation amplitude could be important for regulating the temperature of the IGM,
which in turn affects the accretion of baryons onto galaxies (see §9.9). More so-
phisticated models for the fluctuations can be constructed using the halo model
(§3.6.1) by replacing the halo density profile with the radiation intensity profile
around each source (see §12.3.1 for a similar application). Such calculations
show fluctuations comparable in magnitude to our simple estimate.10

4.5 The Helium-Ionizing Background

About 7% of the IGM gas (by number of atoms, or 24% by mass) is composed of
helium atoms. Helium’s first ionization potential is 24.6 eV, and the second is
54.4 eV. Photons above these thresholds can therefore also interact with these
species. The former is sufficiently close to the H I threshold that even stellar
sources can ionize the first electron, provided they can do the same to H I.
However, normal stars do not produce significant numbers of photons above
54.4 eV to ionize He II, so the full ionization of helium requires quasars.

The ionization cross section for He II follows the same form as in
equation (4.14). Like σH I, this cross section also scales as m−3 near threshold.
He II is also more difficult to keep ionized because it recombines faster than
hydrogen; its case-B recombination coefficient is αB = 1.53 × 10−12 cm3 s−1 at
T = 20,000 K. The recombination timescale for gas at the mean density there-
fore remains smaller than the age of the Universe down to z < 3. Thus, He II
atoms may recombine many times over the age of the Universe.

Other than making these changes to the input parameters (and the trivial
change of including electrons from both helium and hydrogen), we can com-
pute the helium-ionizing background �He II in the same way as we did for H I.
Because of the lower ionizing background and faster recombination rate, He II
is usually significantly more common than H I, despite the lower intrinsic
abundance of helium. This relationship is parameterized by

η ≡ NHe II

NH I
≈ 1.77

�

�He II
, (4.52)

where in the second equality we have assumed that the system is optically thin
to ionizing photons for both species. Even after helium reionization, �He II ∼
10−14 s−1, so η ∼ 100.
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Because of the large ionization cross section and rapid recombination time,
the Universe remains optically thick to He II-ionizing photons until relatively
late (or, in other words, the mean free path of these photons is many times
shorter than that of photons below the He II ionization threshold). As a result,
there is typically a substantial break in the ionizing background at the He II
ionization edge until that species is fully ionized at z ∼ 3 (see Figure 4.13).
Moreover, the He II–ionizing background has much stronger fluctuations than
the H I–ionizing background, both because of the short attenuation length and
because only rare quasars contribute to it.

For the most part, the properties of this high-energy background have little
effect on the H I Lyman-α forest; however, the photoheating that occurs as the
helium is ionized affects the hydrogen as well. The process is identical with
that described for H I reionization in equation (4.23) (except with nH → nHe).
Moreover, the hard spectra of quasars quite efficiently inject energy into the
helium gas, so (despite the relative rarity of helium atoms in the IGM) the total
temperature increase can be comparable to that during hydrogen ionization.
Once helium is reionized at z ∼ 3, any influence of hydrogen reionization on
the gas is largely erased.

4.6 Metal-Line Systems

So far we have focused on absorption by neutral hydrogen in the IGM as a
prime observational probe. Can other elements be used as well? Helium is an
obvious candidate, but its Lyman-α line resides in the far-UV (with a rest wave-
length of 304 Å) and is difficult to probe (although it has proved useful to study
the He II–ionizing background). Hydrogen and helium are, of course, the pri-
mary elements produced in the Big Bang, but heavier elements do exist in the
IGM owing to ejection and stripping from galaxies, where they are produced
through star formation.

The typical abundance of heavy elements in the IGM is small—with a me-
dian value 〈Z〉 ∼ 10−3Z�—but the absorption is still substantial. If we make
the simple assumption that the metals are uniformly distributed, we can re-
peat the fluctuating Gunn-Peterson approximation. From equation (4.10), τ ∝
nXifoscλi , where nXi is the number density of the relevant species, fosc is the
oscillator strength of the transition, and λi is its rest wavelength. We then find
that the optical depth of an IGM patch to a given transition is

τXi = 0.097fi(1 + δ)

(
X

3.6 × 10−7

) (
fosc

0.191

) (
λi

1548 Å

) (
1 + z

7

)3/2

, (4.53)

where fi is the fraction of the element in the appropriate ionization state, and
X is the abundance by number of the element relative to hydrogen. The fidu-
cial choices correspond to the stronger line in the C IV λ1548, 1551 doublet
with Z = 10−3 Z�; Table 4.1 lists several other important transitions for low-
and high-z work. As we will see later, the assumption of a constant metallicity
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Table 4.1 Important IGM Metal-Line Transitions.

Element nX/nH (×104, for Z�) Ionization state λ (Å) fosc

Carbon 3.58
C II 1334.5 0.128
C IV 1548.2∗ 0.191
C IV 1550.8∗ 0.095

Oxygen 8.49
O I 1302.2 0.049

O VI 1031.9∗ 0.133
O VI 1037.6∗ 0.066

Silicon 0.33
Si II 1304.4 0.094
Si IV 1393.8∗ 0.514
Si IV 1402.8∗ 0.255

Iron 0.30
Fe II 1608.5 0.058
Fe II 2344.2 0.114
Fe II 2382.8 0.300

∗ Member of doublet

throughout the IGM is most certainly wrong, but it may be reasonable on the
scale of a single absorbing system.

Clearly, the optical depth can be substantial, even in relatively low density
gas, provided the gas is in the appropriate ionization state. This makes absorp-
tion from metals, not just H I, a useful probe of the IGM. In particular, the
fluctuations in metal abundance trace the production and dispersal of heavy el-
ements after the Big Bang (due to star formation), and their ionization states
probe the metagalactic radiation background.

In the diffuse IGM at low and moderate redshifts, the best lines for these
purposes are highly ionized states of the most common heavy elements, espe-
cially carbon, silicon, and oxygen. These make a particular interesting probe of
the radiation background near the He II ionization edge. C III and Si IV have
ionization potentials of 47.888 and 45.142 eV, respectively; these two species
should therefore evolve similarly, unless higher-energy photons are able to fur-
ther ionize one but not the other. In fact, C IV and Si V require 64.492 and
166.77 eV to be ionized. The latter energy is relatively large, but once He II is
ionized to He III, the universe becomes transparent to photons that can ionize
C IV, and such photons are still relatively common. We might therefore expect
C IV and Si IV to be relatively abundant absorbers until He II reionization is
complete at z < 3, after which the C IV abundance is substantially reduced.

Both of these species are also very useful from an observational perspective,
because they have doublet transitions redward of H I Lyman-α. A transition
with λi > λα is unaffected by H I absorption in the interval zmin < z < zs ,
where zs is the redshift of the background source, and

(1 + zmin) = (1 + zs)
λα

λi
. (4.54)

Absorbers in this range produce isolated absorption features against the red
continuum of the source. Figure 4.5 shows several examples: most of the
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absorption features redward of Lyman-α in the rest frame of the source are
IGM metal lines (although peculiar velocities could introduce a small number
of Lyman-α absorption features just beyond the source redshift); note that they
are typically weaker than the forest features but nevertheless are clearly visible.
Doublet transitions are particularly interesting, because they make the species
causing the absorption easy to identify, even in some cases without our know-
ing anything about the H I absorption. A particularly important such doublet
is C IV λ1548, 1551, some examples of which are shown in the top panels of
Figure 4.14. The doublets clearly stand out redward of Lyman-α.

An exception to this rule is provided by oxygen, whose fifth ionization state
(O VI) is an important observational tracer despite the fact that its primary ab-
sorption feature is a doublet blueward of H I Lyman-α at 1032, 1038 Å. This
transition therefore suffers from contamination by the H I forest, but because
it is a doublet it can sometimes still be measured. It is particularly useful for
constraining the properties of hot gas, because the ionization potential of O V
is 77.413 eV.

In neutral gas, which we expect to dominate very early in the history of the
Universe, the relevant ions are different. For example, C I has an ionization
potential of 11.26 eV, so provided there is a source of UV photons—even if the
H I ionizing photons are attenuated—carbon atoms will preferentially turn into
C II (which has an ionization potential of 24.383 eV and so cannot be ionized in
gas that is optically thick to hydrogen-ionizing photons). Iron, another common
heavy element, and silicon occupy their first ionization state for similar reasons.

A particularly interesting case is oxygen, whose first ionization potential is
13.618 eV—nearly equal to that of H I. As a result, these two species should be
locked in charge exchange equilibrium through the interaction

O0 + H+ ↔ O+ + H0 (4.55)

whose equilibration timescale is ∼ 1/kcenH I ∼ 2×105xH I(1+δ)[(1+z)/7]3 yr,
which is much shorter than the Hubble time (where kce is the collisional rate
coefficient). Thus, dual observations of O I and H I provide an estimate of the
metallicity (or, if that can be guessed, of the neutral fraction of H I) even when
the H I Lyman-α line is highly saturated.

Note that all these transitions relevant to neutral gas are singlets, so they are
more difficult to identify than the C IV and Si IV lines in an ionized gas. This
means that the transitions must be identified in combination with each other
(or H I), with the additional complication that the different elements may have
different abundances. The bottom panel of Figure 4.14 shows such a system
at z = 5.88. In this case, absorption is detected in C II, O I, and Si II lines,
which provides solid evidence for a real absorber. Note that this system has no
apparent absorption in the high ionization states C IV or Si IV. At lower red-
shifts, systems that are self-shielded enough from the metagalactic background
to host substantially neutral gas are DLAs, which are associated with galaxies
and so always host highly ionized gas as well.

At moderate redshifts, C IV absorbers are the most commonly studied (pri-
marily because they are the easiest to find), with metal absorption visible in



chapter4 August 29, 2012

124 CHAPTER 4

Re
la

tiv
e 

flu
x

1.066 1.068 1.070 1.072 1.074 1.076

1.5 CFHQS1509
z = 5.91578

(14.02, 48.8)

0.5

0

1.0

Re
la

tiv
e 

flu
x

0.918 0.920 0.922 0.924

1.5 SDSS1030
z = 4.94814

(13.77, 33.9)

(14.59, 50.3)

0.5

0

1.0

Re
la

tiv
e 

flu
x

N
or

m
al

iz
ed

 fl
ux

1.006 1.008 1.010 1.012 1.014

1.5 SDSS1030
z = 5.51695

(14.02, 73.0)

0.5

0

1.0

Wavelength (μm)

0.5

0

1.0

100
Δv (km s–1)

0–100

Re
la

tiv
e 

flu
x

1.038 1.040 1.042 1.044 1.046

1.5 SDSS1030
z = 5.72438

C  IV  1550.77

C  IV  1548.20

Si  IV  1402.77

Si  IV  1393.76

Si  II  1304.37

Si  II  1260.42

C  II  1334.53

O  I  1302.17

0.5

0

1.0

Wavelength (μm)

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

Figure 4.14 Examples of high-z metal absorption systems. Top: Several C IV doublets
discovered with the Magellan Baade Telescope. The upper histograms show
the data; the lower histograms show the errors. The solid curve in each
panel is a Voigt profile fit to the two components of the doublet; the column
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most individual systems with NH I > 1015 cm−2 at a metallicity Z ∼ 10−2 Z�.
They can also be detected statistically in much less dense systems, which im-
plies a median metallicity in forest absorbers of Z ∼ 10−3 Z�.11 Many other
transitions are detectable in higher–column density systems, especially in the
DLA range (where the neutral gas makes transitions like C II and O I useful,
although these systems usually have many different absorption components,
some of which are also highly ionized); these are well understood as being due
to internal metal enrichment of galaxies. O VI has also received intense atten-
tion as a possible proxy for the hot, collisionally ionized gas in galactic winds.

Despite the relative wealth of observations of metal absorption, the physics
behind metals in the IGM remains mysterious. The forest absorbers themselves
correspond to gas near or above the mean cosmic density, and such sheets and
filaments fill only a relatively small fraction of the volume. Thus, observations
currently require only> 10% of space to be enriched with metals. The key ques-
tion is how and when did this enrichment occur: many models appeal to winds
from the first galaxies, but more powerful winds from star-forming galaxies at
lower redshift are also a plausible explanation. More precise measurements of
the spatial distribution of the metals (especially in comparison with samples of
galaxies), their abundance patterns, and the evolution toward higher redshift
may help constrain or eliminate some of these models, which we will discuss
in §6.5.2.

4.7 The Lyman-α Forest at z > 5

We now turn to the Lyman-α forest at very high redshifts, approaching the time
of reionization and the first galaxies. As equation (4.33) shows, the absorption is
quite thick by z ∼ 5.5 when τeff,α ∼ 2.6, with only ∼ 7% of the light transmitted.
Past that point, the forest thickens even more rapidly, so that very little light is
transmitted. Figure 4.15 shows this result in detail using measurements from
quasars discovered with the Sloan Digital Sky Survey. Note the turn to higher
effective optical depths at z ∼ 6 in comparison with the smooth evolution at
lower redshifts.

Of course, this low level of transmission is not uniform across the entire spec-
trum owing to the density fluctuations in the cosmic web. The small

Figure 4.14 (Continued.) density NC IV and Doppler width b are listed in parentheses
in each panel. Bottom: An example low-ionization absorber at z = 5.8765
toward the quasar SDSS J0818+1722 discovered with the Keck telescope.
The solid dark lines are the data; the errors are shown as the lower lines
in each panel. Shaded regions represent detected transitions. The H I
lines are completely saturated in both absorbers. Simcoe, R. A., et al.
Astrophys. J. 743, 21 (2011, top panels); Becker, G. D., Astrophys. J. 735, 93
(2011) astro-ph/1101.4399 (bottom panels). Reproduced by permission of
the AAS.
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Figure 4.15 Measurements of the effective optical depth in the Lyman-α transition at
high redshifts. The small filled circles at z > 5 are direct measurements
from the Lyman-α forest, the open circles are measurements from Lyman-β
absorption translated into Lyman-α, and the filled squares are the same for
Lyman-γ . The large filled circles with error bars show the average inferred
from the Lyman-α and Lyman-β measurements. At z > 5.5, τeff ∝ (1 + z)11

or possibly even steeper. Fan, X., et al., Astron. J. 132, 117 (2006). Repro-
duced by permission of the AAS.

pockets of residual transmission correspond to underdense regions in the IGM.
At z ∼ 5–6, these pockets are sufficiently common that the forest can still
be used to measure the properties of the IGM, and in particular the ionizing
background—which appears to be several times smaller than at lower redshifts
(with �12 ∼ 0.2; see Figure 4.8).

Unfortunately, beyond that point the Lyman-α forest itself becomes too thick
to model robustly; in fact, it is so thick that one can no longer pick out indi-
vidual absorbers, and it is more intuitive to use the fluctuating Gunn-Peterson
approximation. If one then has a model for the volume-weighted probability
distribution of the IGM density p(δ), the effective optical depth is simply given
by equation (4.27). The function p(δ) is easy to describe qualitatively: it must
peak near δ ∼ 0, with a long tail toward high densities (describing collapsed
structures) and another tail toward underdense voids that is truncated below
a value δ = −1 (corresponding to space with no matter). Because all mat-
ter with �> 100 is inside virialized objects, the density profile of these halos
determines the shape of the high-δ tail: for power-law density profiles, equa-
tion (4.26) shows that with �12 ∼ 0.2 at z ∼ 6, τα ∼ 65(1 + δ)2 (if we ig-
nore the weak temperature dependence), which requires −1 < δ < −0.8 for
measurable transmission. The leftmost solid line in Figure 4.16 illustrates this
relationship explicitly, showing the contributions to the effective optical depth
integral (equation 4.27), assuming a simple model for p(δ) and a uniform IGM
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Figure 4.16 Logarithmic integrand y(1 + δ)p(δ) ∝ 〈y〉 in a simple model of the IGM
density distribution. The three solid curves use the optical depth in the
Lyman-α, Lyman-β, and Lyman-γ transitions (from left to right) for y; they
thus show the integrands in equation (4.27) and its analogs for the higher-
order transitions. The dashed lines show a similar calculation for the neu-
tral fraction, with both volume and mass weighting (the latter peaks to the
right of the plot). All curves assume a uniform �12 = 0.04 at z = 6.15 and
an isothermal temperature–density relation. Oh, S. P., & Furlanetto, S. R.,
Astrophys. J. 620, L9 (2005). Reproduced by permission of the AAS.

temperature and ionizing background. Note that the transmission originates
from very low density gas. In contrast, the dashed curves show the analogous
integrand if one wished to compute the average neutral fraction in the same
simple model: the overlap between these curves and the Lyman-α contribution
is essentially the fraction of neutral gas sampled directly by the Lyman-α for-
est. Understanding the rest of the neutral gas requires extrapolation from this
low-density regime.

Thus, the crucial piece of the integral involves the tip of the low-density
tail (note that these voids are actually in the nonlinear regime), which is very
difficult to model robustly without large numerical simulations. Even then, to
measure the mean neutral fraction of the entire IGM one must extrapolate to
significantly higher densities, which constitutes a highly uncertain operation.
Conservatively, the observed transmission requires only a very small neutral
fraction, xH I < 10−4, at the mean density.12 Thus, the increasing optical depth
of the forest with redshift is not necessarily a flag of the tail end of reionization;
careful modeling of the forest is required to reach such a conclusion.

A few options can help improve this measurement and extend the useful-
ness of the Lyman-α forest to higher redshifts. The first is to use a different
aspect of the forest: one probe that appears promising is to use large-scale vari-
ations in its optical depth, which may be modulated by the contrast between
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neutral and ionized regions in the IGM. For example, some lines of sight at
z > 6 show completely saturated absorption even in deep spectra, while others
show clear transmission. Unfortunately, as described in §4.3.4, fluctuations in
the absorption are dominated by the aliasing of small-scale modes in the density
field, which tend to mask the underlying large-scale fluctuations. Moreover, the
extremely underdense voids that allow transmission tend to lie in large-scale
underdensities, which exaggerates their variance (i.e., they cluster just like rare,
massive halos). Thus it is so far difficult to use these variations to constrain the
neutral fraction quantitatively.

A second option is to use a higher Lyman-series line: so far, Lyman-β
(with λβ = 1026 Å) and Lyman-γ (with λγ = 972 Å) have been used. From
equation (4.11), in a uniform medium τ ∝ foscλi ; for Lyman-β and Lyman-γ ,
these factors give τα/τβ = 6.25 and τγ /τα = 17.9—which on their face could
provide a huge boost to the transmission. However, in practice, the observ-
able τeff changes much less, because the inhomogeneous IGM moderates the
difference—in most models, τeff increases only a few times.13 However, Fig-
ure 4.16 shows that these transitions do require less extrapolation to moderate
densities.

Of course, this improvement has a price. The primary difficulty is that the
higher transitions are visible only at λobs < λβ,γ (1 + zs), which is inside the
Lyman-α forest of the same source (albeit at a lower redshift, z < λβ,γ /λα(1 +
zs), where the transmission is larger). One must therefore account for this un-
known foreground absorption, which introduces extra errors. Nevertheless, the
higher Lyman-series lines do appear to be more sensitive than Lyman-α, and
they indicate a steepening in the effective absorption of the IGM and hence pos-
sible stronger evidence for an increasing neutral fraction at z > 6. Figure 4.15
shows this explicitly—the open circles and filled squares represent inferences
from Lyman-β and Lyman-γ , respectively (converted to the expected Lyman-α
optical depth using a simple model for the IGM). The measurements provided
by these transitions are significantly more sensitive than Lyman-α on its own.

One complication regarding these lines is that because they probe slightly
different densities than Lyman-α, they may also sample different temperatures
if the gas is no longer isothermal (γ �= 1). Indeed, as discussed in §4.3.1, the
IGM is expected to have such a density–temperature relation once the gas re-
laxes after being heated during reionization. The temperature effects on the
optical depth also makes inferences about � more difficult (see equation 4.26).
However, it also offers a route to measuring this temperature–density relation
and through it constraining the time of reionization (with the complication that
denser regions may have reionized earlier than underdense regions; see §9.9.1).

Finally, instead of choosing weaker Lyman-series lines one can study rarer
elements—the metal lines. With the forest saturated, it is no longer possible
to associate these lines with H I features; however, they can still be detected
individually as long as they appear redward of λα(1 + zs) (see equation 4.54).
Of course, one must then determine which species causes the observed line, for
example, by detecting multiple absorbers from the same redshift. Although this
wavelength range stretches into near-IR wavelengths for z > 6, such surveys are
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possible with modern instruments and present an exciting frontier for pushing
into the cosmic dawn.

Two other probes of the ionization state of the IGM are useful as more di-
rect measurements of the reionization process: the so-called red damping wing
(which refers to the Lyman-α absorption profile far to the red of line center,
where the optical depth is of the order of unity even in a completely neutral
medium) and the proximity effect (which refers to the highly ionized zone sur-
rounding individual bright sources). We discuss these probes in chapter 11.
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Chapter Five

The First Stars

The formation of the first stars tens or hundreds of millions of years after the
Big Bang marked a crucial transition in the early Universe. Before this point,
the Universe was elegantly described by a small number of parameters. But as
soon as the first stars formed, complex chemical and radiative processes en-
tered the scene. Today, 13.7 billion years later, we find very complicated struc-
tures around us. Even though the present structures inside galaxies are a direct
consequence of the simple initial conditions in the early Universe, the relation-
ships among them were irreversibly blurred by complex processes over many
decades of scales that cannot be fully simulated with present-day computers.
Complexity reached its peak with the emergence of biology out of astrophysics.

The next section of this book considers the emergence of this complexity
during the first stages of galaxy formation. We will study the appearance of the
first stars, their feedback processes, and the resulting ionization structures that
emerged during and shortly after the cosmic dawn. We start with a brief outline
of the prevailing (though observationally untested) theory for this cosmological
phase transition and then flesh out its details over the next two chapters.

As we saw seen in chapters 3 and 4, the development of large-scale cosmic
structures occurs in three stages, as originally recognized by the Soviet physi-
cist Yakov Zel’dovich. First, a region collapses along one axis, making a two-
dimensional sheet. Then, the sheet collapses along the second axis, making a
one-dimensional filament. Finally, the filament collapses along the third axis
into a virialized halo. A snapshot of the distribution of dark matter at a given
cosmic time should show a mix of these geometries in different regions that
reached different evolutionary stages (owing to their different densities). The
sheets define the boundary of voids whence their material was assembled; the
intersections of sheets define filaments, and the intersections of filaments de-
fine halos—into which the material ultimately drains. The resulting network of
structures, shown in Figure 4.1, delineates the so-called cosmic web. Gas tends
to follow the dark matter (except within shallow potential wells, owing to its
finite pressure).

Computer simulations have provided highly accurate maps of how the dark
matter is expected to be distributed, since its dynamics is dictated only by grav-
ity, but, unfortunately, this matter is invisible. As soon as ordinary matter is
added, complexity arises because of its cooling, chemistry, and fragmentation
into stars and black holes. Although theorists have a difficult time modeling
the dynamics of visible matter reliably, observers can monitor its distribution
through telescopes. The art of cosmological studies of galaxies involves a
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Figure 5.1 Cooling rates as a function of temperature for a primordial gas composed
of atomic hydrogen and helium, as well as molecular hydrogen, in the ab-
sence of any external radiation. We assume a hydrogen number density
nH = 0.045 cm−3 corresponding to the mean density of virialized halos at
z = 10. The plotted quantity �/n2

H, where � is the volume cooling rate (in
erg cm3 s−1), is roughly independent of density (unless nH > 10 cm−3). The
solid line shows the cooling curve for an atomic gas, with the characteristic
peaks due to collisional excitation of hydrogen and helium. The dashed line
shows the additional contribution of molecular cooling, assuming a mole-
cular abundance equal to 1% of nH. Reprinted from Phys. Rep., 349, 125,
Barkana, R., & Loeb, A., “In the beginning: The first sources of light and
the reionization of the universe,” 125–238, Copyright 2001, with permission
from Elsevier.

delicate dance between what we observe but do not fully understand and what
we fully understand but cannot observe. The next several chapters describe this
methodology.

When a dark matter halo collapses, the associated gas falls in at a speed com-
parable to Vc in equation (3.31). When multiple gas streams collide and settle to
a static configuration, the gas shocks to the virial temperature Tvir in equation
(3.32)—at which it is supported against gravity by its thermal pressure. At this
temperature, the Jeans mass equals the total mass of the galaxy. For fragmen-
tation to occur and stars to form, the collapsed gas has to cool and get denser
until its Jeans mass drops to the mass scale of individual stars.

Cooling of the gas in the Milky Way galaxy (the interstellar medium, or ISM) is
controlled by abundant heavy elements, such as carbon, oxygen, and nitrogen,
which were produced in the interiors of stars. However, before the first stars
formed no such heavy elements were present and the gas was able to cool only
through radiative transitions of atomic and molecular hydrogen. Figure 5.1 il-
lustrates the cooling rate of the primordial gas as a function of its temperature.
Below a temperature of ∼104 K, atomic transitions are not effective because
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collisions among the atoms do not carry sufficient energy to excite the atoms
and cause them to emit radiation through the decay of the excited states. Since
the first gas clouds had a virial temperature well below 104 K, cooling and frag-
mentation of the gas had to rely on an alternative coolant with sufficiently low
energy levels and a correspondingly low excitation temperature, namely, mole-
cular hydrogen, H2. Hydrogen molecules could have formed through a rare
chemical reaction involving the negative hydrogen (H−) ion in which free elec-
trons (e−) act as catalysts. After cosmological recombination, the H2 abundance
was negligible. However, inside the first gas clouds, there was a sufficient abun-
dance of free electrons to catalyze H2 and cool the gas to temperatures as low
as hundreds of Kelvins (similar to the present temperature range on Earth). In
this chapter, we focus on how this cooling took place and the properties of the
stars that formed out of primordial gas.

However, this is far from the entire story, because once the first stars formed
the initial conditions for other stars immediately became more complex. The
feedback processes that set these conditions are the main subject of the next
chapter. In particular, the hydrogen molecule is fragile and can easily be bro-
ken by UV photons (with energies in the range 11.26–13.6 eV), to which the
cosmic gas is transparent even before it is ionized. The first population of stars
was therefore suicidal. As soon as the very early stars formed and produced a
background of UV light, this background light dissociated molecular hydrogen
and suppressed the prospects for the formation of similar stars inside distant
halos with low virial temperatures Tvir.

To understand how structures proceeded from the first stars to subsequent
generations, we must therefore understand feedback processes—in this case, UV
and X-ray radiative feedback. We therefore examine in some detail the growth
of these radiation backgrounds (in chapter 6) and how they may have affected
star and galaxy formation. In this chapter, we also discuss how the chemistry of
cooling changed dramatically when halos with Tvir > 104 K formed. In such ob-
jects, atomic hydrogen was able to cool the gas and allow fragmentation even in
the absence of H2—such halos were thus immune to the radiation background.

The youngest stars in the Milky Way galaxy, with the highest abundance of
elements heavier than helium (referred to by astronomers as “metals”)—like
the Sun—were historically categorized as Population I stars. Older stars, with
much lower metallicity, were called Population II stars, and the first metal-free
stars were referred to as Population III.

Of course, because these same stars also produced heavy elements, which
affected the chemistry and cooling of the gas, we must also track chemical feed-
back: how these elements were generated inside dark matter halos and how
mechanical processes, most likely from supernovae or AGN, distributed these
heavy elements within their parent halos and throughout the IGM (and hence
the halos that assembled from it). We also discuss this enrichment process in
chapter 6.

When these feedback mechanisms are included, the first structures to have
formed stars likely could not continue to do so, at least for a time. Only later,
possibly when atomic cooling became possible, would larger halos develop in
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which self-sustaining “galaxies” could form. These long-lived objects will be
much easier to observe than their predecessors and hence will provide an im-
portant marker in structure formation, especially for observers.

Unlike in the previous chapters, in which much of the physics is clearly un-
derstood with reference to observations at low or moderate redshifts, the first
stars and galaxies—and their immediate descendants—have yet to be observed.
We therefore focus in these chapters on the fundamental physical processes
that shaped early star formation but sketch only a preliminary picture of how
these processes fit together in producing the first luminous objects in the real
Universe.

5.1 From Virialized Halos to Protostars

We have already seen that gravity drives the bottom-up hierarchy of structure
formation characteristic of CDM cosmologies; however, at lower masses, gas
pressure delays the collapse. The first baryonic objects to collapse are those
just above the mass scale that allows accretion, the Jeans scale. Such objects
reach virial temperatures of several hundred degrees and can fragment into
stars only through cooling by molecular hydrogen, whose rate depends on the
initial temperature (and hence mass) of the object. If this cooling occurs faster
than the dynamical time, the halo gas will collapse rapidly to form stars. In
other words, there are two independent minimum mass thresholds for star
formation: the filter mass (related to accretion and discussed in §3.2) and the
cooling mass (related to the ability of the gas to cool over a dynamical time).
For the very first objects, the cooling threshold was somewhat higher and set
a lower limit on the halo mass of ∼5 × 104M� at z ∼ 20. In this section, we
examine this cooling process in detail.

Specifically, in this section we consider stars forming out of primordial gas
inside low-mass dark matter halos (in which the virial shock is not sufficient to
ionize the infalling gas) without any influence from other stars or black holes
in the Universe. These initial conditions led to what are now called Population
III.1 stars; we consider an alternative pathway for primordial star formation in
the next section. The basic steps described here are illustrated in Figure 5.2.

5.1.1 Chemistry of the Primordial Gas

The primordial gas out of which the first stars were made was 76% by mass
hydrogen and 24% helium. It lacked any elements heavier than lithium, be-
cause the cosmic expansion rate was too fast to allow the synthesis of heavier
elements through fusion reactions during Big Bang nucleosynthesis.

Before elements heavier than helium were produced in stellar interiors, the
primary species to reach sufficient abundance to affect the thermal state of the
pristine cosmic gas was molecular hydrogen, H2.1 The dominant H2 formation
process was

H + e− → H− + hm, (5.1)
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(a) Gas accretion onto dark matter 
halo; heating to virial temperature

(b) Buildup of H2 and recombination 
of H I until saturation

(c) Radiative cooling via H2 and 
collapse to “loitering” density

(d) Gravitational collapse once 
Jeans unstable

Figure 5.2 Basic stages in Population III.1 protostar formation. (a) A dark matter halo
passes the filter mass threshold and begins to accumulate baryons. The virial
shock (dashed line) heats the gas to the halo’s virial temperature. (b) Inside
the warm, dense gas, free electrons catalyze H2 formation until those elec-
trons disappear owing to recombinations, when the H2 fraction saturates.
(c) The H2 fraction remains roughly constant while the gas cloud cools (via
the rotational and vibrational transitions of H2) and condenses to higher
density until it reaches a critical density and temperature at which gas cool-
ing becomes inefficient. (d) Finally, runaway collapse begins once the dense
clump’s mass exceeds the local Jeans mass. Further fragmentation may then
occur owing to gravitational instability, turbulence, or chemical processes.

H− + H → H2 + e−, (5.2)

where free electrons act as catalysts. We let the ionized fraction of hydrogen be
xH II = nH II/nH, where nH = nH I + nH II is the total abundance of hydrogen
nuclei, and write the molecular fraction as fH2 = nH2/nH. Then, considering
only these two reactions and hydrogen recombination, we can write rate equa-
tions for a simplified reaction network as

ẋH II = −αBnHx
2
H II (5.3)

ḟH2 = k̃nH(1 − xH II − 2fH2)xH II, (5.4)

where the first equation follows recombinations (and hence the free-electron
fraction), and the second includes the steps of molecular hydrogen formation,
which occurs at a net rate k̃. This net rate coefficient includes both equation (5.1),
whose rate we shall call k2 (see further), and equation (5.2), whose rate we shall
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Table 5.1 Important Reaction Rates for Hydrogen Species as Functions of Temperature
T in Kelvin [with Tξ ≡ (T /10ξK)]. In the text, we refer to these rate coefficients
as ki , where i refers to the appropriate line in this table. For a comprehensive
list of additional relevant reactions, see Haiman, Z., Thoul, A. A., & Loeb, A.,
Astrophys. J. 464, 523 (1996); Haiman, Z., Rees, M. J., & Loeb, A., Astrophys.
J. 467, 522 (1996); and Abel, T., Anninos, P., Zhang, Y., & Norman, M. L.,
Astrophys. J. 508, 518 (1997).

Reaction Rate coefficient (cm3 s−1)
(1) H+ + e− → H + hm 8.40 × 10−11T −1/2T −0.2

3 (1 + T 0.7
6 )−1

(2) H + e− → H− + hm 1.65 × 10−18T
0.76+0.15 log T4−0.033 log2

T4

4

(3) H + H− → H2 + e− 1.30 × 10−9

(4) H− + H+ → 2H 7.00 × 10−7T −1/2

(5) H2 + e− → H + H− 2.70 × 10−8T −3/2 exp(−43,000/T )

(6) H2 + H+ → H+
2 + H 2.40 × 10−9 exp(−21,200/T )

(7) H2 + e− → 2H + e− 4.38 × 10−10 exp(−102,000/T )T 0.35

(8) H− + e− → H + 2e− 4.00 × 10−12T exp(−8,750/T )

(9) H− + H → 2H + e− 5.30 × 10−20T exp(−8,750/T )

(10) H + e− → H+ + 2e− 5.85 × 10−11T 1/2

×exp(−157,809.1/T )(1 + T
1/2

5 )−1

call k3. However, H− is fragile and can be destroyed by CMB photons; we must
therefore include a second channel in which the H− does not lead to molecular
hydrogen. This reaction occurs at a rate2

k11 ≈ 0.114T 2.13
γ exp(−8,650 K/Tγ ) s−1. (5.5)

Thus, the net rate of H2 formation is

k̃ ≈ k2

[
k3

k3 + k11/[(1 − xH II)nH]
]
, (5.6)

where the second factor is the fraction of H− that eventually forms H2.
In reality, there are other channels for producing (and destroying) mole-

cules. The set of important chemical reactions leading to the formation of H2 is
summarized in Table 5.1, along with the associated rate coefficients.i Detailed
calculations require numerical integration of this network, but equations (5.3)
and (5.4) provide some useful insight.

First, note that the ionized fraction is independent of fH2 , since the electrons
act only as catalysts. Thus, because ẋH II ∝ x2

H II, recombination will be very

iTable 5.2 in §5.3.2 shows the same for deuterium-mediated reactions. Each line shows the rate
coefficient for one particular reaction; in the text, we refer to these as ki , where i refers to the
appropriate line in Table 5.1. These should be included in detailed calculations but have only minor
effects on the star formation picture described in this section.
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slow, and the reservoir of electrons will remain substantial for long periods
of time (much longer than the recombination timescale). The solution with
constant T and nH (i.e., the inefficient cooling limit) is

xH II(t) = xiH II

1 + t/t irec
, (5.7)

where xiH II is the initial ionized fraction (taken from cosmological calculations,
as in Figure 2.5),

t irec = (xiH IIαBnH)
−1 ≈ 2.2 × 108

(
1 + z

20

)−3 (
�

200

)−1 (
xiH II

2 × 10−4

)−1

yr

(5.8)

is the recombination time at the initial ionized fraction, and � ≡ ρ/ρ̄. In the
second part, we assumed the gas has an overdensity of ∼200 (typical of viri-
alized objects), we used the residual ionized fraction following recombination
(Fig. 2.5), and we adopted a temperature T ≈ 103 K.

We can now substitute this expression into equation (5.4). The factor (1 −
xH II − 2fH2) remains near unity for the initial conditions and timescales of
interest. If we further approximate k̃ as roughly constant in this regime, the
equation becomes integrable and yields

fH2 ≈ f iH2
+ k̃

αB
ln(1 + t/t irec), (5.9)

where f iH2
is the initial molecular fraction when the cloud forms (typically the

IGM value after recombination, ∼6 × 10−7, provided there is not yet a radi-
ation background from luminous sources).3 The molecular fraction therefore
increases linearly with time when t/t irec � 1, but it slows to logarithmic growth
past that point: the transition occurs when the electrons are incorporated into
hydrogen atoms, which removes the population of catalysts and hence dramat-
ically slows H2 formation. It occurs at a critical molecular fraction

fH2,s ≡ k̃

αB
≈ 3.5 × 10−4(T /103 K)1.52, (5.10)

where the s indicates saturation (though in actuality fH2 does continue to in-
crease slowly). In practice, the nominal recombination time at � ∼ 200 inside
these objects is rather close to the Hubble time, so the electrons are used up
quickly in the denser centers of the halos (with � � 200), where molecule for-
mation is also fastest. Thus most virialized objects reach this “saturation” limit
after reasonably short timescales.

The upper two panels of Figure 5.3 illustrate this process in a numerical
simulation of the formation of the first stars, a technique that has proved in-
strumental in understanding the process.4 Panel a shows the free-electron frac-
tion in a collapsing gas cloud as a function of density, but one can crudely also
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Figure 5.3 Gas properties during dense cloud collapse in a numerical simulation of
first star formation. (a) Free-electron abundance; note the rapid decline
at nH ∼ 103 cm−3, owing to efficient recombinations. (b) Molecular frac-
tion fH2 . The fraction increases rapidly during cloud collapse until the sat-
uration value (equation 5.10) is reached, when recombinations remove the
free-electron catalysts. (c) Gas temperature as a function of number density.
Note the strong clump at T ∼ 500 K and nH ∼ ncr, when radiative cooling
becomes inefficient, so the evolution stalls. (d) The Jeans mass for this
gas; note that MJ ≈ 103 M� for gas in the aforementioned stalling stage.
Bromm, V., et al., Astrophys. J. 564, 23 (2002). Reproduced by permission
of the AAS.

consider it a function of time, since the density of a typical gas parcel will in-
crease as it falls farther into the dark matter potential well. The electron fraction
remains near the initial value (shown by the horizontal dashed line) for a pe-
riod before falling rapidly at nH > 103 cm−3, where recombinations become
efficient. Panel b shows the molecular fraction, which increases steadily at low
densities (and therefore early times in the collapse process) before reaching a
limiting value near fH2,s in the densest part of the clump.
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Figure 5.4 Cooling rate from H2 per molecule. The solid lines show n = 10−1, 101, 103,

and 105 cm−3, from bottom to top. The diamonds show the cooling rate in
LTE; note how the cooling function approaches this limit when n > ncr ow-
ing to the transition to LTE. Bromm V., et al., Astrophys. J. 564, 23 (2002).
Reproduced by permission of the AAS.

5.1.2 Cooling and Collapse of Primordial Gas

The tools in §5.1.1 allow us to follow the chemistry of the accretion of gas onto a
virialized halo. The next question is, How much H2 is required to allow the gas
to cool and form stars? Cooling proceeds when an H2 molecule is rotationally
or vibrationally excited through a collision with another particle (see §6.1.1 for
a detailed discussion of the energy levels of the H2 molecule). If the subsequent
de-excitation is radiative (and the cloud is optically thin), the cloud loses energy
and cools; if it is de-excited through another collision, the cloud retains the en-
ergy, so no cooling occurs. In low-density gas, collisions are sufficiently rare that
the first channel dominates, and the cooling rate is proportional to n2

H because
all the molecules occupy low excitation states. Once collisions become impor-
tant, the level populations shift to local thermodynamic equilibrium (LTE), and
the cooling rate becomes proportional to nH because the emergent intensity ap-
proaches the blackbody value. The transition occurs at the critical density, which
is only a function of temperature; it corresponds to ncr ≈ 104 cm−3 for the tem-
peratures of interest to primordial star formation. Figure 5.4 shows how the
cooling rates depend on density and temperature: note how the higher density
rates approach the LTE value near ncr. The initial stages of cloud formation
therefore lie in the low-density regime where cooling is efficient.

A halo can collapse from the overdensities characteristic of virialization to
those characteristic of stars only if cooling can occur much faster than the
timescale over which the halo grows (and therefore accumulates more ther-
mal energy). The latter is comparable to the Hubble time. The cooling time
depends on the reaction networks discussed in the previous section. But the
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characteristic temperature to which H2 radiation can drive gas is hundreds of
Kelvins because the two lowest rotational energy levels in H2 have an energy
spacing of E/kB ∼ 512 K. A reasonable approximation to the cooling time in a
virialized halo is5

tcool ≈ 5 × 104fH2

(
1 + z

20

)3 (
�

200

)(
1 + 10T 7/2

3

60 + T 4
3

)−1

exp
(

512 K

T

)
yr,

(5.11)

where T3 = T/(103 K), and the temperature factors result from quantum-
mechanical calculations of the H2 collisional excitation rates.

The relevant comparison for determining whether a gas cloud will collapse
rapidly to form stars is the dynamical time of the system, tdyn ≈ 1/

√
Gρ (with

ρ ∼ mpnH), which describes how rapidly gravity can adjust the configuration
of the system. If tcool > tdyn, the cloud can adjust to the (slow) cooling quasi-
statically. It will contract slowly, maintaining a constant Jeans mass, so that
T ∝ ρ1/3. If, however, tcool < tdyn, the gas cloud will lose all its thermal energy
much faster than gravity can adjust the configuration. As the pressure support
vanishes, the cloud will collapse to much higher densities in roughly the free-
fall time.ii

In the present case, the relevant dynamical time is the Hubble time, tH, be-
cause the cooling begins as soon as the cloud reaches high densities (or over
a virialization time). Even after the halo forms, it will continue to accept gas
(and thermal energy) and grow over roughly the same timescale. From equa-
tion (5.11), the critical molecular fraction necessary for rapid cooling to occur
is6

fH2,c ≈ 1.6 × 10−4

(
1 + z

20

)−3/2 (
�

200

) (
1 + 10T 7/2

3

60 + T 4
3

)−1

exp
(

512 K

T

)
.

(5.12)

If a halo is able to form enough H2 so that fH2 > fH2,c, it will cool rapidly and
form dense, highly molecular clouds. If not, it will remain a moderately dense,
virialized clump until it can surpass that threshold. We term such clumps
minihalos.

Figure 5.5 shows that detailed numerical simulations of the early stages of
structure formation confirm this picture. Each circle represents a single virial-
ized object in the simulation; the filled circles contain dense, cooling clouds,
while the open ones do not. The dashed line shows the saturation limit for the
molecular fraction, fH2,s : clearly, the simulated halos lie remarkably close to
this estimate, with the scatter likely due to variations in the accretion history
of halos. The solid line shows the critical cooling threshold required at each
virial temperature, fH2,c. The intersection of these two curves determines the

iiThis argument is much broader than this particular application: it provides a useful minimal
criterion for galaxy formation in a wide range of contexts.
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Figure 5.5 Molecular hydrogen fraction as a function of virial temperature for virialized
halos inside a cosmological simulation at z = 17. The circles show results for
individual halos; the filled circles contain dense (presumably star-forming)
clouds, while the open circles do not. The dashed line shows the saturation
limit fH2,s of equation (5.10), while the solid line shows the critical molecu-
lar fraction fH2,c for cooling to be rapid (see equation 5.12). The vertical dot-
ted line shows the critical virial temperature for hosting star-forming clouds.
Yoshida, N., et al., Astrophys. J. 592, 645 (2003). Reproduced by permission
of the AAS.

critical threshold for star formation in molecular clouds, and the analytic argu-
ment provides a remarkably accurate criterion for determining which halos can
host dense, star-forming clouds. As with Figure 5.5, the simplest way to think
of this criterion is as a minimum mass threshold for cold cloud formation, be-
cause fH2,s is an increasing function of temperature (and hence halo mass),
while fH2,c is a decreasing function of mass. The transition from minihalo to
star-forming halo is therefore fairly sharp.

However, these simulations find that a fraction of halos lying above the nomi-
nal threshold still do not host star-forming clouds (the open circles in the upper
right of Figure 5.5), while some lying below the nominal curve do have such
clouds. These differences can be understood in terms of the accretion histories
of the halos: recall that the cooling must balance the thermal energy gained
throughout (ongoing) halo growth. Those halos accreting gas very rapidly may
not be able to form dense clouds even if they are massive enough to have
fH2,s > fH2,c.

5.1.3 The Collapse of Dense Clouds

Cloud collapse via H2 radiation continues until cooling becomes inefficient
and thermal pressure significant. The minimum temperature achievable by H2
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cooling is T ∼ 200 K, because the energy spacing of the first two rotational lev-
els of that molecule is ∼512 K (the limit is somewhat smaller than that nominal
value because of the high-velocity tail of the Maxwell-Boltzmann distribution).
The characteristic density when cooling becomes inefficient is the critical den-
sity ncr ≈ 104 cm−3 defined in the previous section, where collisions become
frequent enough to maintain local thermodynamic equilibrium. At yet higher
densities, the radiative intensity must follow the blackbody law, so the cooling
rate is only linearly proportional to density (see Figure 5.4).

With the decrease in the cooling rate, the gas cloud stalls or “loiters” at or
near ncr. This stage is illustrated in panel c of Figure 5.3, which shows a phase
diagram of the gas in a numerical simulation of cooling in high-z dark matter
halos. In the early stages (i.e., gas at low density in this diagram), cooling is
inefficient (with a rate proportional to n2

H), so the temperature roughly obeys the
adiabatic relation T ∝ n

2/3
H (shown by the dotted line here). Once the density

increases enough for H2 cooling to become efficient, the temperature falls to
T ∼ 200 K, where it stalls as LTE is reached near the critical density.

Further collapse requires enough mass to accumulate for gravity to overcome
the roughly constant pressure of this growing clump—in other words, for the
clump mass to exceed the local Jeans mass, MJ ≈ cstcoll (see §3.2). For gas in
this clump, that is

MJ ≈ 700
(

T

200 K

)3/2 ( nH

104 cm−3

)−1/2
M�. (5.13)

Once the clump grows beyond this point, gravity drives further, rapid collapse
on the cloud’s dynamical timescale tcoll.

To this point in the collapse, “first star formation” poses a physics problem
with well-specified initial conditions that can be solved on a computer. Start-
ing with a simulation box in which primordial density fluctuations are realized
(based on the initial power spectrum of density perturbations), one can reli-
ably simulate the collapse by including the chemistry, gravitational dynamics,
and thermodynamics of the gas. The top two panels in Figure 5.6 show these
stages of collapse in a typical cosmological minihalo with ∼106M� in such a
numerical simulation. Generically, the collapsing region makes a central mas-
sive clump with a typical mass of hundreds of solar masses, where the clump
lingers because its H2 cooling time is longer than its collapse time.

5.2 From Protostars to Stars

Although the journey that led to humanity’s existence was long and compli-
cated, one fact is clear: our origins can be traced to the production of the first
heavy elements in the interiors of the first stars. Their formation is therefore
a crucial milestone in the history of the Universe. The previous section has
put us on the cusp of understanding these objects—but, unfortunately, the evo-
lution from that point is much more difficult to understand and still has many
uncertainties.
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Figure 5.6 Projected gas distribution around a primordial protostar from a numerical
simulation (see also Color Plate 4 for a color version of this figure). Shown is
the gas density of a single object on different spatial scales: (a) the large-scale
gas distribution around the cosmological minihalo; (b) the self-gravitating,
star-forming cloud; (c) the central part of the fully molecular core; and (d) the
final protostar. Reprinted from Science, 321, 5889, Yoshida, N., K. Omukai,
& L. Hernquist, “Protostar Formation in the Early Universe,” 669, Copyright
2008, with the permission of The American Association for the Advancement
of Science.

Numerical simulations show that the protostellar core, with T ∼ 200 K, grad-
ually contracts at roughly constant temperature (owing to H2 cooling) until
nH > 108 cm−3.7 At that point, the density becomes large enough for three-
body processes to form H2 through the reactions

H + H + H → H2 + H, (5.14)

H + H + H2 → H2 + H2. (5.15)

The rate for the first of these reactions is k3b = 5.5 × 10−29 cm6 s−1; the second
is 1/8 as large.8 The timescale for this reaction to proceed, t3b = (k3bn

2
H)

−1,
equals the free-fall time at a critical density

nc,3 ≈
(
f 2

H2
Gmp

4k2
3b

)1/3

, (5.16)
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which is ∼108 cm−3 for fH2 ∼ fH2,s . At higher densities, three-body H2 forma-
tion proceeds rapidly, and the core collapses again. The molecular fraction then
increases rapidly until it is near unity by the time nH ∼ 1012 cm−3, which one
can estimate by setting fH2 ∼ 0.5 in equation (5.16). A simulated image of this
stage is also shown in panel c in Figure 5.6.

At this point, the large molecular fraction rapidly increases the cooling rate,
allowing dynamical collapse. Numerical simulations show that a hydrostatic
core of mass <10−2M� forms when the gas becomes optically thick to its own
cooling radiation (panel d in Figure 5.6). This core forms the seed for a Pop-
ulation III star, but its subsequent evolution has proved much more difficult
to predict robustly in numerical simulations. Not only is the dynamical time
within the core very short, but radiative feedback from the protostar couples
to the gas, making the cooling processes more complex. Thus, the final prod-
ucts of even the well-posed problem of Population III star formation still have a
fair amount of uncertainty. Here, we content ourselves with identifying the key
issues in these final stages of formation.

5.2.1 A Single Protostar: No Feedback

We begin by considering the simplest case, in which the clump is assumed to
form a single protostar. Theorists have made a good deal of progress in under-
standing how such a protostar would grow using a combination of numeric and
analytic tools.

Star formation typically proceeds from the inside out, through the accretion
of gas onto a central hydrostatic core. Whereas the initial mass of the hydrostatic
core is very similar for primordial and present-day star formation, the accretion
process—ultimately responsible for setting the final stellar mass—is expected
to be rather different. It is common to parameterize the accretion rate as

ṁ� = φ�
m�

tff
, (5.17)

where φ� is a dimensionless parameter that depends on the properties of the
medium, and m� is the mass of the protostar. For a self-gravitating clump, the
mass m� ∼ MJ ∼ c3

s /
√
G3ρ, the Jeans mass, so

ṁ� ∼ c3
s /G ∝ T 3/2. (5.18)

A simple comparison of the temperatures in present-day star forming regions,
in which heavy elements cool the gas to a temperature as low as T ∼ 10 K, with
those in primordial clouds (T ∼ 200–300 K), already indicates a difference in
the accretion rate of more than two orders of magnitude. This suggests that the
first stars were probably much more massive than their present-day analogs.
The key factors to determine are the accretion rate itself and the duration over
which it persists before radiative (or mechanical) feedback from the central pro-
tostar (or star) shuts it off.

To estimate the accretion rate quantitatively, we need to determine φ�. The
simplest interesting analog is spherically symmetric accretion in a uniform
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medium onto a point mass, so-called Bondi accretion. A simple way to estimate
how the accretion rate scales is to note that the protostar’s gravity will overcome
the pressure of the medium if the free-fall time tff ∼ 1/

√
Gρ is smaller than

the sound-crossing time tsc ∼ r/cs . This condition implies that infall will occur
within a radius

Racc ∼ Gm�

c2
s

. (5.19)

The accretion rate will then be the surface area of a sphere at this radius, times
the density of the medium, times the infall speed, which will be of the order of
the sound speed. Thus,

ṁ� ∼ G2m2
�ρ

c3
s

. (5.20)

We therefore have φ� ∼ (m�/ρr
3)(tsc/tff)

3 ∼ 1, as expected.
Population III star formation is of course considerably more complicated

than this simplest limit, as collapse proceeds in a virialized clump and is regu-
lated by H2 cooling. Nevertheless, it is possible to estimate the rate of collapse by
using the numerical simulations to calibrate more sophisticated models.9 We
take a self-similar solution, in which all relevant physical quantities are power
laws, because there is no characteristic length scale in the problem. We assume
that the density field follows ρ ∝ r−kρ and that the pressure follows p ∝ r−kp .
It follows that the solution is a polytrope, with p ∝ ργp .

The simulations show that the accretion process occurs subsonically and
nearly isentropically, with an adiabatic index γ ≈ 1.1 set by the physics of
H2 cooling. In hydrostatic equilibrium, the configuration therefore assumes
a polytropic solution with P(r) ≈ Kρ(r)1.1, so that γp = 1.1 as well. Moreover,
hydrostatic equilibrium,

1

ρ

dp

dr
= −Gm�

r2
, (5.21)

demands that kρ = 2/(2 − γp) ≈ 20/9 (i.e., the density structure is fairly close
to an isothermal sphere), and kp = γpkρ .

The constant K is set by the thermodynamics of the dense cloud during its
“loitering” phase, which we can regard as the initial conditions of this stage of
collapse. We take a fiducial value K = 1.88 × 1012Kfid in cgs units, whereiii

Kfid =
(

T

300 K

) (
104 cm−3

nH

)0.1

. (5.22)

This initial entropy, together with the initial density profile, ultimately deter-
mines the accretion rate onto the protostar. The hydrostatic equilibrium

iiiIn detail, the temperature here does not necessarily correspond to the gas temperature in the cloud
if turbulence provides additional pressure support. We will consider the importance of turbulent
motions later.
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condition also requires that

ρ =
[
(3 − kρ)k

3
pK

3

4πG3m2
�

]1/(4−3kρ)

, (5.23)

Substituting into equation (5.17), we have

ṁ� = 8φ�√
3

[
(3 − kρ)k

3
pK

3

2(2π)5−3γpG3γp−1

]1/2(4−3γp)

Mξ , (5.24)

≈ 0.026K15/7
fid

(
m�

M�

)−3/7

M� yr−1, (5.25)

where ξ = 3(1 − γp)/(4 − 3γp). In the second line we have used γp = 1.1 and
evaluated φ� using the closest known self-similar solution to the early stages
of accretion in simulations.10 There is, in fact, a fair amount of uncertainty in
this relation because the exponent ξ (and hence the m� dependence in equa-
tion 5.25) is very sensitive to γp, with the latter ranging from −0.37 to −0.49
for γp = 1.09–1.11; we have used γp = 1.1 here for concreteness. Nevertheless,
the solution clearly shows an important fact—and a key difference from low-
mass star formation—that the accretion rate actually tapers off with time. The
time required to build up a given stellar mass is

t = m�

ṁ�
≈ 27K−15/7

fid

(
m�

M�

)10/7

yr, (5.26)

which matches detailed numerical simulations to within a factor of 2 or so in
the early stages of protostar formation. Given that very massive Population III
stars live for only a few million years, this provides a maximal upper limit to the
mass of the final star of ∼103M�, the accumulated mass over that time period,
which depends on both the main sequence lifetime and the initial entropy of
the gas.

In detail, provided the core has some initial rotation, the gas falls onto an
accretion disk rather than onto the star itself, and the resulting geometry may
drive winds or other outflows, so the accretion rate estimated here is accurate
only to a factor of the order of unity.

5.2.2 A Single Protostar: Radiative Feedback

The preceding maximal mass estimate assumes that the protostellar (and stel-
lar) radiation field does not affect the accretion. In the presence of this feedback,
can a Population III star ever reach this asymptotic mass limit? The answer to this
question is not yet known with any certainty, and it depends on how that feed-
back manifests itself.

Before the onset of hydrogen fusion, the protostar must radiate away the
gravitational energy accumulated by accretion, Lacc ≈ Gm�ṁ�/R�, where R� is
its radius. The outward radiation pressure on the gas can itself halt accretion if
it balances the inward gravitational force. This is the Eddington luminosity LE ,
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which represents the maximal luminosity of an accreting object. Assuming for
simplicity a fully ionized medium, force balance requires

Gm�mp

r2
= LE

4πr2c
σT , (5.27)

where σT = 0.677 × 10−24 cm2 is the Thomson cross section for scattering a
photon off an electron. Setting Lacc ≈ LE yields a critical accretion rate,

ṁ�,E ≈ LER�

Gm�
∼ 5 × 10−3

(
R�

5R�

)
M� yr−1, (5.28)

where we have scaled R� to a value typical of a very massive Population III star
on the main sequence. Comparison of equations (5.28) and (5.25) suggests that
radiative feedback can be crucial in halting accretion onto the protostar as it
approaches the main sequence with a mass ∼50–100 M�.

However, radiative feedback is likely to be unimportant at much earlier stages,
because the protostellar radii are much larger at these times. For example, in the
very early stages, when the opacity is dominated by H− bound-free processes,
the photosphere temperature is fixed at T ∼ 6,000 K because the opacity κH− ∝
T 14.5. Assuming that the protostar radiates as a blackbody, we then have

Gm�ṁ�

R�
= 4πR2

�σSBT
4, (5.29)

where σSB is the Stefan-Boltzmann constant. This expression yields R� ≈ 50
(m�/M�)1/3 R� for ṁ� ∼ 0.005 M� yr−1. Thus, we naively expect that radiative
feedback will kick in only relatively late in the star formation process.

There are four distinct aspects of feedback exerted by a star on its gaseous
environment:11

• Photodissociation of H2: As the protostar heats up it produces UV radiation
that photodissociates H2 (see §6.1 for a detailed discussion). Once molec-
ular cooling turns off, the adiabatic index of the gas increases to γ = 5/3
(i.e., monatomic gas). This decreases the accretion rate (because the pres-
sure increases more rapidly as the gas gets compressed), but numerical
estimates and semianalytic models show that the decline is rather mod-
est. (This is not surprising given that the simple Bondi accretion problem
described previously also permits steady accretion when γ = 5/3.)

• Lyman-α radiation pressure: As we will discuss in detail in §11.1.1, the radia-
tive transfer of Lyman-α photons is typically a very complex process when
the optical depth is very large, as occurs near a collapsing protostar sur-
rounded by large quantities of neutral gas. The Lyman-α photons provide
a substantial outward pressure, because they are trapped by the optically
thick gas (and, on average, scattering off infalling gas blueshifts the pho-
ton, reducing the infall velocity of the gas). Indeed, they do not even escape
by scattering through the gas column—rather, they escape when their fre-
quency wanders so far from line center that the gas becomes effectively
transparent. Because of these frequency shifts, the geometry of the flow
plays an important role—as soon as a low–column density channel opens
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up in one direction, photons can easily escape along that channel. Pro-
vided accretion occurs through a disk, Lyman-α escape is most likely to
occur along the polar direction, where the accretion rate is already quite
small. Analytic estimates show that Lyman-α scattering can begin to slow
the accretion when the core has Mc ∼ 20 M� but that the overall effect is
small. We consider this process in more detail in §6.3.2, where we examine
its effects on larger scales.

• Ionization: Once the protostar begins to produce ionizing photons, it will
carve out an H II region in which the temperature is much larger than the
surrounding neutral gas (typically>2×104 K; see §9.9 for a detailed discus-
sion). This dramatically increases the pressure of the gas, which can cause
the H II region to expand and drive off gas that would otherwise accrete
onto the protostar. The dynamics of the region depend on the expansion
velocity of the ionization front. If the front moves faster than about twice
the ambient sound speed (of the neutral gas), then it has essentially no dy-
namical effect on the gas. This is known as an “R type” (or rarefied) front.
Near a Population III protostar, the H II region begins in this regime, be-
cause it is expanding through gas falling inward at the free-fall velocity vff,
which is highly supersonic.

Eventually, the front reaches the radius where vff ∼ 2cs , where the gas
can respond to the ionization front, and a shock forms (this is a “D type,”
or dense front). Typically, the shock leads the ionization front, creating a
dense shell of neutral gas into which the front propagates, with a bulk ki-
netic energy density comparable to the pressure inside the ionization front.
A simple estimate for the point at which this shock halts accretion is thus
when the thermal pressure gradient at the front exceeds the inward grav-
itational force. This is roughly the accretion radius Racc defined in equa-
tion (5.19), but using T ∼ 20,000 K for the ionized gas. Estimates of the
ionizing luminosity of these protostars indicate that this limit is reached
when m� ∼ 100 M�.

As before, the disk geometry of the accretion flow plays an important role
in how this feedback mechanism occurs. The front will propagate fastest
through the lowest column density of gas, which is along the polar axis, so
accretion will first be suppressed there. In contrast, along the direction of
the disk, the extreme column density of the disk “shadows” the flow, allow-
ing accretion to continue. Provided most of the accretion occurs through
such a disk, the H II region will therefore not entirely halt the protostar’s
growth.

Photoionization heating can have substantial effects on the gas even far
outside the protostar’s immediate environment. We examine this in more
detail in §6.3.1.

• Photoevaporation of the accretion disk: However, the same ionizing photons
heat the disk itself, evaporating gas from it and eventually shutting off ac-
cretion entirely. The rate at which this occurs depends on the geometry of
the disk and the spectrum of the protostar, but some calculations show that
the disk evaporates whenm� ∼ 150M�. As we will see this is very near the
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mass threshold for direct black hole formation when such stars die, so the
details of the process may be very important.

Because these radiative feedback processes affected accretion only late in the
evolution of the first stars, they must generally be studied with simplified ana-
lytic models rather than incorporated directly into ab initio simulations of Pop-
ulation III star formation. We therefore have only approximate estimates of
their importance, and observations of these stars may be necessary to settle the
physical uncertainties.

5.2.3 Multiple Protostars: Fragmentation

The models described in §5.2.2 make one key assumption: that the collaps-
ing material accretes onto a single object, the central protostar. However, in
the presence of angular momentum the accretion flow generically organizes it-
self into a disk. Can this disk then fragment into multiple high-density clumps, or
multiple protostars? There are several possible mechanisms for fragmentation—
gravitational instabilities, turbulence, and thermodynamic instabilities. All have
now been implicated in numerical simulations showing fragmentation, but it
is far from clear whether these are generic processes, or how severe the frag-
mentation is.

The classic way to gauge the importance of gravitational instability is the
Toomre criterion. We sketch its significance here. Consider a small patch inside
a rotating gaseous disk. Let the patch have a radius r and mass M = π�r2

(where � = ρ/�z is the surface density, and �z is the disk thickness). If we
compress the patch by a factor δ, so r → r(1 − δ), the pressure increases by an
amount

�p ∼ c2
s δρ0 ∼ δc2

s�(�z)
−1. (5.30)

Thus, the excess pressure force per unit mass is

∇(�p)
�(�z)−1

∼ c2
s δ

r
, (5.31)

where we have assumed that r is the characteristic scale over which the sys-
tem varies. Meanwhile, the increase in the gravitational force per unit mass is
−GMδ/r2 ∼ G�δ. Thus, the outward pressure counteracts gravity if

r <
c2
s

G�
≡ Rpr. (5.32)

This is just the classical Jeans analysis (§3.2) applied to a two-dimensional
system: small-wavelength modes are stabilized by pressure, while large-
wavelength modes are unstable to gravitational collapse.

However, in a rotating disk the angular momentum can stabilize these long-
wavelength modes. Assuming that our perturbation involved no external force
(and hence torque), the internal spin angular momentum (generated by differ-
ential rotation across the patch) must be conserved. If � is the rotation speed,
this is Js ∼ �r2.
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As we compress the patch, conservation of angular momentum increases the
rotation speed and thus creates a centrifugal barrier to further compression. To
gauge how effective this barrier is, we write the centripetal force per unit mass
in terms of the conserved quantity Js :

v2

r
∼ �2r2

r
∼ J 2

s

r3
. (5.33)

Thus, the excess force as we compress the patch is d(J 2
s /r

3)/dr × δr , which
overcomes gravity and prevents further collapse if

r >
G�0

�2
≡ Rcen. (5.34)

We can have an instability only if Rcen > Rpr, in which case there exists a
range of moderate-wavelength perturbations that cannot be stabilized by either
pressure or rotation. A more exact derivation shows that instability sets in if the
Toomre criterion

Q ≡ csκe

πG�
< 1. (5.35)

Here κe is the epicyclic frequency, or the rotation frequency for small perturba-
tions around the equilibrium disk. For a Keplerian disk, κe = � = √

GM(r)/r ,
whereM(r) is the mass enclosed within a radius r . If the disk is unstable, frag-
mentation will generically occur as positive density perturbations grow rapidly.

Figure 5.7 shows this kind of gravitational fragmentation in a numerical
simulation of the accretion disk around a Population III star.12 The disk very
quickly exhibits spiral structure—common in self-gravitating disks—and
develops nonaxisymmetric features and becomes locally unstable just
∼100 years after the formation of the first protostellar core. The disk soon forms
a second core separated by ∼20 AU from the first. Figure 5.8 shows why: the top
two panels show that the surface density and temperature of the disk remain
roughly constant over time, except near its outskirts. This means the rate at
which the disk can transport angular momentum (and hence material) inward
stalls, and the outer disk builds up more and more mass, quickly becoming
gravitationally unstable (Q ∼ 1 at r ∼ 20 AU).

To continue fragmentation, the clump must still be able to rid itself of the
thermal energy generated during collapse. At the characteristic densities of
these disks (nH ∼ 1012–1014 cm−3) a new cooling process dominates: collision-
induced emission (CIE). This occurs when H2 interacts with another species
(H, He, or H2) in a collision. The interacting pair briefly forms a “supermole-
cule” with a nonzero electric dipole, from which photons can be emitted or
absorbed efficiently. Because the collision times are very short, the uncertainty
principle demands that the resulting radiation be emitted nearly in a contin-
uum. This CIE radiation allows the gas to cool during the early stages of frag-
mentation, because the cooling time is substantially shorter than the dynamical
time.

The continuum opacity of these same molecules prevents CIE cooling at
nH > 1016 cm−3. At this point, the gas does begin to heat up. However, at tem-
peratures much above the T ∼ 103 K characteristic of the disk (see the upper
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Third star forms
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Fourth star forms

Figure 5.7 Density evolution in a 120 AU region around the first protostar in a numer-
ical simulation of Population III star formation, showing the buildup of the
protostellar disk and its eventual fragmentation at the times labeled in the
diagram (see Color Plate 5 for a color version of this figure). Reprinted from
Science, 331, 6020, Clark, P.C., et al., “The Formation and Fragmentation of
Disks Around Primordial Protostars,” 1040, Copyright 2011, with the per-
mission of The American Association for the Advancement of Science.

right panel in Fig. 5.8), H2 begins to dissociate. Each such dissociation removes
4.48 eV from the gas, which keeps it near its original temperature because it
begins so highly molecular (see the lower left panel in Figure 5.8).

Turbulence appears to be a third factor triggering instabilities and fragmen-
tation. Such turbulence can be generated by “cold” accretion onto the host mini-
halo, where gas is funneled into the halo along filamentary channels and is not
initially shock heated to the virial temperature of the halo. Instead, it collides
with the central gas clump supersonically, triggering (typically subsonic) turbu-
lent motions. Turbulence is known to be important in “normal” star formation
at low redshifts, and leads to fragmentation of giant molecular clouds into pro-
tostellar cores with a wide range of initial masses. Some numerical simulations
indicate that similar processes could cause fragmentation in the Population III
regime.13

5.2.4 The Initial Mass Function

Currently, we have no direct observational constraints on how the first stars
formed at the end of the cosmic dark ages, in contrast to the wealth of ob-
servational data we have on star formation in the local Universe.14 Popula-
tion I and II stars form out of cold, dense molecular gas that is structured in a
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Q-parameter, and molecular fraction. Note that the disk parameters do not
evolve strongly with time (shown with the different curves in each panel).
The second core to form in the simulation forms within the region near
r ∼ 20 AU where Q < 1. Reprinted from Science, 331, 6020, Clark,
P.C., et al., “The Formation and Fragmentation of Disks Around Primordial
Protostars,” 1040, Copyright 2011, with the permission of The American
Association for the Advancement of Science.

complex, highly inhomogeneous way. The molecular clouds are supported
against gravity by turbulent velocity fields and are pervaded by magnetic fields.
Stars tend to form in clusters, ranging from a few hundred up to ∼106 stars.
It appears likely that the clustered nature of star formation leads to compli-
cated dynamical interactions among the stars. The initial mass function (IMF) of
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Population I stars is observed to have a broken power-law form, originally iden-
tified by Ed Salpeter,15 with a number of stars N� per logarithmic bin of stellar
mass m�,

dN�

d logm�
∝ m�

−�. (5.36)

Figure 5.9 shows some data in nearby star-forming regions, the only environ-
ment in which the IMF can reliably be measured, and the effective power-law
index in these regions. The data are consistent with a broken power law,

� �
{

1.35 for m� > 0.5M�

0.0 for 0.008M� < m� < 0.5M�
. (5.37)

We take this as our fiducial model in the discussion, though we note that the
form of the IMF at low masses is still unsettled. The lower cutoff in mass cor-
responds roughly to the minimum fragment mass, set when the rate at which
gravitational energy is released during the collapse exceeds the rate at which the
gas can cool.16 Moreover, nuclear fusion reactions do not ignite in the cores of
protostars below a mass of ∼0.08M�, so-called brown dwarfs. The most impor-
tant feature of this IMF is that ∼0.5M� characterizes the mass scale of Popula-
tion I and II star formation, in the sense that most of the stellar mass goes into
stars with masses close to this value.

The ultimate goal of studies of the formation of Population III stars is to
determine the analogous mass function for primordial stars. Unfortunately, we
are far from converging on any robust predictions. Until recently, models of
single protostar formation seemed to suggest that accretion would continue
until m� ∼ 100 M�, with the details determined by the initial entropy of the
gas (Kfid in equation 5.25) and by radiative feedback, with a plausible mass
range from ∼20 to 300 M�. These masses—obviously much larger than the
characteristic mass of present-day stars—suggested that the first generation of
stars to light up the Universe would truly have been exotic objects.

However, the more recent studies of fragmenting disks suggest that the char-
acteristic masses may be much smaller. Gravitational instability leads to sev-
eral cores, each competing for the accreting gas. Turbulence may lead to an
even wider range of initial protostar sizes. These cores themselves can interact,
much as the stars in nearby open clusters do. In particular, three-body interac-
tions tend to speed up smaller cores and move them into the outskirts of the
core, where there is less gas to accrete. Meanwhile, the larger cores tend to sink
to the center of the cloud, accreting more rapidly. This picture of “competitive
accretion” may be important for high-mass star formation in the nearby Uni-
verse; if so, it may suggest that Population III star formation may also follow a
power-law IMF with a broad range of stellar masses.

Nevertheless, it seems likely that the characteristic mass of high-redshift stars
must be significantly larger than the present-day value of ∼0.5M�. The present-
day value can be understood relatively easily as the minimum mass for collapse
in the ∼8 K molecular gas out of which these stars form (the minimum tem-
perature is set by the cooling physics in molecular clouds). The Jeans mass
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Figure 5.9 Upper panel: The derived power-law index, �, of the IMF in nearby star-
forming regions, clusters, and associations of stars within the Milky Way
galaxy, as a function of sampled stellar mass (points are placed in the cen-
ter of the log m� range used to derive each index; the dashed lines indi-
cate the full range of masses sampled). The solid lines represent three an-
alytic IMFs. Bottom panel: The present-day IMF in a sample of young star-
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provides a reasonable estimate of this value, but a more exact choice is the
Bonnor-Ebert mass,17

MBE = 1.18
(kBT /µmp)

2

p
1/2
0 G3/2

, (5.38)

which is the largest mass that an isothermal gas sphere with a temperature T
can have in hydrostatic equilibrium with an external gas pressure p0. A Bonnor-
Ebert sphere has a finite central density and size, as it is confined by external
pressure. Its maximum mass MBE is 4.7 times smaller than the Jeans mass but
otherwise has the same scaling with density and temperature.

The temperature floor is expected to evolve with redshift, because radiative
cooling cannot bring the temperature below the CMB temperature, to which
all the relevant lines couple. At z = 30, TCMB = 82 K, many times larger than
the present-day value (which is actually well above the z = 0 CMB tempera-
ture). The quantitative change in the Bonner-Ebert mass is not trivial to esti-
mate, because it depends on the temperature–density relation in the clouds: for
example, if the density structure is fixed, MBE ∝ T 3/2, but if cooling proceeds
isobarically, with nT = constant, thenMBE ∝ T 2. This suggests that the charac-
teristic fragmentation mass would increase to at least ∼16–50 M� at z = 30 (or
even 10–20 M� at z = 10), well into the range of “high-mass” stars by present-
day standards, though far smaller than the maximal estimates if fragmentation
is inefficient.

We discuss the IMF in a more general context in §8.8 as well.

5.3 The Second Generation of Stars: “Population III.2”

The picture we have described so far assumes that the star formation process
begins with the initial conditions characteristic of the high-redshift IGM: gas
that is nearly neutral, with very little preexisting H2. These were, of course, the
proper initial conditions for the first star-forming halos. But this picture de-
pends rather sensitively on those assumptions, and it is likely that later gener-
ations of stars—still forming out of primordial gas— began with very different
conditions.

The key is the initial ionization state of the gas. There are three important
ways in which that could have been much higher for these later stars. One
possibility is that the first stars produced a copious amount of ionizing radi-
ation, generating H II regions within and around their host dark matter halo.

Figure 5.9 (Continued.) characteristic mass among the clusters in each panel, and the
shaded region shows the standard deviation of the characteristic masses in
that panel. The observations are consistent with a single underlying IMF.
(See Color Plate 6 for a color version of this figure.) Reprinted from Ann.
Rev. Astr. & Astrophys., 48, Bastian, N., K.R. Covey, & M. Meyer, “A Universal
Stellar Initial Mass Function? A Critical Look at Variations,” Fig. 2 (p. 345),
Fig. 3 (p. 351). Copyright 2010, with permission from Annual Reviews.
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(a) Accreted gas is 
shocked and ionized

(b) Accreted gas cools 
and forms H2, HD

(c) Radiative cooling via 
HD to T ~ 100 K

(d) Gravitational collapse 
once clump exceeds Jeans
mass

Figure 5.10 Basic stages in Population III.2 protostar formation. (a) A dark matter
halo passes the threshold to ionize infalling gas. (b) The accreted gas cools
rapidly owing to H I line cooling. Because the gas is initialy highly ion-
ized, large fractions of H2 and HD are formed in the process. (c) Instead
of stalling, HD line cooling continues to function to T ∼ 100 K, substan-
tially below the “loitering” temperature for Population III.1 star formation.
(d) Finally, runaway collapse begins once the mass of the dense clump ex-
ceeds the local Jeans mass. Further fragmentation may then occur owing to
gravitational instability, turbulence, or chemical processes.

Any clumps that collapsed within the ionized region would have collapsed from
fully ionized gas. Similarly, if these stars exploded in supernovae, their power-
ful blast waves would have ionized the nearby gas (and possibly even triggered
collapse). Finally, as larger halos formed, star formation would have shifted
to those more massive objects. Above a virial temperature of ∼104 K, the viri-
alization shock itself would ionize the halo gas, and again change the initial
conditions for cloud chemistry and collapse.

These initial conditions resulted in a different formation mode for primordial
stars, often referred to as Population III.2, with an initial mass function distinct
from the classic Population III.1 mode described earlier. The basic stages in
this process are illustrated in Figure 5.10.

5.3.1 The Freeze-Out of Molecular Hydrogen

We showed in §5.1.1 that H2 formation is catalyzed by the presence of free elec-
trons. Thus, in gas that cools from a fully ionized state, molecule formation can
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Figure 5.11 H2 formation in initially ionized gas. The left panel shows the temperature
evolution of gas at three different initial pressures, assuming isobaric cool-
ing (the three models are offset in time for clarity of presentation). The right
panel shows the molecular fractions (solid curves) and the free electron frac-
tions (dashed curves) for the same three models. Note that fH2 approaches
a constant limit in all three cases. Oh, S. P., & Haiman, Z., Astrophys. J. 569,
558 (2002). Reproduced by permission of the AAS.

proceed rapidly—even though at the initially high temperatures such molecules
quickly dissociate.

Figure 5.11 shows numerical models of idealized isobaric cooling in primor-
dial gas initially at T ∼ 104 K (and hence ionized). As the gas cools, H2 begins
to form through the usual free-electron channel, until its abundance saturates
at fH2 ∼ 2 × 10−3, regardless of the initial conditions. This “freeze-out” level
indicates that the molecular fraction saturates at a nonequilibrium value.

In particular, fH2 can no longer evolve once the timescales for H2 forma-
tion (tform) and dissociation (tdiss) become longer than the cooling and recom-
bination timescales in the system, because the electron catalysts disappear at
that point. As in §5.1.1, the formation time can be approximated by tform =
fH2/ḟH2 ≈ fH2/(xH IIk̃nH). The dominant H2 dissociation process is reaction 6
in Table 5.1, whose rate we denote by k6. (The dissociation chain beginning with
this charge-exchange reaction is more efficient than direct collisional dissocia-
tion.) Then, tdiss = (k6xH IInH)

−1. The rate t−1
diss ∝ k6 decreases exponentially as

the temperature drops, while the rates for cooling, recombination, and forma-
tion decrease only as power laws. This steep temperature dependence means
that tdiss very suddenly becomes longer than trec and tcool as the gas cools; the
reaction rates demand that the resulting temperature is Tfreeze = 3,700 K.18 Up
to this point, the H2 abundance remains in equilibrium, and the ratio of the
reaction rates yields the value

fH2,freeze ≈ k̃(Tfreeze)

k6(Tfreeze)
≈ 2 × 10−3. (5.39)
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This argument shows that at lower temperatures, molecular hydrogen will no
longer be destroyed; thus at lower temperatures we must have fH2 > fH2,freeze.
Furthermore, at Tfreeze equilibrium demands that the formation and dissocia-
tion timescales be comparable to each other and to trec and tcool. To show that
the molecular fraction does not increase above this freeze-out value, we need
only to verify that tform is longer than trec and tcool at lower temperatures, which
is straightforward. This further implies that H2 formation will also cease so
long as its rate of formation increases less slowly with temperature than its
rates of cooling and recombination, which can readily be seen by comparing
the reaction rates in Table 5.1. Thus, when T < Tfreeze, the molecular hydrogen
abundance remains fixed at its (nonequilibrium) freeze-out value fH2,freeze.

5.3.2 Deuterium and Cooling

The relatively high abundance of molecular gas already suggests that these
preionized systems can also eventually cool and form stars. However, there is
an additional wrinkle that becomes important in these systems: deuterium. Un-
like H2, which is a symmetric molecule, HD has a permanent dipole moment,
which allows strong dipole rotational transitions, with�J = ±1, of smaller en-
ergy than the �J = ±2 quadrupole transitions of H2 (the larger reduced mass
of HD lowers this energy even further). The J = 1 → 0 transition has an equiv-
alent temperature of ∼130 K, about four times smaller than the lowest energy
transition of H2. Thus, in principle, HD cooling can lower the temperature and
hence mass scale of star formation substantially (recall that MJ ∝ T 3/2 at fixed
density, equation 5.13).

The most efficient method for HD to form is via the reaction

H2 + D+ → HD + H+, (5.40)

which, of course, requires the simultaneous presence of molecular hydrogen
and ionized deuterium. In the standard Population III.1 picture, which occurs
entirely at low temperatures, the latter is very rare, and very little HD forms.
However, in the present case, where all the deuterium is initially ionized, the
abundance of D+ remains relatively large until very low temperatures. Thus,
a substantial abundance of HD can build up, as illustrated in Figure 5.12. Be-
cause the Big Bang nucleosynthesis expectation is that the deuterium abun-
dance is only ∼10−5 that of hydrogen, these calculations indicate that nearly all
the deuterium can enter molecular form. Table 5.2 provides reaction rates for
the most important deuterium reactions.

Moreover, HD has several advantages as a coolant over H2. First, it has a
higher critical density, ncrit,HD ∼ 106 cm−3, so rapid cooling continues to higher
densities. Second, its dipole transitions are much more rapid, with a sponta-
neous decay rate A10 ≈ 5 × 10−8 s−1. This allows rapid cooling even at low
abundances: at the levels shown in Figure 5.12, the gas can easily cool to the
CMB temperature over a relatively short time. To see this, let us assume for
simplicity that the gas, at temperature T , is in LTE, so that the population levels
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Figure 5.12 Molecular abundances in primordial gas cooling from high temperatures,
relative to the total number density of H atoms. The calculation here simu-
lated cooling in a 100 km s−1 shock at z = 20, characteristic of a supernova.
Note the large abundance of HD at low temperatures. Johnson, J. L., &
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Table 5.2 Reaction Rates for Deuterium Species as Functions of Kelvin Temperature T
[with Tξ ≡ (T /10ξ K)]. Adopted from Haiman, Z., Thoul, A. A., & Loeb, A.,
Astrophys. J. 464, 523 (1996); and Galli, D., & Palla, F., Astron. & Astrophys. 335,
403 (1998).

Reaction Rate coefficient (cm3 s−1)
(1) D+ + e− → D + hm 8.40 × 10−11T −1/2T −0.2

3 (1 + T 0.7
6 )−1

(2) D + H+ → D+ + H 3.70 × 10−10T 0.28 exp(−43/T )

(3) D+ + H → D + H+ 3.70 × 10−10T 0.28

(4) D+ + H2 → H+ + HD 2.10 × 10−9

(5) HD + H+ → H2 + D+ 1.00 × 10−9 exp(−464/T )

in the ground (n0) and first excited state (n1) are

n1

n0
= 3e−TD/T , (5.41)

where the ratio of statistical weights is 3, and TD = hm10/kB ≈ 130 K is the
equivalent temperature for photons emitted in transitions from the first
excited state to the ground state. (We take a two-level system for simplicity,
assuming that the gas has already cooled to T ∼ TD , so that higher levels are
rare.)
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The radiative cooling rate of gas at constant density is

hm10(n0B01Im10 − n1A10 − n1B10Im10) = 3

2
nkB

dT

dt
. (5.42)

Here, B01 and B10 are the Einstein coefficients for stimulated emission and ab-
sorption, respectively; and n is the total number density of particles: this value is
related to the density of HD molecules nHD = n0+n1 byXHD = nHD/n. Finally,
Im10 is the CMB intensity at the frequency of the HD J = 1 → 0 transition,

Im10 ≈ 2hm3
10

c2
e−TD/TCMB = A10

B10
e−TD/TCMB , (5.43)

where we have used the fact that TD � TCMB. In that case the stimulated emis-
sion term can also be neglected, so equation (5.42) may be written

dT

dt
≈ 2TDA10XHD(e

−TD/TCMB − e−TD/T ). (5.44)

If we assume that XHD remains constant, we can integrate this equation to find
that the time to cool from T ∼ TD to T = TCMB is19

tHD,cool ∼ 1/(XHDA10), (5.45)

at z ∼ 10–30. Equating this result to the Hubble time, we can determine the
critical HD abundance for cooling as

XHD,crit ∼ 4 × 10−9

(
1 + z

30

)3/2

. (5.46)

Figure 5.12 (and similar calculations for other scenarios) show that when cool-
ing from high temperatures, the gas forms far more HD than this critical value,
which implies very efficient HD cooling. However, the abundance of HD in the
“normal” Population III.1 scenario is well below this critical value—because D+
is so rare in cold gas—so it is not an important coolant for that star
formation channel.

5.3.3 The Population III.2 IMF

The previous section showed that the characteristic temperature of star-forming
gas in this channel is much smaller than for Population III.1 stars, with T ∼
TCMB. Such effective cooling leads to Bonnor-Ebert masses of ∼10–50 M�, de-
pending on the physics of cooling (see §5.2.4). This likely limits the masses of
these Population III.2 stars to be just a few tens of solar masses, considerably
below the upper limits on Population III.1.

Numerical simulations20 show that a small protostar (with m� < 0.5 M�)
forms in the Population III.2 case, just as in the case without deuterium, and
subsequent stages proceed similarly to that case as well. However, in the colder
gas, fragmentation into smaller mass protostars is much more likely, and the
protostars are very unlikely to grow to the ∼100 M� scales necessary to make
radiative feedback relevant. Thus, it appears plausible that the Population III.2
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IMF is skewed toward high-mass stars, but stars that still lie within the mass
range observed in the nearby Universe.

This second-generation process may therefore produce a much different IMF
than the first generation. However, we have seen that turbulence, chemical
processes, and gravitational instability may cause even Population III.1 pro-
tostellar systems to fragment into clumps of comparable sizes. It remains to be
seen how different these two formation channels really are.

5.4 Properties of the First Stars

We have so far examined the formation mechanisms of primordial stars; we
now move on to discuss the stars themselves, and especially their radiative out-
puts and observable characteristics. Note that once the mass of a zero-metallicity
star is set through its formation mechanism, its properties are independent
of that mechanism. Thus, we refer to Population III stars without specifying
their subgroup (III.1 or III.2) in this section.

If fragmentation is inefficient, Population III stars appear to grow orders of
magnitude more massive than the Sun, probably ceasing accretion only when
radiative feedback becomes important (§5.2.2). Primordial stars with m� >

100M� have an effective surface temperature Teff approaching ∼105 K, with
only a weak dependence on their mass.21 This temperature is ∼17 times higher
than the surface temperature of the Sun, ∼5,800 K. These massive stars are
held against their self-gravity by radiation pressure, which maintains their ra-
diation field at the Eddington luminosity (see equation 5.27 and the discussion
in §7.4), which is strictly proportional to their mass m�,

LE = 1.3 × 1040

(
m�

100M�

)
erg s−1, (5.47)

and is six to seven orders of magnitude more luminous than the Sun, L� =
4 × 1033 erg s−1. Because of these characteristics, the total luminosity and color
of a cluster of such stars simply depends on its total mass and not on the mass
distribution of stars within it.

The radii of these stars R� can be estimated by equating their luminosity to
the emergent blackbody flux σSBT

4
eff times their surface area 4πR2

� (where σSB

is the Stefan-Boltzmann constant). Thus,

R� =
(

LE

4πσSBT
4

eff

)1/2

≈ 4.3 × 1011 cm ×
(

m�

100M�

)1/2

, (5.48)

which is only approximately six times larger than the radius of the Sun, R� =
7 × 1010 cm.

The high surface temperatures of the first stars made them ideal factories
of ionizing photons: hydrogen requires an energy of 13.6 eV to liberate its elec-
tron, while helium requires 24.4 eV for the first electron and 54.6 eV for the sec-
ond. These values are coincidentally near the characteristic energy of a photon
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emitted by these very massive Population III stars but far above the character-
istic energy of the Sun.

If indeed they were this massive, the first stars had a lifetime of a few mil-
lion years, independent of their mass, because L ∝ m�. During its lifetime, a
very massive Population III star would have produced ∼105 ionizing photons
per proton incorporated in it; the precise efficiency depends on mass and the
model parameters of the star, but only to within a factor of ∼2 in them� = 102–
103 M� range. This means that only a tiny fraction (>10−5) of all the hydrogen
in the Universe need be assembled into Population III stars for there to be suf-
ficient photons to ionize the rest of the cosmic gas, a fact that may be important
during the reionization process (see chapter 9). For comparison, Population II
stars with a standard Salpeter IMF (equation 5.37) produce on average ∼4,000
ionizing photons per proton in them.22

If fragmentation is permitted, the masses may be considerably smaller,
∼10–50 M�, which is much larger than the characteristic mass today but still
within the range of “normal” stars. In this case, the Population III stars will not
be qualitatively different from their present-day analogs, although there are, of
course, some differences in detail.

Evolutionary models of Population III stars are fairly well specified, with the
primary uncertainty at the high-mass end being the degree of mass loss dur-
ing stellar evolution. Figure 5.13 shows some example calculations. The solid
lines show main-sequence evolutionary tracks for zero-metallicity stars with-
out mass loss, while the short-dashed lines assume strong mass loss. Simi-
lar evolutionary tracks are shown for low-metallicity stars (Z = 0.02 Z�) with
the dotted lines, and the zero-age main sequence for solar-metallicity stars is
shown with the vertical solid line. Primordial stars tend to be hotter (or bluer)
than their enriched counterparts (as well as slightly smaller). There are two rea-
sons for this. First, the CNO cycle is inefficient (it is able to use only the small
amount of carbon built up during the pre–main sequence phase). Thus, prim-
ordial stars have very hot cores. The lack of heavy elements also reduces the
opacity of the outer layers. Together these factors imply hotter stellar
surfaces.

For this reason, even lower-mass Population III stars are therefore some-
what more efficient at producing ionizing photons than Population II (or I)
stars, but the difference is one of quantity rather than quality: the former emit
∼50% more ionizing photons per unit mass. The overall efficiency of produc-
ing ionizing photons therefore depends extremely sensitively on the IMF: only
if very massive stars are indeed able to form will Population III stars be or-
ders of magnitude more efficient than later generations of stars. Figure 5.14
illustrates this very important point: it shows the observed spectra of two Pop-
ulation III star clusters, one with purely very massive stars (solid line; in this
case the spectrum is mostly independent of the mass distribution of the stars),
and a standard Salpeter IMF (dotted line). For the same total stellar mass,
the observable flux is larger by an order of magnitude for stars with masses
>100M�.
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Figure 5.13 Main-sequence evolutionary tracks for Population III stars (solid lines:
without mass loss; short-dashed lines: with strong mass loss) and Z =
0.02 Z� stars (dotted lines). Isochrones at 2 and 4 Myr for the Z = 0 stars
are also shown with the long-dashed lines. The zero-age main sequence for
solar-metallicity stars is shown by the vertical solid line; note that Popu-
ation III stars are significantly hotter (bluer) than their higher-metallicity
counterparts. Schaerer, D., Astron. & Astrophys. 382, 28 (2002).

5.4.1 Emission Lines: Signatures of Primordial Stars

The hotter temperatures and increased ionizing efficiencies of massive Pop-
ulation III stars imply that galaxies in which massive stars are prevalent will
have some unique observational signatures. As the high-energy photons es-
cape into the interstellar media of their host galaxies, many of those photons
will encounter neutral hydrogen or helium and be absorbed. The ionized gas
will then recombine, emitting one or more line photons as the atom returns
to the ground state. The relative numbers of these line photons depend on the
incident spectra and so can be used as diagnostics of the stellar IMF.

Let us define Q̇i,� as the rate at which a star of mass m� produces photons
capable of ionizing a species i. Because line emission is the result of absorbing
these photons, we have for a line m

Lm = fmhmm(1 − fesc)Q̇i,�, (5.49)

where fesc is the fraction of photons that escape the galaxy without absorption,
the choice of species i depends on the transition m, hmm is the energy of a
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Figure 5.14 Comparison of the observed flux per unit frequency from a cluster of Pop-
ulation III stars at a redshift zs = 10 for a Salpeter IMF (light line) and an
IMF composed purely of very massive stars (dark line). The cutoff below
an observed wavelength of 1216 Å (1 + zs) = 1.34µm is due to hydrogen
Lyman-α absorption in the IGM (the so-called Gunn-Peterson effect; see
§4.3). Bromm, V., Kudritzki, R. P., & Loeb, A., Astrophys. J. 552, 464 (2001);
Salpeter curve from Tumlinson, J., & Shull, M. J., Astrophys. J. 528, L65
(2000). Reproduced by permission of the AAS.

photon emitted in transitionm, and fm describes how likely a recombination of
the appropriate species is to produce a photon in this line.iv Because these last
two factors depend only on atomic physics, the ratios of different lines provide
the ratios of ionizing photons and hence a measure of the spectral hardness
of the local stellar population, albeit modulated by the factor (1 − fesc), which
could in principle also depend on frequency.

In fact, if all these ionizing photons are absorbed within the host galaxy,
the hot, dense nebulae create substantial continuum emission as well, through
free-free emission from the hot electrons, free-bound emission (by H I, He I,
and He II) from the recombinations themselves, and the two-photon contin-
uum of H I (generated when atoms recombine through the 2s level, which is
metastable but eventually decays to the ground state by emitting two photons;
see §12.2.2 for more on this process). This redistributes a large fraction of the
energy contained in ionizing photons to lower frequencies and can substantially
boost the brightness of the galaxies.

Figure 5.15 shows an example spectrum of a zero-age Population III star
cluster in which the IMF contains high-mass stars but is not exclusively made
up of them. The solid curve shows the spectrum including the reprocessing

ivThis expression assumes that recombinations instantaneously follow ionizations. At the high den-
sities characteristic of galaxies, this is a good approximation.
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Figure 5.15 Spectral energy distribution of a cluster of Population III stars with a
Salpeter IMF ranging from 1 to 500 M� (solid line), all of which have just
entered the main sequence. Nebular reprocessing and recombination line
emission are included assuming that fesc = 0; emission lines are shown
with solid, short-dashed, and long-dashed lines for H I, He I, and He II,
respectively. The pure stellar continuum (neglecting nebular emission) is
shown by the long-dashed line. The contrasting case of a Population II clus-
ter with Z = 0.02 Z� and a Salpeter IMF ranging from 1 to 150 M� is
shown by the light line. The vertical dashed lines indicate the ionization po-
tentials of H I, He I, and He II (from right to left). Schaerer, D., A & A 382,
28 (2002).

from nebulae and recombination lines; the long-dashed curve shows the stellar
continua themselves. Because such a large fraction of the energy is originally
invested in ionizing photons, this reprocessing enhances the rest-frame optical
continuum by nearly an order of magnitude and creates very strong lines. Here,
H I lines are shown with solid lines, He I with short-dashed lines, and He II
with long-dashed lines.

The light curve shows the spectrum of a Population II cluster with Z =
0.02 Z� and a Salpeter IMF ranging from 1 to 150M� (normalized to the same
total mass). The Population III case is somewhat brighter. More striking is the
presence of the He II recombination lines at 1640, 3203, and 4868 Å, which
appear because the highest-mass Population III stars are extremely hot and
so release a substantial fraction of their energy (up to ∼12%) above the He II
ionization edge. In standard models, higher-metallicity (or lower-mass) stars
produce almost no photons above this level, so these recombination lines are
very interesting signatures of very massive Population III stars. (However, note
that these lines do appear in some special stellar populations like Wolf-Rayet
stars, and in some star-forming galaxies at lower redshifts.)
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Figure 5.16 Likely fate of Population III stars based on their progenitor mass. Note that
the mass ranges are only estimates and depend on both rotation and mass
loss. Many of these supernovae may have unique observational signatures
as well, such as gamma-ray bursts. See text for details.

However, because the highest-mass stars live for only a few million yeras,
these He II recombination lines do not persist for long after the most recent
burst of star formation. They are therefore not necessary signatures of zero-
metallicity stars, even if they are convenient markers.

5.5 The End States of Population III Stars

The final result of the evolution of massive Population III stars is also impor-
tant, both for observations and for the future evolution of the host halos. Sev-
eral fates are possible, depending on the initial stellar mass.23 The states them-
selves are easy to identify, but modeling supernovae is sufficiently difficult that
the dividing lines between the different scenarios are uncertain. For example,
rotation or strong magnetic fields can generally increase the mass thresholds
identified next, though the degree of increase is not well quantified.

With these caveats in mind, the expected fates of Population III stars, and
the rough divisions between them, are listed here and shown graphically in
Figure 5.16.

• For masses belowm� < 8–10M�, stars end their lives as white dwarfs, just
as present-day low-mass stars do. These stars can produce light elements
during their asymptotic giant branch phases, but they do so over much
longer timescales than the <1 Gyr Hubble time at z > 6, so their fate is
generally not considered important in understanding the histories of early
galaxies.

• For masses m� ∼ 10–25 M�, stars undergo Type II supernovae, leaving
a neutron star behind. Especially at low metallicities, where the opacities
are smaller, the hydrogen envelopes remain intact: these are the “normal”
supernovae that are thought primarily responsible for the enrichment of
very heavy elements in the nearby Universe.
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• For masses m� ∼ 25–40 M�, stars undergo relatively weak Type II super-
novae because much of the 56Ni falls back onto the black hole remnant.
As a result, these supernovae are likely quite faint and leave little iron
behind.

• For masses m� ∼ 40–100 M�, the stars collapse directly to a black hole
without producing a supernova (and hence without enriching their sur-
roundings), except through winds.

• For massesm� ∼ 100–140M�, the enormous core following helium burn-
ing heats up rapidly, leading to the production of electron–positron pairs
as a result of collisions between atomic nuclei and energetic gamma rays.
This process reduces the thermal pressure inside the star’s core, because
some of that energy is lost in generating the rest mass of the pairs. This
instability creates violent mass-ejecting pulsations, which can contain as
much energy as a supernova (though is much fainter owing to the lack
of radioactive elements). The entire hydrogen envelope of the star is likely
ejected, relieving the instability and allowing the remainder of stellar evo-
lution to proceed as for a lower-mass star, and the iron core eventually
collapses directly to a black hole. These kinds of “explosions” do not signif-
icantly enrich their galaxies because only the light envelopes are ejected.

• For masses m� ∼ 140–260 M�, stars are likely to explode as pair-instability
supernovae.24 A pair-instability supernova is triggered by the same instabil-
ity already described, when part of the core’s thermal energy is invested in
the rest mass of electron–positron pairs. The pressure drop leads to a par-
tial collapse and then greatly accelerated burning in a runaway thermonu-
clear explosion, which blows up the star without leaving a remnant. The
kinetic energy released in the explosion can reach ∼1053 erg, exceeding the
kinetic energy output of typical supernovae by two orders of magnitude.
Although the characteristics of these powerful explosions were predicted
theoretically several decades ago, thus far there has been no conclusive
evidence for their existence. Because of their exceptional energy outputs,
pair-instability supernovae would be prime targets for future surveys of the
first stars with the next generation of telescopes (§10.1.2). Their unusual
explosion mechanism also imprints distinct nucleosynthetic signatures on
pair-instability supernovae. They produce a near-solar distribution of ele-
ments from oxygen to nickel except with a large deficit of nuclei with odd
charges, because weak interactions are unimportant throughout most of
this mass range. They are also unable to make very heavy elements and
eject no elements heavier than zinc.

Furthermore, these pair-instability supernovae have very different ob-
servational properties than “normal” supernovae, as shown in Figure 5.17.
The lines show three example light curves from modeling the explosion
and shock breakout, while the curves with symbols show observed light
curves of known supernovae. Pair-instability events for very massive stars
occur over much longer timescales—of roughly a year—and are exception-
ally luminous compared with more normal events. These long timescales
are further exaggerated by cosmic time dilation as the photons travel
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Figure 5.17 Example R-band light curves of three representative pair-instability super-
novae (curves without symbols). The solid and dot-dashed curves show the
explosions of blue and red supergiants withm� = 250M�, respectively. The
dashed curve shows the explosion of a bare helium core with m� = 130 M�
(this star is assumed to have lost its envelope through a wind and so is still
subject to the instability). For comparison, the curves with symbols show
three light curves of real supernovae. These are a normal Type Ia event
(triangles), a normal Type IIP event (squares), and the overluminous core-
collapse event SN 2006gy (circles). Kasen, D., Woosley, S. E., & Heger, A.,
Astrophys. J. 734, 102 (2011). Reproduced by permission of the AAS.

through the expanding universe, making high-redshift events very
intriguing from an observational point of view. The variations among the
pair-instability models also show that careful observations can help con-
strain the progenitor mass, structure, and even metallicity.

• For masses m� > 260 M�, the helium cores instead collapse directly to
black holes; nuclear burning of heavier elements is simply unable to halt
the implosion triggered by exhaustion of more efficient fuel, and the
entire star is swallowed up in the black hole, though possibly with a tran-
sient accretion disk and accompanying electromagnetic signature. Above
this mass threshold, Population III stars therefore do not enrich their
surroundings.

5.6 Gamma-Ray Bursts: The Brightest Explosions

Gamma-ray bursts (GRBs) were discovered in the late 1960s by the American
Vela satellites, built to search for flashes of high-energy photons (“gamma rays”)
from Soviet nuclear weapon tests in space. The United States suspected that the
Soviets might attempt to conduct secret nuclear tests after signing the Nuclear
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Test Ban Treaty in 1963. On July 2, 1967, the Vela 4 and Vela 3 satellites detected
a flash of gamma radiation unlike any known nuclear weapons signature. Un-
certain of its meaning but not considering the matter particularly urgent, the
team at the Los Alamos Laboratory, led by Ray Klebesadel, filed the data away
for future investigation. As additional Vela satellites were launched with bet-
ter instruments, the Los Alamos team continued to find unexplained GRBs in
their data. By analyzing the different arrival times of the bursts as detected by
different satellites, the team was able to estimate the sky positions of 16 bursts
and definitively rule out either a terrestrial or solar origin. The discovery was de-
classified and published in 197325 under the title “Observations of Gamma-Ray
Bursts of Cosmic Origin.”

The distance scale and nature of GRBs remained mysterious for more than
two decades. Initially, astronomers favored a local origin for the bursts, associat-
ing them with sources within the Milky Way. In 1991, the Compton Gamma Ray
Observatory satellite was launched, and its Burst and Transient Source Explorer
instrument started to discover a GRB every day or two, increasing the total num-
ber of known GRBs to a few thousand. The larger statistical sample of GRBs
made it evident that their distribution on the sky is isotropic. Such a distribu-
tion would be most natural if the bursts originated at cosmological distances,
since the Universe is the only system that is truly isotropic around us. Never-
theless, the local origin remained more popular within the GRB community for
6 years, until February 1997, when the Italian-Dutch satellite BeppoSAX de-
tected a gamma-ray burst (GRB 970228) and localized it to within a few ar-
cminutes using its X-ray camera. With this prompt localization, ground-based
telescopes were able to identify a fading counterpart in the optical band. Once
the GRB afterglow faded, deep imaging revealed a faint, distant host galaxy at
the location of the optical afterglow of the GRB. The association of a host galaxy
at a cosmological distance for this burst and many subsequent ones revised
the popular opinion in favor of associating GRBs with cosmological distances.
This shift in popular view provides testimony to how a psychological bias in the
scientific community can be overturned by hard scientific evidence.

A GRB afterglow is initially brightest at short photon wavelengths and then
fades away at longer wavelengths, starting in the X-ray band (over timescales
of minutes to hours), shifting to the UV and optical bands (over days), and
ending in the IR and radio (over weeks and months).v Observers noticed that
among the first detected afterglows, as the afterglow light curve faded, long-
duration GRBs showed evidence for a supernova flare, indicating that they are
also associated with core-collapse supernova events. The associated supernovae
were classified as related to massive stars that have lost their hydrogen envelope
in a wind. In addition, long-duration GRBs were found to be associated with
star-forming regions where massive stars are born and explode only a million
years afterward.

vFor an extreme example of a GRB afterglow from a redshift z = 0.94 that was bright enough to
be seen with the naked eye, see Bloom, J., et al., Astrophys. J. 691, 723 (2009).
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Figure 5.18 Illustration of a long-duration gamma-ray burst in the popular collapsar
model (see Color Plate 7 for a color version of this figure). The collapse of
the core of a massive star (which lost its hydrogen envelope) to a black hole
generates two opposite jets moving out at a speed close to that of light. The
jets drill a hole in the star and shine brightly toward an observer who hap-
pens to be located within the collimation cones of the jets. The jets emanat-
ing from a single massive star are so bright that they can be seen across the
Universe out to the epoch when the first stars formed. Courtesy of NASA
E/PO.

These clues indicated that long-duration GRBs are most likely associated with
massive stars. The most popular model for long-duration GRBs became known
as the collapsar model 26 (see Figure 5.18). According to this model, the progen-
itor of the GRB is a massive star whose core eventually consumes its nuclear
fuel, loses pressure support, and collapses. If the core of the star is too mas-
sive to make a neutron star, it collapses to a black hole. As material spirals into
the black hole, two jets are produced at a speed close to that of light. So far,
there is nothing spectacular about this setting, since we see scaled-up versions
of such jets being formed around massive black holes in the centers of galaxies,
as shown in Figure 7.3. However, when jets are generated in the core of a star,
they make their way out by drilling a hole in the surrounding dense envelope.
As soon as the head of a jet exits, the highly collimated stream of radiation em-
anating from it will appear as a gamma-ray flash to an observer who happens to
line up with the jet axis. The subsequent afterglow results from the interaction
between the jet and the ambient gas in the vicinity of the progenitor star. As the
jet slows down by pushing against the ambient medium, the nonthermal radi-
ation from accelerated relativistic electrons in the shock wave in front of it gets
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shifted to longer wavelengths and fainter luminosities. Also, as the jet makes
its way out of the star, its piston effect deposits energy in the stellar envelope
and explodes the star, supplementing the GRB with a supernova-like explosion.

Because of their immense luminosities, GRBs can be observed out to the
edge of the Universe. These bright signals may be thought of as the cosmic fire-
works signaling the birth of black holes at the end of the life of their
parent massive stars. If the first stars produced GRBs (as their descendants do
in the more recent Universe), then they would be detectable out to their highest
redshifts. Their powerful beacons of light could be used to illuminate the dark
ages and probe the cosmic gas around the time when it condensed to make
the first galaxies. As this book was written, a gamma-ray burst was discovered
by the Swift satellitevi at z ∼ 9.4, representing the most distant source known,
originating when the Universe was only ∼0.5 billion years old.27

It is unknown whether Population III stars produce long-duration GRBs. For
that to happen, the angular momentum of the collapsing core massMc needs to
be larger than ∼10GM2

c /c, so that a stable disk will form outside the resulting
black hole and collimate the jets. The rotation of the pre-GRB progenitor can
be affected by mass exchange with a binary companion or mass loss through
a wind. If the final mass of the black hole from a Population III progenitor is
larger than usual, then the duration and total energy output of the associated
GRB is expected to increase (∝ m�) relative to low-redshift GRBs. For additional
details about observing GRBs, see §10.2.4.

vihttp://swift.gsfc.nasa.gov/.



chapter6 August 31, 2012

Chapter Six

Stellar Feedback and Galaxy Formation

Chapter 5 described star formation in gas with a primordial composition, as-
suming that the star-forming region is completely isolated from its surround-
ings. However, as also discussed in the introduction to that chapter, such isola-
tion cannot last long: those very same stars generate radiation fields that travel
vast distances through the IGM. These photons can ionize the surrounding
gas, drive winds or shocks through it, heat it, or photodissociate the H2 or HD
that is crucial for subsequent star formation. Moreover, supernovae or winds
produced by these stars can also enrich the ambient gas with heavy elements.
The second generation of stars that form in any given region is therefore influ-
enced by its predecessors, and we must consider this influence. In this section,
we study radiative, mechanical, and chemical feedback in the earliest gaseous
clouds. While the feedback effects are sufficiently complex that a complete de-
scription of them is well beyond the capabilities of present-day computer simu-
lations, the general principles that underlie them are well known. We therefore
focus on these principles and then briefly sketch the global picture in §6.6.

Feedback is important in all galaxies, and many of the principles that we
discuss in this chapter apply on a much wider scale than just the first stars and
galaxies. We therefore present them in this larger context when appropriate,
and return to their implications in chapters 7 and 8.

6.1 The Ultraviolet Background and H2 Photodissociation

In the previous chapter we found that star formation in primordial gas depends
crucially on molecular hydrogen to cool the cloud to densities high enough
for stars to form. In this section we will consider what is likely to be the first
important feedback process to affect this picture: how radiation from those very
same stars can destroy that coolant and so make subsequent star formation
even harder.

6.1.1 Lyman-Werner Photons and the Solomon Process

Molecular hydrogen (H2) is fragile and can easily be photodissociated by pho-
tons with energies of 11.5–13.6 eV, to which the IGM is transparent even before
it is ionized. The photodissociation occurs not through a single excitation step,
as in the ionization of atoms but, instead, through a two-step process, first sug-
gested by Phil Solomon in 1965.1 In practice, this Solomon process is the only



chapter6 August 31, 2012

STELLAR FEEDBACK AND GALAXY FORMATION 175

way to photodissociate H2 in interstellar (or intergalactic) space, because the
photodissociation continuum of H2 begins at 14.7 eV, while the photoioniza-
tion continuum begins at 15.4 eV.i Both of these lie above the photoionization
threshold of H I, so such photons would be absorbed by H I long before they
encountered H2.

The quantum-mechanical configuration of the electronic ground state of H2

is denoted X1�+
g . Uppercase Greek letters denote the total electronic angular

momentum of the system, projected onto the internuclear axis, with �, �, and
� having values of 0, 1, and 2 in units of h̄. The left superscript (1 for the
ground state) is 2S + 1, where S = 0 or 1 is the total spin angular momentum.
The right subscript (g or u) and superscript (+ or −, applicable only to� states)
describe the symmetries of the configuration; this one asymptotes to two atoms
with their electrons in the 1s state at large separations. The leftmost Roman
letter describes the electronic states, with X being the lowest level, and the rel-
evant upper states for our purposes labeled B and C (capitalized letters refer
to singlets). Each of these electronic states is further split into a large number
of sublevels by the quantized rotational and vibrational levels of the two nuclei,
usually denoted by N and v. For example, the ground state has 14 vibrational
levels, each nominally with an infinite number of rotational levels. Figure 6.1
shows a simplified level diagram for H2, with these various splittings labeled.

The next two singlet states are B1�+
g and C1�u, which asymptote to two

atoms with their electrons in the 1s and 2s or 2p states, respectively. These can
decay to the ground state via permitted electric dipole transitions, the analog
of the H I Lyman-α transition. However, for these molecules there are a large
number of sub-transitions owing to the rotational and vibrational splittings.
Thus, H2 has two bands representing these transitions. The first band between
the ground state and B1�+

g is known as the Lyman band and consists of many
densely packed lines beginning at 1108 Å (11.26 eV). The second band between
the ground state and C1�u is known as the Werner band and begins at 1040 Å
(12.3 eV).

Now consider the following sequence:

H2(X
1�+

g , v = 0)+ γ → H2(B
1�+

g , v = v′) → H2(X, v = v′′)+ γ (6.1)

Here v labels the vibrational energy level. Crucially, in electronic transitions
there are no sharp selection rules for the vibrational continuum. Thus, the
excited state’s vibrational quantum number v′ is not restricted to be small, and
nor is the final value v′′. It is therefore possible for the final state to lie in the
vibrational continuum of the molecule (v′′>14): in other words, to dissociate
the molecule. A similar process also occurs for excitations and decays through
the Werner band, as shown in Figure 6.1.

The rate at which these two steps occur depends on the cross section for
absorbing Lyman-Werner photons (for which the oscillator strengths are typi-
cally ∼1%) and the probability of decay into the dissociated continuum (typically

iThese are far above the dissociation energy of H2 (4.48 eV), because the direct transition is
forbidden.
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Figure 6.1 Energy level diagram for H2. The left side of the diagram shows the energy
level notation (such as X1�+

g ), with the leftmost column showing the atomic
hydrogen levels to which these molecular levels correspond at large separa-
tions. Each of these electronic levels splits into vibrational levels (shown in
the third column), with a (dissociated) vibrational continuum above them.
The electronic ground state contains 14 such levels. Each of these vibra-
tional levels then splits into rotational levels, shown in the rightmost column.
The Lyman (Werner) band corresponds to transitions from the first (second)
excited state to the ground state; they are bands because of the many vibra-
tional and rotational sublevels. Photodissociation occurs if one of these tran-
sitions leaves the molecule in the vibrational continuum.

∼15%). The small vertical lines in Figure 6.2 show the energies of some of these
transitions, where the initial configuration has v = 0 and J = 0, 1; the height
of each line is 0.01 × fosc. The average cross-section for this process between
11.26 eV and 13.6 eV (averaged over 76 allowed lines) is σLW = 3.71×10−18 cm2.

6.1.2 The Suppression of H2 Cooling

Once Lyman-Werner photons appear, we must include this photodissociation
process in the chemistry of the primordial clouds.2 The rate coefficient for pho-
todissociation is

kdiss = 1.38 × 109JLW s−1, (6.2)

where JLW is the specific intensity (in units of erg s−1 cm−2 Hz−1 sr−1) in the
Lyman-Werner band (specifically, here we have taken hm = 12.87 eV for con-
creteness, in the middle of the relevant energy range). It is convenient to nor-
malize JLW = 10−21 × JLW,21. The timescale for dissociation is therefore

tdiss = k−1
diss ≈ 3 × 104J−1

LW,21 yr, (6.3)
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Figure 6.2 The “sawtooth” modulation of a uniform, spectrally flat radiation back-
ground in the Lyman-Werner frequency band when the IGM is still predom-
inantly neutral (see Color Plate 8 for a color version of this figure). The three
curves are for z = 19.2, 15.7, and 9.2, from top to bottom; the horizontal
lines show the unattenuated spectrum, while the curves with features show
the effect of Lyman-series absorption. The vertical lines at the bottom of the
figure show some of the Lyman-Werner transitions, with the height equal to
1% of the oscillator strength. Ahn, K. et al., Astrophys. J. 695, 1430 (2009).
Reproduced by permission of the AAS.

which is very short compared to the relevant cosmological timescales. Thus, if
the Lyman-Werner background approaches this fiducial value, we would expect
it to destroy all the molecular hydrogen inside star-forming clouds.

In that case, if the radiation background and local gas properties remain
constant on longer timescales, the H2 fraction will approach an equilibrium
in which the formation rate (approximately proportional to k̃ in equation 5.6)
balances the dissociation rate,

fH2,eq = k̃

kdiss
xH IInH∼4 × 10−8J−1

LW,21

(
xH II

2 × 10−4

) (
1 + z

20

)3 (
�

200

)
, (6.4)

where we have taken T∼1,000 K and a typical electron fraction before any cool-
ing begins. This is far below the critical value required for H2 cooling to be
efficient (equation. 5.12), so a substantial Lyman-Werner background suppresses
molecular hydrogen cooling inside collapsed objects.

The primary question is then whether a background of this amplitude can
reasonably penetrate the clouds in which primordial stars may form. In the
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next section we will examine whether a sufficiently strong background can be
produced by the integrated stellar population, but before doing so we note that
any such metagalactic radiation field must penetrate to the regions in which
H2 actually forms—that is, to the centers of virialized halos. Once H2 cooling
becomes important, these halos host large masses of the gas, and the outer lay-
ers of each halo can then self-shield the inner layers in which cooling actually
occurs. If these outer layers are dense enough to maintain an equilibrium H2

population that is optically thick in the Lyman-Werner bands, this self-shielding
is significant. A convenient numerical approximation for the effects of self-
shielding in a static medium is to take kdiss → fshkdiss, with3

fsh = min

[
1,

(
NH2

1014 cm−2

)−0.75
]
, (6.5)

where NH2 is the column density of molecular hydrogen. The dependence at
high column densities is steeper than expected from a naive curve-of-growth
analysis (see §4.3.3 for a related discussion about H I Lyman-α) because of
overlap within the various Lyman-Werner lines. (This estimate is not accurate
at very high column densities, but those are rarely important in this context.)

Note, however, that self-shielding is more complex if the medium has velocity
gradients, because then the lines are shifted by different amounts relative to
their rest wavelengths in different parts of the cloud. This can considerably
reduce the effectiveness of self-shielding and is a critical question in evaluating
the importance of a Lyman-Werner background. In particular, virialized halos
are continuosly accreting gas, which falls toward their center. The resulting
velocity gradient helps keep the star-forming clouds at the centers of halos more
optically thin than one would naively expect.

6.1.3 Photodissociation Feedback inside Star-Forming Halos

It is conceptually convenient to divide the Lyman-Werner photodissociating
background into two simple cases: one in which light from a given star inside
a collapsed halo acts upon gas inside the same halo, and a second in which a
metagalactic radiation background affects halos from their exteriors. We will
first consider the internal feedback case. We certainly expect that within some
zone around an individual star, the Lyman-Werner background will dissociate
enough H2 to render further cooling inefficient, choking off later star forma-
tion. The critical question is the size of this zone compared to the halo.

We suppose that a star sits at the center of such a halo. To gauge the cumu-
lative amount of H2 destroyed around the star, we must compare the timescale
for a star to photodissociate the halo’s H2 to its main-sequence lifetime. Very
massive Population III stars produce NLW ≈ 3,400 photons in the 11.2–13.6 eV
range per baryon inside them; smaller stars produce them at about double that
rate. If we assume that a fraction fLW,abs∼0.01 of these photons are absorbed
by the Lyman-Werner bands (a reasonable approximation for the relevant col-
umn densities and expected line widths), and that about fLW,diss∼0.15 of these
absorptions lead to dissociations (see §6.1.1), the total number of dissociations
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from a star (or set of stars) with mass m� is ∼fLW,absfLW,dissNLWm�/mp. Com-
paring this to the total number of H2 molecules in a halo, ∼fH2Mg/mp (where
Mg is the total gas mass), we find that the fraction of molecules expected to be
photodissociated is

fdestroy∼104

(
fLW,abs

0.01

) (
fLW,diss

0.15

)(
NLW

3400

) (
fH2,s

3.5 × 10−4

)−1 (
m�

Mg

)
. (6.6)

Thus, provided that the star formation efficiency is not extremely small, the
first generation of stars can easily photodissociate all of their halo’s diffuse H2,
shutting down further cooling at least temporarily.

However, gas clumps already in the process of collapse may be dense enough
to maintain their H2 populations in the presence of this radiation background.
The relevant question for clumps is whether the radiation field can dissociate
the H2 both before collapse completes (over ∼tdyn) and faster than the clump
can form H2 to replace it (equation 6.4). Analytic estimates show that clumps
that have already passed the “loitering stage” (with nH>104 cm−3) are sup-
pressed only very close to the source star.4 Thus, the total rate of star forma-
tion within halos may depend on the degree to which clumps are synchronized
across the entire halo: those collapsing at nearly the same time will be unaf-
fected by the Lyman-Werner background, but the collapse of those that are de-
layed may be halted completely. In particular, gas clumps fragmenting from
the same disk are very unlikely to be affected by each other’s Lyman-Werner
photons, because they are synchronized.

6.1.4 The Metagalactic Lyman-Werner Background

Because the IGM is mostly optically thin to photons in the Lyman-Werner
bands (and the small amount of intergalactic H2 is quickly dissociated as the
first sources appear), a metagalactic radiation field will quickly build up in this
energy range. If the background is intense enough, the rate at which H2 is de-
stroyed inside collapsed objects will exceed the rate at which such molecules
form, preventing cooling in newly forming halos—and causing a strong nega-
tive feedback effect on star formation.

The magnitude of this feedback will depend on how these Lyman-Werner
photons propagate through the IGM. In fact, the IGM is not perfectly optically
thin to them, as absorption by the H I Lyman-series lines processes the back-
ground below the Lyman limit, causing the sawtooth shape shown in
Figure 6.2. For any photon energy above Lyman-α at a particular redshift, there
is a limited redshift interval beyond which no contribution from sources is pos-
sible because the corresponding photons are absorbed by one of the (extremely
optically thick) Lyman-series resonances along the way.ii Consider, for exam-
ple, an energy of 11 eV at an observed redshift z = 10. Photons emitted just
below the 12.1 eV Lyman-β line from z = 11.1 would be received at 11 eV at

iiThe Lyman-α optical depth is given in equation (4.11), and higher Lyman-series transitions fall
proportionally to the ratios of the oscillator strength times frequency.
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z = 10. Thus, sources in the redshift interval 10–11.1 could be seen at 11 eV,
but radiation emitted by sources at z>11.1 would have passed through the
12.1 eV Lyman-β energy at some intermediate redshift, and would have been
absorbed.

It follows that an observer viewing the universe at any photon energy above
Lyman-α would see sources only out to some horizon, and the size of that hori-
zon would depend on the photon energy. The number of contributing sources,
and hence the total background flux at each photon energy, would depend on
how far this energy was above the nearest Lyman resonance: photons with ener-
gies just below a Lyman resonance would be contributed by only a small num-
ber of sources, while those just above one of these energies would be sourced
out to relatively large distances. Most of the photons absorbed along the way
would be reemitted either at Lyman-α or in the 2p → 1s two-photon contin-
uum and then redshift to lower energies. The result is a sawtooth spectrum
for the UV background before reionization, with an enhancement below the
Lyman-α energy due to reprocessing.

Quantitatively, the specific intensity at a frequency m and redshift z is (see
equation 4.43)

Jm(z) = c

4π

∫
dz′

dt

dz′

(
1 + z

1 + z′

)3

εm′(z′)e−τ(z), (6.7)

where εm′(z′) is the proper emissivity from sources at a redshift z′ and a fre-
quency m′ = m(1 + z′)/(1 + z), and the factor τ(z) is the accumulated optical
depth as the photon travels through the IGM. This is negligible so long as the
photon stays between the Lyman-series lines, but it becomes very large when-
ever the photon crosses such a line. A simple but accurate approach is therefore
to use a “screening approximation” in which the integral is truncated at a max-
imum redshift determined by the nearest Lyman line i (of frequency mi>m) via

1 + zmax

1 + z
= mi

m
, (6.8)

while the optical depth factor can otherwise be ignored.
Figure 6.2 shows this modulation in detail for a set of uniform emissivity

sources with flat spectra at three different final redshifts (the normalizations
are arbitrary; the horizontal lines show the spectra before attenuation by the
Lyman series). As the frequency increases and the spacing between the Lyman-
series lines decreases, the absorbing screens get closer together, and the total
background decreases. Thus, the uppermost Lyman-Werner transitions experi-
ence a weaker background.

Unfortunately, the direct detection of the redshifted sawtooth spectrum as
a remnant of the reionization epoch is not feasible owing to the much higher
flux contributed by foreground sources at later cosmic times. However, a sim-
ilar process does occur before He II is completely reionized at z<3, and the
Lyman-series transitions of He II create a sawtooth spectrum in the far-UV.
This spectrum may be indirectly detectable through its effects on metal-line
absorbers, some of whose ionization potentials lie inside the sawtooth region
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of the spectrum. This effect is barely visible in the higher-redshift panels of
Figure 4.13.

Estimating the spectrum in more detail, and as a function of redshift, re-
quires a model for the emissivity εm(z). Clearly, that will depend on the galaxy
formation processes that we will examine over the next several chapters, but
for a very simple estimate we can assume that the star formation efficiency f�
within halos is zero below a minimum halo mass Mmin and constant above
that mass (which could be set either by accretion—the filter mass—or efficient
cooling to form stars). Then, we can write

εm(z) = 1

4π
f�
dfcoll

dt

ρ̄b

mp
εLW(m), (6.9)

where the first factor converts from total emissivity to emissivity per solid an-
gle, and the last factor is the energy produced by the stars per frequency per
baryon in the Lyman-Werner region. If we approximate the latter by εLW ≈
hmLWNLW/�mLW, equation (6.7) gives

Jm,21∼2.4
(
NLW

3400

)(
f�

0.1

)(
�fcoll

0.01

) (
1 + z

10

)3

, (6.10)

where �fcoll is the fraction of gas that collapses onto star-forming halos over
the redshift range (z, zmax). Radiation backgrounds of this magnitude are easily
large enough to strongly suppress H2 cooling in just-virialized gas (see
equation 6.4).

Figure 6.3 shows a more careful calculation of the background spectrum am-
plitude, though still in the context of a model with the star formation rate pro-
portional to dfcoll/dt , and f� = 0.1. Here we show the average amplitude over
the entire Lyman-Werner frequency interval—the sawtooth absorption typically
reduces this from the emitted amplitude by about an order of magnitude. We
show several different mass thresholds, increasing from the filter mass (top
curve) to masses near the atomic cooling threshold (bottom curve). The ampli-
tude increases rapidly with decreasing redshift because these halos are initially
on the exponential tail of the mass function; the turnover at lower redshifts is
where the corresponding halos are well below the cutoff in the mass function,
so that the growth slows down. Equation (6.10) appears to provide a reasonable
estimate of JLW,21.

The choice of f� is highly uncertain in these models, so Figure 6.3 is only
a very rough guide to expectations. If the first cluster of Population III.1 stars
shuts down further star formation in a halo, then one might expect only a few
hundred solar masses of stars to form inside each one. In that case, f� =
m�,tot/Mg∼0.003(m�,tot/500 M�)(Mh/106 M�)−1, where Mh is the total halo
mass. Fortunately, these curves are all strictly proportional to the star forma-
tion efficiency, so their amplitude can easily be rescaled.

This mean background is relatively easy to compute, but in reality the
clustered halos that source the background induce inhomogeneities in it.
Fortunately, at least in the standard structure formation model, these
inhomogeneities are mild. Consider the lower edge of the Lyman-Werner band,
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Figure 6.3 Evolution of the specific intensity of the metagalactic radiation field in the
Lyman-Werner band at high redshifts. The lines show the amplitude of the
radiation field over time, taking several different mass thresholds for star-
forming halos: Mmin = MF(z) (the filtering mass), 106, 107, and 108 M�,
from top to bottom. The curves assume f� = 0.1; all the curves are propor-
tional to this value.

with 11.2 eV. Photons redshift into this band out to the Lyman-β transition at
12.1 eV, which corresponds to a redshift of �z∼0.1(1 + z), or about 100 Mpc.
Each point therefore samples a huge volume of sources around it, which av-
erages out the fluctuations (although the more closely spaced higher Lyman-
series transitions weight the effective volume to more nearby sources). The
Lyman-Werner background will therefore be nearly uniform except very close
to individual sources or unless the halo population itself has fluctuations on
∼100 Mpc scales,iii which may indeed be possible due to a strong source bias
and the velocity offset between dark matter and baryonic material (see §2.1.2
and 3.2.2). In that case, the background may vary strongly, leading to substan-
tial variations in the halos able to cool and form stars efficiently across very
large scales.

6.1.5 External Feedback on H2 inside Virialized Halos

With a model for the Lyman-Werner background in hand, it is now straightfor-
ward to gauge the metagalactic background’s effects on H2 cooling inside col-
lapsing dark matter halos. As a simple estimate of the column density of a virial-
ized halo, we assume a uniform density sphere at the typical virial

iiiWe will explicitly compute fluctuations in the background at the Lyman-α frequency based on a
very similar calculation in §12.3.1.
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Figure 6.4 Schematic illustration of molecular hydrogen fraction as a function of virial
temperature for halos inside a cosmological simulation at z = 17. The line
at upper right shows fH2,c, the critical fraction required for efficient cooling.
The dark solid line (marked a) shows fH2∼fH2,s in the absence of radiative
feedback (see Figure 5.5). The light solid (labeled b) and short-dashed lines
show fH2 if self-shielding is neglected and JLW,21 = 0.01 or 0.1, respectively.
The long-dashed line (labeled c) shows the same, but with self-shielding ap-
proximately included. Yoshida, N., et al., Astrophys. J. 592, 645 (2003). Repro-
duced by permission of the AAS.

overdensity and with a radius rvir. Then a halo of mass Mh has

NH2∼1017

(
fH2

3.5 × 10−4

) (
Mh

106 M�

)1/3 (
1 + z

20

)2

cm−2, (6.11)

where we have inserted the saturation value for the H2 fraction from equa-
tion (5.10) as a fiducial estimate. In fact, simulations show that the effective
column density is typically a few times smaller than this, since much of the gas
in the outskirts of the halo remains optically thin, but the simulations confirm
that the value provides a reasonable estimate for a stationary halo in which ve-
locity gradients are insignificant (though that may not be a good approximation
in reality).

This column density is well above the self-shielding threshold in
equation (6.5), which implies that much of the halo will be shielded from the
metagalactic background. Therefore, we write the effective background as
fshJLW,21(z). We can then insert this radiation field into equation (6.4) to de-
termine the H2 fraction in the presence of feedback. Finally, comparison of
this fraction with the critical value required for cooling, fH2,c in equation (5.12),
determines whether the halo is able to continue cooling and form stars.

Figure 6.4 provides a schematic illustration of these effects, based on fits to
numerical simulations (cf. Fig. 5.5). The line at upper right shows fH2,c, the
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critical fraction required for efficient cooling. The dark solid line (marked a)
shows fH2 in the absence of radiative feedback; this lies very near the satura-
tion level fH2,s of equation (5.10). The light solid line (marked b) shows fH2 if
self-shielding is neglected and JLW,21 = 0.01. This markedly reduces fH2 and
quantitatively matches the estimates described in this section. However, the
dashed line labeled c shows the same, but with self-shielding approximately in-
cluded (and ignoring velocities). Halos near the critical cooling threshold are
already very optically thick, so in practice the radiation background has signifi-
cantly less of an effect than naively expected.

Nevertheless, the growing Lyman-Werner background most likely
“self-regulates” the earliest stages of star formation. Within each star-forming
halo, the first few stars create a strong Lyman-Werner background and pre-
vent any protostars not already far along in their collapse from proceeding.
The same stars create a metagalactic background that reduces the efficiency
of cooling in other, newly forming gas clouds, raising the mass threshold for
star formation. But as the abundance and mass scale of dark matter halos in-
creases, the larger gas clouds more effectively self-shield their inner regions,
allowing the background to increase, which in turn raises the mass threshold,
and so on. Eventually the Lyman-Werner background becomes so intense that
star formation is possible only through atomic cooling in halos with Tvir∼104 K,
for which photodissociation is unimportant. However, recall that these halos
ionize their own gas at the virial shock and so likely form stars through the
Population III.2 (deuterium-mediated) channel described in §5.3. This Lyman-
Werner background may therefore regulate the transition from very high mass
primordial stars to the lower-mass channel.

6.2 The X-ray Background: Positive Feedback

The radiative feedback on H2 need not be entirely negative, however. In the
dense interiors of gas clouds, the formation rate of H2 could be accelerated
through the production of free electrons by X-rays.5 This effect could coun-
teract the destructive role of H2 photodissociation. Unlike UV photons, X-rays
can penetrate huge distances across the Universe, even at high redshifts. The
mean free path through the mean IGM density of an X-ray photon with energy
E is

λX ≈ 11 x̄1/3
H I

(
1 + z

10

)−2 (
E

300 eV

)3

Mpc; (6.12)

thus, photons with E>1.5[(1 + z)/15]1/2x̄
1/3
H I keV propagate an entire Hub-

ble length before interacting with the IGM. Similarly, they can penetrate large
columns of dense neutral gas inside collapsed halos. Thus, an X-ray background
may be pervasive at high redshifts.

X-rays interact with primordial gas by ionizing either helium or hydrogen.
The resulting free electron can gain a large kinetic energy (equal to the
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difference between the photon energy and the ionization potential), which it
then deposits as a mixture of heat, collisional ionization, and collisional excita-
tion. Typically, a fraction fi∼xH I/3 of the energy is deposited in ionizing other
atoms. Thus, a 1 keV photon can result in ∼25 free electrons (we discuss this
secondary ionization process further in §9.8.2). Because these free electrons
catalyze H2 formation, X-rays can exert positive feedback on primordial star
formation.

An X-ray background seems almost inevitable at high redshifts,6 with a num-
ber of possible sources: (1) Very massive Population III stars are hot enough
for their blackbody spectra to extend into the soft X-ray regime. (2) Quasars
or “miniquasars” must begin to form at very high redshifts to produce the
extremely luminous quasars seen at z∼6 and likely have nonthermal spectra
extending to very high energies. (3) Supernova blastwaves may accelerate fast
electrons, which can in turn scatter CMB photons to X-ray energies. The asso-
ciated cooling rate of relativistic electrons increases dramatically with redshift,
since the CMB energy density scales as uCMB ∝ (1 + z)4. (4) X-ray binaries,
in which a massive black hole accretes gas from a companion, are often pro-
duced when a massive star explodes in a binary system; if massive stars are
more abundant at high redshifts, then such binaries may be more common
then. We will see later (§12.3.2) that these contributions to the X-ray back-
ground significantly affect the IGM temperature and ionization history, and
they also present an important potential positive feedback mechanism for the
first stars.

Simple scaling laws suggest, however, that this positive feedback will over-
come the negative Lyman-Werner feedback only in unusual circumstances. Let
us suppose that the electron fraction inside a cool cloud is in ionization equilib-
rium with an X-ray background. We will assume that the X-rays are sourced by
the same population of galaxies as the UV background (though the sources
themselves may differ, such as high-mass stars and the X-ray binaries they
become after dying).

For an X-ray background amplitude JX, ionization equilibrium implies ne ∝
(JXnH)

1/2, where we have ignored the temperature dependence of the recombi-
nation coefficient. Equation (6.4) therefore yields (with xH IInH = ne)

fH2,eq ∝ n
1/2
H J

1/2
X /JLW. (6.13)

In other words, the equilibrium molecular fraction depends more weakly on
the X-ray background than on the UV background. Assuming these are tied
to the same underlying physical processes (i.e., are both ultimately driven by
gas accretion onto halos and star or black hole formation), X-rays can make a
substantial difference only when JLW is still relatively modest. (Moreover, they
matter at all only if the equilibrium electron fraction is larger than the value
obtained from the usual chemistry described in §5.1.1.)

More detailed investigations have shown that if JX = εXJLW at the H I ion-
ization edge, X-rays exert mild positive feedback on dense gas clouds when
0.1 < εX < 1.7 At smaller fluxes, the X-rays are relatively unimportant. At larger
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fluxes, the heating generated by the X-rays counteracts the additional cooling,
negating the boost to the free-electron fraction.iv

6.3 Radiative Feedback: Mechanical Effects

As discussed in §5.2.2, radiative feedback from the first stars may have been
crucial for choking off accretion and setting their final mass scale. But the
high-energy photons responsible for that process likely reached well outside
the accretion disk, into the source halo and the surrounding IGM, once the
star entered the main sequence. The same processes mentioned previously can
dramatically affect these larger scales and subsequent star formation in a star’s
environment, because the radiation can influence the motion of the surround-
ing gas more than gravity does. In this section we consider some of the relevant
processes in more detail.

6.3.1 The First H II Regions: Photoevaporation

The most dramatic effects result from the high luminosity of ionizing photons
produced by the first stars. We discussed briefly in §5.2.2 how ionization fronts
can have powerful effects on gas dynamics, and these effects extend far beyond
the protostellar region once a star enters the main sequence. For example, con-
sider an ionizing front expanding inside a gravitationally bound halo, where
the baryon density declines with radius. For pedagogical purposes, we adopt a
simple density profile:

nH(r) =
{
nc r < rc,

nc(r/rc)
−w r ≥ rc,

(6.14)

wherew is a power-law index that encapsulates the steepness of the density run
in the cloud’s outskirts, and nc and rc are a core density and radius, respectively.
Numerical simulations show that primordial gas clouds havew∼2–2.2 (see also
§5.2.1). The average density of virialized (uncooled) gas inside dark matter halos
at redshift z is ∼1 cm−3[(1 + z)/30]3, independent of halo mass.

The properties of the ionization front can be characterized with reference
to the Strömgren radius Rs , the outer boundary of the H II region around the
source out to which the total rate of recombinations is equal to the total rate of
ionizations (see also §9.1). For a star producing ionizing photons at a rate Q̇i in
a constant-density medium, this radius is

Rs =
(

3Q̇i

4πn2
HαB

)1/3

≈ 150
(

Q̇i

1050 s−1

)1/3 ( nH

1 cm−3

)−2/3
pc, (6.15)

where we have evaluated the recombination coefficient αB = 2.6 × 10−13

cm−3 s−1 at ∼104 K (see equation 4.17). If the H II region reaches this size (or,

ivA similar negative feedback effect functions even at lower X-ray fluxes in the diffuse IGM, where
X-ray heating creates an “entropy floor” that prevents gas from collapsing onto virialized objects.
We discuss this effect in detail in §9.9.
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alternatively, if within a fixed radius the density exceeds an equivalent thresh-
old value), then the ionizing photons themselves are consumed within mostly
ionized gas.

Before this time, the front is slowed only by the rate at which photons can
ionize the medium. During the early fast-expansion phase, we refer to the ion-
ization front as R-type (also see §5.2.2). However, once this expansion velocity
slows down to near the sound speed, the gas is able to react to its new ther-
modynamic properties. The Strömgren radius provides a simple maximal esti-
mate for when this transition occurs, because at that point the expansion has
nearly zero velocity. In more detail, the ionization front slows to become D-type
when its expansion speed falls to roughly twice the isothermal sound speed of
the ionized medium, 2ci . At that point, the increased temperature (and hence
pressure) within the front drives a shock into the surrounding medium. The
front then propagates outward at roughly the speed of sound. The H II region
can therefore expand only through hydrodynamic processes, and the ionization
front is said to be trapped.

In the density profile given by equation (6.14), some algebra shows that the
Strömgren radius isRw ≡ g(w)Rs,c, whereRs,c is evaluated with equation (6.15)
using the core density and8

g(w) =




[
3 − 2w

3
+ 2w

3

(
rc

Rs,c

)3
]1/(3−2w) (

Rs,c

rc

)2w/(3−2w)

w 	= 3/2,

(
rc

Rs,c

)
exp

{
1

3

[(
Rs,c

rc

)3

− 1

]}
w = 3/2.

(6.16)
The front’s speed depends on how far it extends: it can accelerate at r>rc if the
density profile is steep enough. In particular, if w > 3/2, the total recombina-
tion rate (∝ n2

H times the volume) does not appreciably increase as the front’s
radius grows, allowing the front itself to escape to infinity. To see this, it is
straightforward to estimate the velocity at which the ionization front expands
before the Rw limit is met:

Ui−f = Uc

(Rs,c/rc)3 − 1
u(w), (6.17)

where Uc is the typical speed within the uniform-density core,

Uc ≈ 90
( nH

103 cm−3

) ( rc

1017 cm

) [(
Rs,c

rc

)3

− 1

]
km s−1, (6.18)

and

u(w) =




( rc
R

)2−w
[(

Rs,c

rc

)3

+ 2w

3 − 2w
− 3(R/rc)3−2w

3 − 2w

]
w 	= 3/2,

( rc
R

)1/2
[(

Rs,c

rc

)3

− 1 − 3 ln(R/rc)

]
w = 3/2.

(6.19)
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Figure 6.5 Diagram of an ionization front propagating through a cosmological halo.
The dashed and solid lines show the locations of the ionization front and
shock, respectively. After an initial R-type phase (not shown), recombinations
in the high-density core trap the front, making it D-type, in which a shock
slightly leads the ionization front. As the density falls through the halo, the
recombination rate also falls, eventually freeing the front to expand much
faster than the sound speed. The shock is left behind and lags the front,
often eventually transforming into a simple pressure wave.

The ionization front remains R-type all the way to infinity if

w > wtrap = 3

2

[
1 −

(
rc

Rs,c

)3
]−1

, (6.20)

or w > 3/2 for ionization fronts able to reach well outside the core before strik-
ing the Strömgren limit.

The front shifts to D-type, driving a shock into the surrounding gas, if w <

wtrap. This allows the ionization front to grow (slowly), even though it has nom-
inally reached its Strömgren limit, because the hydrodynamic motions of the
gas decrease the average density behind the shock. In a typical halo, the density
profile steepens as one moves outward, usually with w > wtrap in the outskirts.
Therefore, the front eventually reaches a point where it is no longer trapped.
At this time it reverts to R-type and expands rapidly, with no immediate hydro-
dynamic effect on gas outside of the H II region itself. Numerical simulations
show that this transition point is well approximated by the Strömgren radius of
the initial density profile,9 using equation (6.15) with the average density set to
its value inside Rs . Figure 6.5 shows a diagram of this evolution.

However, within the H II region, the gas rapidly accelerates outward. The
temperature structure of the cloud is set by photoheating: each ionization leaves
the residual electron with some extra energy that depends on the spectrum of
the ionizing source (see §9.9 for more details on this process), typically with
T∼104 K. The pressure profile is set by the density profile—which also has
not had time to adjust to its new state. A strong pressure gradient therefore
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develops, producing an acceleration (again, with ρ ∝ r−w)

a = 1

ρ

dp

dr
∼wc

2
i

r
, (6.21)

which is strongest in the center of the halo. A pressure wave therefore develops,
pushing the gas ahead of it out of the halo—this regime is often referred to
as the champagne phase. Behind the wave, the gas has roughly constant density
and hence reaches pressure equilibrium; ahead of it the gas is still in its original
configuration.

The characteristic speed of this wave is a few times the sound speed of the
ionized gas, ci∼

√
kT /mp∼10(T /104 K)1/2 km s−1. In comparison, the escape

speed from a dark matter halo is roughly

vesc(M)≈
√

2Vc(rvir)=33.0
[
�m

�m(z)

�c

18π2

]1/6(
Mh

108M�

)1/3 (
1 + z

10

)1/2

h1/3 km s−1
,

(6.22)
where we have used equation (3.31) and assumed an isothermal density profile
truncated at the virial radius rvir, for simplicity. Thus, the gas inside the H II
region becomes strongly unbound and flows outward for halos of a sufficiently
low mass. The ionization front slows down only when it reaches a region with
a shallower density gradient in the IGM, allowing it to return to the Strömgren
limit. But by this point the bound gas has already escaped.

Numerical simulations of this photoevaporation process show that in the limit
of a smooth, spherical halo, the radiation pressure from a single very mas-
sive Population III.1 star can evacuate the gas from an entire halo of mass
∼106 M�.10 Figure 6.6 shows an example from a detailed numerical calculation
of a single 200M� star. Clockwise from top left, the panels show the ionized
fraction, the temperature, the (outward) velocity, and the density profile at a se-
quance of times. In the last panel, the dashed line shows the density required
to enforce the Strömgren criterion in equation (6.15); if the density exceeds
this value, the ionization front will be limited by recombinations and be D-type.
Clearly, the high core density will trap the front, from which it will emerge when
it reaches ∼1 pc. In the upper panels, the large jump in the ionization front lo-
cation from 82 to 95 kyr involves the transition from D-type to R-type. The large
outward gas velocities, at two to three times the sound speed of the gas, are
nearly ten times as large as the escape speed from the minihalo (2–3 km s−1).

Thus, the first stars can easily empty their halos of gas, decreasing the local
baryon fraction to just a few percent. However, the picture is less clear if the
gas filling the source halo is clumpy, containing other collapsing cores (or in
nearby halos also en route to forming their own stars). If these neighboring
clumps have modest densities, they, too, will be completely evaporated. How-
ever, if their central densities are sufficiently high, nH>2,000 cm−3, the core
will remain neutral via self-shielding, and the radiation will have little effect. In
this case, the collapse will continue until new stars are formed. Indeed, the pas-
sage of an ionization front (and accompanying shock) through surviving cores
may actually aid collapse and encourage further star formation. Whether more
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Figure 6.6 Evolution of a cosmological halo as an ionization front propagates through
it. The simulation takes a single 200 M� star at z = 18.2 in a halo of total
mass 7 × 105 M�. Clockwise from top left, the panels show the ionized frac-
tion, the temperature, the (outward) velocity, and the density profile. Each
panel shows snapshots at 63, 82, 95, 127, 317, and 2200 kyr (left to right in
all panels except bottom left, where they are top to bottom). In the bottom
left, the dashed line shows the minimum density required to trap the ion-
ization front. Whalen, D., et al., Astrophys. J. 610, 14 (2004). Reproduced by
permission of the AAS.

than one star can form in a low-mass halo (or in a halo with nearby neighbors)
thus crucially depends on the degree of synchronization of clump formation.

As an example of the complex implications of the photoevaporative flow, con-
sider the shocked gas that lies ahead of the front during its D-type phase. This
shocked region is partially ionized by high-energy photons, and so its ionized
fraction is typically appreciable (>10−3; see §9.8.2 for more on this process).
The extra free electrons catalyze the formation of H2, potentially making self-
shielding effective. The cooling induced by H2 can trigger thin shell instabilities
that quickly develop into new star-forming clumps.

The long-term effects of this radiation pressure are also not obvious and de-
pend on the details of the halo’s neighborhood. Although the gas has a very
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high velocity as it leaves the halo, it can still be reincorporated into the halo
(or into one of its nearby neighbors) through hierarchical structure formation.
Numerical simulations show that this fallback can take ∼100 million years, a
substantial fraction of the age of the Universe at these high redshifts.11 This
could lead to a long delay in later star formation or accretion onto any remnant
black holes. The preionization would also change the mode of any future star
formation to Population III.2 stars, possibly with a somewhat lower mass scale
than the first generation of Population III.1 stars.

6.3.2 Radiation Pressure from Lyman-α Photons

Interestingly, the radiation can also exert a substantial force on the neutral gas
surrounding the H II region.12 The Lyman-α photons, generated primarily by
recombinations within the H II regions, scatter off the neutral gas outside those
regions, imparting their net outward momentum and driving the gas away from
the central source. We can gauge the possible dynamical effect of these pho-
tons by comparing the gravitational binding energy, EB∼(�b/�m)GM2/rvir

(see equation 3.33), with the energy in the radiation field,Eα = Lα×ttrap, where
Lα is the line luminosity of the H II region, and ttrap is the typical timescale over
which Lyman-α photons are trapped inside the cloud. Numerical calculations
of line transfer suggest that ttrap∼15tlight,13 where tlight = rvir/c is the light travel
time across the halo (see further discussion of this complex problem in §11.1.1).
The condition Eα>EB requires that

Lα>Lα,crit∼1040

(
M

106 M�

)4/3 (
1 + z

30

)2 (
15tlight

ttrap

)
erg s−1. (6.23)

Note that approximately two-thirds of recombinations produce a Lyman-α pho-
ton, so this translates to a direct constraint on the ionizing luminosity; the fidu-
cial luminosity shown here corresponds to only ∼500 M� (per M∼106M�) in
very massive Population III.1 stars, assuming that the H II region reaches its
Strömgren limit.

For a nearly isotropic radiation field (a valid approximation in this case be-
cause of the large number of scatterings each Lyman-α photon experiences),
the acceleration induced by Lyman-α radiation pressure may be written as

aLyα = 1

3ρ

dUα

dr
, (6.24)

where ρ = mpnH, and Uα is the energy density of the Lyman-α photons. If
the gas were optically thin, then Uα would be Lα/(4πr2c), but the scattering
process traps Lyman-α photons near the source and steepens the 1/r2 scaling.
The total impulse aLyα�t therefore depends on the total Lyman-α fluence of the
source, which in turn is dictated by the number of ionizing photons produced
by the stars.

The simple solution described in §11.6, for scattering around a point source
in a uniform IGM expanding at the Hubble flow, has U ∝ r−2/3 at moder-
ate distances from the source. In a more realistic calculation, the H II region
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surrounding the central star, the infall region surrounding the halo, and the
details of Lyman-α scattering must be taken into account, but this simple solu-
tion provides a reasonable gauge of the importance of Lyman-α radiation pres-
sure. Assuming very massive Population III.1 stars, the corresponding final
velocity of an atom at a distance r from the central source is

vα∼6
(

1 kpc

r

)10/3 (
15

1 + z

)3 (
f�

10−3

M

106 M�

)
km s−1. (6.25)

While the final velocity is small, the escape speed at the virial radius rvir =
0.2 kpc of a 106 M� halo at z = 14 is ∼6 km s−1. Thus, Lyman-α scattering
through the neutral gas outside any H II region can eject the gas from the vicin-
ity of the source halo, also slowing down accretion.

This same effect can also operate in larger galaxies later in the history of
structure formation, many of which are observed to have substantial Lyman-α
fluxes. However, numerical simulations show that the effects are modest unless
the galaxy also drives a wind that creates a neutral “supershell” that can multiply
the radiation force through repeated scatterings, largely because these galaxies
are able to ionize such a large region around them that the near region, where
the force is strongest, is still ionized and cannot trap the photons.

6.4 Galactic Superwinds and Mechanical Feedback

6.4.1 Star Formation and Wind Energetics

As stars live and die, they inject large amounts of energy into their surround-
ings, through a number of channels. First, while they are luminous, their radi-
ation couples to the interstellar medium as UV photons scatter off atoms and
dust grains (which are usually coupled to the neutral or ionized gas through col-
lisions and magnetic fields). Just as in the Lyman-α scattering case described
previously, the pressure of the radiation field can therefore eject gas from the
galaxy. Second, in the late stages of stellar evolution, many stars drive powerful
winds into the ISM, and supernova explosions when massive stars die inject
E∼1051 erg of energy into the ISM, typically accelerating ∼10 M� of material
per explosion to ∼3 × 103 km s−1.

The energy and momentum flux from these mechanical interactions can un-
bind the gas from the host halo. These outflows, when they span a large fraction
of a galaxy, are known as superwinds. By removing gas from the galaxy, these
mechanisms choke off the fuel supply for further star formation and may ul-
timately be responsible for regulating the pace of star formation over time. A
clear understanding of the role of feedback is therefore essential to understand-
ing not only the first galaxies but their more massive descendants.

We begin with some plausibility arguments showing that winds are likely to
be important for the small galaxies most common at high redshifts. We first
ask the question, How much star formation is necessary to unbind the gas
inside a virialized halo? The total binding energy of a halo with mass M is
given by equation (3.33), but for the gas we must multiply this energy by the
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mass fraction in gas (fg∼�b/�m). Moreover, we have already seen that to form
stars the gas must collapse to high densities. To describe this situation simply,
we assume that the gas is confined to a region <λrvir (see §8.4), where the spin
parameter λ∼0.05 is set by the angular momentum of the halo. Thus, the gas
binding energy is Eb,g∼(fg/λ)GM2

h/rvir.
Meanwhile, the energy injected by supernovae is ESN∼f�fgMhωSN, where

f� is the fraction of gas that is turned into stars, and ωSN is the supernova
energy input per unit mass of star formation. Typical supernova models and
“normal” Population II IMFs yield ωSN∼1049 ergM−1

� . However, we expect that
some fraction of this energy will be radiated away as the hot, dense supernova
remnant plows through the galaxy into the IGM around it. We assume that a
fraction ξ of the total energy is available for mechanically removing gas from
the galaxy. Then, the energy input by supernovae exceeds the binding energy of
the gas if the star formation efficiency surpasses a critical value

f� > f�,E∼0.01
(

0.05

ξλ

) (
Mh

108 M�

)2/3 (
1 + z

10

) (
ωSN

1049 erg M−1
�

)−1

. (6.26)

Even if the supernova remnants do lose their thermal energy, they will still in-
ject a great deal of momentum into the ISM. If this momentum is large enough,
it can carry the gas outside the halo without the “push” from the thermal energy
inside each remnant (i.e., feedback can be much more effective than suggested
by equation (6.26) if ξ � 1).14 The rate at which momentum is injected by
supernovae, dPSN/dt , is

dPSN

dt
∼2 × 1033

(
ω′

SN

300 km s−1

) (
Ṁ�

M� yr−1

)
g cm s−2, (6.27)

where ω′
SN is the rate of momentum injection from supernovae per unit mass

of stars; the fiducial value takes one explosion per 100 M� of stars, each accel-
erating 10 M� of material to 3 × 103 km s−1.

Meanwhile, the rate at which stellar radiation injects momentum is dPrad/dt

∼L�/c, where L� is the stellar luminosity that couples to the ISM gas.v We
write it in terms of the rest energy as L� = εṀ�c

2, where Ṁ� is the rate at
which mass is processed into stars, and ε3 ≡ (ε/10−3)∼1 for typical IMFs.
Then, dPrad/dt∼ε3dPSN/dt , which indicates that both sources of momentum
are likely important in launching winds. For convenience, we write dP/dt ≡
L/c for the total rate of momentum input, which defines an effective luminosity
L that includes stellar radiation and supernovae (as well as any other processes,
like winds from evolved stars).

The acceleration equation for a parcel of gas with velocity v and position
r is15

dv

dt
= −GM(r)

r2
+ L

cMg(r)
, (6.28)

vWe assume here that the dust and gas are marginally optically thick to the radiation, so that they
efficiently absorb the momentum flux. If the scattering (but not absorption) optical depth is larger
than unity, then the momentum injection rate increases in proportion to the optical depth, as the
photons scatter back and forth multiple times.
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where M(r) is the halo mass, and Mg(r) is the gas mass enclosed within a ra-
dius r . For a simple estimate, let us assume that the halo is a singular isother-
mal sphere, with M(r) = 2σ 2r/G and σ the velocity dispersion, and that the
gas traces the dark matter. Then, we can rewrite equation (6.28) as

dv

dt
= 2σ 2

r

(
L

LM
− 1

)
, (6.29)

where

LM = 4fgc

G
σ 4. (6.30)

Clearly, LM represents the minimum luminosity for the net force on the gas
parcel to act outward, and hence it is the minimum luminosity required to
launch a wind. If we further assume a constant star formation efficiency f�
to convert gas into stars over a dynamical time tdyn∼rvir/σ , this minimum lu-
minosity translates into a minimum star formation efficiency f�,p:

f� > f�,p∼0.05(ω′
SN,300 + ε3)

−1

(
Mh

108 M�

)1/3 (
1 + z

10

)1/2

, (6.31)

where ω′
SN,300 = ω′

SN/(300 km s−1), and the (ω′
SN,300 + ε3) factor accounts for

both supernovae and radiation.
If we compare equations (6.26) and (6.31), it is clear that for the small halos in

which the first stars formed, the energy reservoir was likely much more effective
than the raw momentum, provided it was not lost through radiative cooling. It
is also clear that the required star formation rate in these halos was very small,
fundamentally because the energy available in stars scales with Mh (assuming
a constant f�), while the binding energy scales as M2

h .
However, at higher masses the excess energy becomes less important, and

the momentum injection condition becomes more stringent when

M>Mp∼1010(ω′
SN,300 + ε3)

−3

(
0.05

λξ

)−3 (
1 + z

10

)−3/2

M�. (6.32)

Nevertheless, for the momentum to lift gas out of the halo, star formation must
proceed very quickly—turning a substantial fraction of the gas into stars over a
single dynamical time. Such rates do appear in rapidly star-forming galaxies at
lower redshifts, but those systems are relatively rare.

These two types of winds, energy driven and momentum driven, are likely to
have very different characters. The condition that ESN>Eb,g does not place any
restrictions on the rate at which mass is ejected from the galaxy; in fact, nu-
merical simulations of star-forming disk galaxies typically show that the energy
is “blown out” along low–column density channels (perpendicular to the disk),
carrying away only a fraction of the galaxy’s mass.16 However, the momentum
must maintain its initial direction and sweep up any gas it encounters as it
propagates outward, carrying with it a significant fraction of the galaxy’s gas.
The asymptotic velocity v∞ of a momentum-driven wind is typically just a few
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times the escape speed of the halo.vi Momentum conservation then demands
that the mass loss rate in the wind be

Ṁw = dp/dt

v∞
∼Ṁ�

[
300(ω′

SN,300 + ε3) km s−1

v∞

]
, (6.33)

comparable to the star formation rate for reasonably large halos.

6.4.2 Expanding Blast Waves: Simple Solutions

To better understand the dynamics of these winds, we review here some simple
models for expanding blast waves following point explosions. Although over-
simplified, these analytic scalings provide useful insight into the more complex
problem of winds inside and outside galaxies.

First, consider a point explosion with energy E in a static, cold (or pressure-
less) medium of mass density ρ. The explosion drives a shock into the sur-
rounding gas. Simple dimensional arguments show that the shock radius must
depend on ρ, E, and time t through the form

Rsh = KSTV(Et
2/ρ)1/5, (6.34)

where KSTV is a constant.
It is easy to show from energy conservation thatKSTV∼1. The total mass that

is swept up by the shock is ∼(4π/3)ρR3
sh. Because a supersonic shock forms in

the ambient medium, the postshock gas velocity must be subsonic in the frame
of the shock. Thus, most of the bulk velocity of the material is from the shock
itself, and the net fluid speed is ∼Ush = (2/5)Rsh/t . The kinetic energy of the
swept-up material is therefore ∼(4π/3)ρR3

sh × U 2
sh/2∼0.3R5

sh/t
2. There is also,

of course, the thermal energy stored in the hot gas behind the shock, but this
is typically comparable to the kinetic energy of the shock, because the gas flows
subsonically past the shock. Energy conservation implies that E = κρR5

sh/t
2,

where κ is a constant of the order of unity that accounts for summing the ki-
netic and internal energies. By comparison with equation (6.34), we see that
KSTV = κ−1/5, which we expect to be very close to unity. In fact, this problem
can be solved analytically and gives the exact value of KSTV = 1.17 for a pure
monatomic gas with an adiabatic index γ = 5/3. The solution is known as a
Sedov-Taylor–von Neumann blast wave, after the three physicists who derived it
independently at the dawn of the nuclear age. Since there is no characteristic
timescale or length scale in the setup of a point explosion, the hydrodynamic
equations admit a self-similar solution in which the hydrodynamic variables
of the gas (pressure, density, and velocity) depend only on the combination
r/Rsh(t) instead of depending separately on r and t .

The Sedov-Taylor–von Neumann solution imposes three restrictions on the
blast wave. First, it requires that the mass of the material behind the shock

viThis can be seen, for example, by integrating equation (6.29) under the assumption that L is
constant to obtain v(r). Writing (dv/dt) = (dr/dt)/(dv/dr) = v(dv/dr) = d[( 1

2 )v
2]/dr and inte-

grating both sides over r>r0, we obtain v(r) = 2σ × [(L/LM − 1) ln(r/r0)+ v2(r0)/4σ 2]1/2.
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be much greater than the explosion ejecta themselves. In an earlier phase, the
ejecta expand ballistically, encountering negligible resistance from the ambient
medium. Second, it requires a strong shock, or that the ejecta velocity greatly
exceed the sound speed of the ambient medium. Finally, it requires that all the
explosion energy is contained either in the kinetic energy or thermal energy
of the shocked gas. In fact, the strong shock jump conditions require that the
density just behind the shock be (γ + 1)/(γ − 1) times that of the ambient
medium (which is a factor of 4 if γ = 5/3) and decrease rapidly inward. This
overdense shell cools radiatively; once a substantial fraction of the energy is
lost, the energy conservation condition no longer applies, and the character of
the solution changes. In particular, as the gas in the shell cools, its density must
increase to maintain pressure equilibrium with the interior of the blast wave,
and so a dense shell develops at the leading edge of the blast wave.

This second phase is known as a pressure-driven snowplow, because the low-
density interior of the gas remains hot (and hence has a finite pressure p push-
ing outward on the shell). In this phase, the shell sweeps up gas as it expands,
increasing its mass at a rate Ṁs = 4πR2

shρUsh. Meanwhile, so long as the hot
interior does not cool, the internal pressure obeys the adiabatic condition pV γ

= constant and pushes the shell outward with a force 4πR2p. The equation of
motion for the shell is then

R̈sh + 3Ṙ2
sh

Rsh
= 3pi
ρRsh

(
Ri

Rsh

)3γ

, (6.35)

where pi is the internal pressure as this phase begins when Rsh = Ri . For
pi 	= 0 and γ = 5/3, this equation requires that Rsh ∝ t2/7, which is slightly
slower than in the “adiabatic” Sedov-Taylor–von Neumann phase.vii

The pressure-driven snowplow phase ends when either one of two condi-
tions is fulfilled. First, if the hot bubble interior can cool radiatively, it loses the
pressure support. Second, if the interior pressure approaches the pressure of
the ambient medium, there will be no net driving force. In either case, pi→0
in equation (6.35). Then, Rsh ∝ t1/4, which follows strictly from momentum
conservation, (4π/3)ρR3

sh(dRsh/dt) = constant. This final phase is therefore
known as a momentum-conserving snowplow. Obviously, it is the proper solution
for the momentum-driven winds described in the previous section.

So far we have assumed that the blast wave propagates into a uniform
medium. While this describes the ISM of normal galaxies reasonably well (at
least on average), the gas making the first stars did not settle into disklike
configurations; instead, those stars were surrounded by uniform-density cores
inside roughly power-law envelopes, with ρ≈ρ0(R0/R)

α . Dimensional argu-
ments similar to the preceding ones then show that

Rsh = Kiso

(
Et2

ρ0R
α
0

)1/(5−α)
. (6.36)

viiHere the term adiabatic is standard in the literature. Note that it refers to a blast wave that con-
serves energy without radiative losses; obviously, the shock itself still increases the entropy of
the gas.
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Table 6.1 Blast Waves in Static Media. Each line shows a single phase in its evolution.
The first column gives the abbreviated name (FE for free expansion, STvN for
Sedov-Taylor–von Neumann, PDS for pressure-driven snowplow, and MCS
for momentum-conserving snowplow); the second, the most important con-
dition for the solution to apply; the third, the time dependence in a uniform
medium; and the last, the time dependence in a medium where ρ ∝ r−α .

Growth rate Growth rate
Name Condition (uniform) (power-law)

FE Ejecta mass dominates Rsh ∝ t Rsh ∝ t

STvN No shell cooling Rsh ∝ t2/5 Rsh ∝ t2/(5−α)
PDS No interior cooling Rsh ∝ t2/7 Rsh ∝ t2/(7−α)
MCS Cooled remnant Rsh ∝ t1/4 Rsh ∝ t1/(4−α)

In particular, for an isothermal density profile α = 2, close to the envelopes of
the first stars, Rsh ∝ t2/3. The blast wave propagates faster in this case because
the declining ambient density presents considerably less drag.

Similarly, it is straightforward to modify the equation of motion for the snow-
plow shell: since Ṁs = 4πR2ρ(R)Ush, the momentum equation reads

R̈sh + (3 − α)Ṙ2
sh

Rsh
= (3 − α)pi

ρRsh

(
Ri

Rsh

)3γ

. (6.37)

For γ = 5/3, this equation admits of the solution Rsh∝t2/(7−α) when the pres-
sure is important, and Rsh ∝ t1/(4−α) during the momentum-conserving snow-
plow phase. Again, specializing to an isothermal density profile, Rsh ∝ t2/5 and
Rsh ∝ t1/2 in these two phases.

Table 6.1 briefly summarizes these different stages for quick reference.

6.4.3 Supernovae in the First Star-Forming Halos

The first supernovae occurred in the halos described in chapter 5. Although the
basic properties of these halos are well-understood, the mass spectrum of stars
and efficiency of star formation are highly uncertain, as they depend on the
complex fragmentation process, the degree of synchronization of the resulting
protostellar clumps, and the dynamical impact of the surrounding H II region.

For these reasons, the overall impact of the first supernovae on their host
halos is difficult to assess. Nevertheless, numerical simulations have begun to
explore these events and their implications for subsequent star formation, at
least in some simple cases. Figure 6.7 provides an example, showing a simu-
lated supernova explosion of a single star at z ≈ 20 in a modest-sized halo. We
examine this result in some detail because it illustrates much of the important
physics of high-redshift supernovae.

The color scale shows the gas temperature. The large, roughly spherical re-
gion filling most of the box in all four panels is the H II region; its internal
structure is a result of the filamentary cosmic web surrounding the halo. By
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Figure 6.7 Temperature maps from a numerical simulation of a supernova explosion
(see Color Plate 9 for a color version of this figure). The supernova of a 200M�
star is set off at z ≈ 20 in a halo with M = 5 × 105 M� and rvir ≈ 100 pc.
The snapshots are 1, 10, 50, and 200 million years after the explosion. In the
first panel on the top left, the supernova is the central hot region; the star’s
H II region fills most of the box (fading with time as the gas recombines
and cools). The supernova remnant expands over the four panels, gradually
becoming more anisotropic as it encompasses the filamentary structure sur-
rounding the halo. Greif, T., et al., Astrophys. J. 670, 1 (2007). Reproduced by
permission of the AAS.

the time of the star’s death (2 Myr after its formation), it has photoevaporated
the gas inside ∼rvir/2, reducing its density to nH∼0.5 cm−3. Meanwhile, the
escaping photons ionize a large region around the halo, initially heating it and
causing pressure-driven expansion of the remnant into the low-density, cool
IGM surrounding it.

The supernova then expands into this ionized environment. Figure 6.7 shows
snapshots of its evolution, while Figure 6.8 presents the evolutionary phases
of its (spherically averaged) radius. The four major phases of the expansion
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Figure 6.8 Evolution of the simulated supernova explosion described in Fig. 6.7. The
black dots indicate the spherically averaged mass-weighted shock radius,
while the dashed line shows the analytic estimate using the models of §6.4.2.
The different phases in the evolution of the remnant are labeled: FE for free
expansion (not resolved by the simulation), STvN for Sedov-Taylor–von Neu-
mann phase, PDS for pressure-driven snowplow, and MCS for momentum-
conserving snowplow. The shaded gray region shows the radial dispersion of
the shock, which increases dramatically once the shock leaves its host halo
owing to anisotropies in the cosmic web. Greif, T., et al. Astrophys. J. 670, 1
(2007). Reproduced by permission of the AAS.

are marked in the latter figure. The explosion here, which is assumed to com-
pletely blow apart the star via a pair-instability supernova, carries a substantial
mass Mej in ejecta. Until the swept-up mass dominates the explosion, it ex-
pands freely (FE in Figure 6.8). The simulation does not follow this short phase
explicitly; instead, it initializes the calculation at the end of this phase.

After that point, the Sedov-Taylor–von Neumann phase begins (labeled
STvN). The blast wave initially propagates through a roughly constant density
interior (the remnant gas after photoevaporation), so Rsh ∝ t2/5. Once the rem-
nant reaches ∼rvir/2 (at t∼105 yr), it catches up to the photoevaporation shock,
and the character of its surroundings change. However, at just about this time
the gas in the dense shell accumulating behind the shock is able to cool. Several
processes allow cooling: atomic (and molecular) line radiation, bremsstrahlung,
and inverse Compton scattering of CMB photons. Ignoring any possible chem-
ical enrichment from the supernova itself, the atomic cooling rates are shown
in Figure 5.1. Because these are driven by collisions, their rate scales as n2.
This mechanism is thus particularly important in dense gas, where it domi-
nates over the other processes within the remnant shell. The cooling time is
therefore tcool∼nHkT /�∼105 yr, where the initial temperature is T∼106 K.
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Thus, at about the same time the remnant reaches the photoevaporation
shock, the shell gas cools, and the blast wave transitions to a pressure-driven
snowplow solution (PDS in the figure). Now it propagates through the roughly
isothermal spherical profile of the unperturbed halo, so Rsh∝t2/5—
coincidentally the same dependence as in the previous phase. This phase con-
tinues until either (1) the low-density interior gas is able to cool or (2) the post-
shock pressure reaches equilibrium with the ambient medium. At the very low
densities characteristic of the remnant’s interior, atomic cooling is inefficient.
However, the cooling time due to inverse Compton scattering is independent
of density (see equation 2.38),

tcool = 8
(

20

1 + z

)4

Myr, (6.38)

which puts an upper limit on the duration of this phase.
The postshock pressure reaches a value psh∼ρU 2

sh∼pH II, where pH II is the
pressure inside the H II region, after only ∼106 yr. (This is easy to show using
the analytic scalings of the previous section.) Thus, the blast wave transitions
to its final phase, the momentum-conserving snowplow (labeled MCS in Fig-
ure 6.8), at ∼106 yr. At the beginning of this phase, the density profile is still
roughly isothermal, so Rsh ∝ t1/2; in the simulation Rsh maintains this scaling
even after passing into the IGM (see §6.5.2 for a discussion of solutions in this
limit).

The net effect of this single supernova is to completely disrupt the gas in the
host halo, expelling much of it (∼95%) and forcing the rest to high temper-
atures and low densities, where star formation is inefficient. The lack of star
formation will persist until the high-entropy gas can be reincorporated through
hierarchical buildup of higher-mass halos. Supernovae may therefore have been
efficient in quenching star formation within the first star-forming halos.

However, as in so many other aspects of feedback, there are a number of
subtleties to this simple picture, some of which may actually promote further
star formation, including the following:

• First, the supernova itself is a source of heavy elements. As many of these
elements are much more efficient low-temperature coolants than H or H2,
their presence could promote future star formation, particularly in combi-
nation with some of the mechanisms mentioned later. The primary uncer-
tainty is the degree of mixing of the enriched material with the ambient
medium, which is likely driven by instabilities in the shocked layers. We
discuss the physics of this change in star formation mode in more detail
in §6.5.

• Second, if the host halo remains largely neutral, the remnant will plow
through much denser gas, even approaching ∼107 cm−3. Bremsstrahlung
(free-free) cooling in such dense environments is extremely fast, and the
supernova loses its thermal energy long before escaping the halo. Never-
theless, the impulse provided by the explosion can efficiently stir up the
gas, possibly triggering further fragmentation as shells collide and most
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likely dispersing heavy elements throughout the halo. This can happen,
for example, if the characteristic mass scale of Population III.1 stars is only
∼10 M�, and they form in massive halos, so that the explosion energy is
lower than the gravitational binding energy of the halo gas.

• The blast wave itself may have very different effects on dense clumps (ei-
ther inside the host galaxy or in nearby minihalos) than on the diffuse
gas we have discussed. In particular, the shock compresses the gas, which
increases the density, speeding up the later stages of collapse, provided
the gas can efficiently cool (which is a precondition for star formation).
Furthermore, the ram pressure of the shock is likely not able to move
entire clumps along with the flow. The resulting configuration—a fluid
stream flowing by a stationary cloud—can be unstable to Kelvin-Helmholtz
modes. If so, the resulting mixing may allow metals to penetrate the outer
layers of the pristine minihalo gas, triggering a change in the mode of star
formation.

• Finally, the dense shell that accumulates behind the leading shock can it-
self be unstable and fragment through gravitational or cooling instabilities
into protostellar clumps. The condition for such fragmentation is similar
to the classical Jeans instability: collapse occurs when the self-gravity of
the shell operates faster than its restoring pressure forces, which occurs
on scales >cs/

√
Gρ. For a given ambient density, the shell therefore even-

tually becomes unstable once the sound speed (or temperature) falls far
enough, which of course requires efficient radiative cooling. In the case de-
scribed in Figures 6.7 and 6.8, no fragmentation occurred because the low-
density ambient medium both increased the dynamical time and inhibited
molecule formation, maintaining relatively high temperatures. However,
fragmentation can be much more efficient if the blast wave propagates
through a denser neutral medium. In this case, the shell can trigger a sec-
ond generation of stars. Because these stars form out of ionized gas (either
from a preexisting H II region or one produced by the passing shock),
they will be similar to Population III.2 stars discussed in §5.3, with lower
characteristic masses.

6.5 Metal Enrichment and the Transition to Population II Star

Formation

We have seen that the very first stars formed under conditions that were much
simpler than the highly complex birthplaces of stars in present-day molecular
clouds. As soon as the first stars appeared, however, the situation became more
complicated owing to their feedback on the environment. In particular, super-
nova explosions dispersed the heavy elements produced in the interiors of the
first generation of stars into the surrounding gas. Atomic and molecular cool-
ing became much more efficient after the addition of these metals.

Early metal enrichment and dispersal by the primordial supernovae
described in the previous section triggered a change in the fundamental mode
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of star formation, because heavy elements can radiatively cool the gas much
more efficiently than H2. To see this, consider a primordial cloud at the “loi-
tering” phase with nH∼104 cm−3 and T∼200 K. At this point, radiative cooling
by H2 becomes inefficient, so the gas contracts only slowly, and fragmentation
is suppressed at least until an accretion disk forms around the first protostar.
This is why the characteristic mass of Population III.1 stars may be as high as
∼100 M� (see §5.1).

Now, let us imagine that the gas instead has a small fraction of metals; if
these elements can efficiently cool the gas from this thermodynamic state, they
will induce fragmentation to smaller mass scales. We use the common notation
[X/H] = log(NX/NH)− log(NX/NH)� to describe the abundance of species X.
Detailed calculations show that carbon and oxygen are the most important
elements at the relevant temperature and density, at least for atomic cooling.
Carbon is likely to be singly ionized C II, because the Universe is transparent
to photons above the ionization potential of C I (11.26 eV), though it is suffi-
ciently close to the Lyman-Werner bands that it may suffer some self-shielding
by H2 in very dense clumps (see also §4.6). Oxygen, in contrast, has an ioniza-
tion potential very near that of H I (13.6 eV), and so it will remain neutral. Let
us write�X(n, T ) for the radiative cooling rate from species X, and�tot for the
total rate. For these two species at the relevant temperatures and densities, the
cooling is dominated by fine-structure lines of O I (wavelength of 63.1 µm) and
C II (157.7 µm).

Fragmentation requires that the cooling time, tcool = 1.5nkBT /�tot, be
smaller than the free-fall time in the gas, tff ≈ 1/

√
Gρ. For a given species,

this defines a critical metallicity [X/O]crit above which radiative cooling suffices
to induce fragmentation. Detailed calculations of the fine-structure transitions
in these elements yield [O/H]crit ≈ −3.0, and [C/H]crit≈ − 3.5, with a factor
of ∼2 uncertainty depending on the details of the thermodynamic state of the
loitering phase.17

The preceding considerations include only gas-phase cooling; many of the
ISM metals at low redshifts are contained in dust grains, which can also aid
cooling due to both thermal emission and H2 formation (which can occur very
efficiently on the surface of dust grains, since hydrogen atoms became trapped
in close proximity). Locally, dust formation is generally attributed to winds in
asymptotic giant branch stars. At high redshifts, dust may be produced mainly
in the metal-rich ejecta of supernovae themselves. The dust formed inside su-
pernova ejecta is a very effective coolant, and some models show that the critical
metallicity falls to [Z/H]crit ≈ −6 if such dust is produced efficiently.18

Regardless of its precise value, the small critical metallicity is easy to achieve.
We have seen that a single pair-instability supernova remnant can easily fill an
entire halo as well as some portion of the IGM. Typical explosions generate
MSN,C∼10 M� or ∼30 M� of O. A single supernova therefore enriches its host
to a carbon abundance ∼3 × 10−3(MSN,C/10 M�)(106 M�/Mh) times the solar
value (and to a comparable level for oxygen). Thus, provided only that mixing
is efficient, a single supernova suffices to shift star formation in its host halo—
and possibly its close neighbors—into the Population II channel.
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The preceding arguments show that fragmentation can occur in low-
metallicity environments, but they do not determine the actual spectrum of
mass fragments. That distribution is highly uncertain, but it is still likely to be
skewed to significantly higher masses than today. The arguments, as in §5.2.4,
in which the CMB sets the temperature floor for the cooling gas, apply to these
enriched clumps also, setting the characteristic mass scale to be a few tens of
solar masses—still well into the high-mass regime.

Nevertheless, the transition to Population II was a crucial milestone in the
history of the Universe. The arguments in this section suggest that if mixing
was efficient, it took place very soon after the first star in each virialized halo
exploded.

6.5.1 Blast Waves in an Expanding Universe

A crucial point to understand about metal enrichment is that it must be highly
inhomogeneous, because the metals are produced at discrete sites (star-forming
halos) and must be advected with hydrodynamic flows, which typically move
rather slowly by cosmological standards. Thus, the transition from Population
III to Population II is likely to have had large spatial fluctuations; in principle,
Population III star formation could have persisted to late times if the IGM en-
richment timescales were very long and if new halos virialized and cooled in
pristine gas. In this section, we consider how galactic winds (or other flows)
can distribute this material around the Universe.

Although the simple models of §6.4.2 provide some intuition, they do not
directly apply to cosmological blast waves, which propagate into an expanding
medium whose density decreases with time. However, it is easy in this case to
estimate the maximum distance to which the shock can reach: as in a uniform,
static medium, the wave will sweep the matter before it into a thin shell. But in
the cosmological setting, the shell will continue to expand in comoving coordi-
nates only while its velocity relative to the Hubble flow is positive—after that, the
shell will simply be dragged along with the expanding Universe. The drag from
swept-up material will continue to decelerate the blast wave until its velocity
matches the Hubble flow, which will occur at the asymptotic proper radius RE;
if the expansion occurs quickly, the final kinetic energy is thenMs[H(zi)RE]2/2.
(Here zi is the redshift corresponding to the initial time of the explosion.)

Some of this energy comes from the explosion energy E, but in contrast
with the static medium, the initial configuration also contains some kinetic
energy from the Hubble flow. If we integrate outward to RE, this initial energy
is 3Ms[H(zi)RE]2/10. If we assume that the expansion is rapid compared with
the Hubble time, the maximum size is therefore

RE,com ∼
[

E

ρb(zi)H 2(zi)

]1/5

(1 + z) (6.39)

=KE,cos

(
GE

H 4
0�b�

2
m

)1/5

(1 + zi)
−1/5, (6.40)
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where KE,cos∼101/5 is a constant of the order of unity that depends on how
much energy is transformed into thermal or kinetic energy. Note the similarity
to the Sedov-Taylor–von Neumann scaling, with t∼1/H(z).

In fact, for a perfectly adiabatic shock in a matter-dominated Universe with
�b � �m, a self-similar blast wave that mirrors the Sedov-Taylor–von Neu-
mann solution forms.19 In this limit, the constant KE,cos = (32π/3)1/5KSTV.
The blast wave also expands at a rate Rcom ∝ τ 2/5, where at high redshifts,

τ(z) ≈ 2√
�mH0

[(1 + zi)
1/2 − (1 + z)1/2]. (6.41)

Once radiative cooling in the shell and eventually the bubble interior becomes
important, the expansion slows down. We can estimate the final size of a bubble
in which cooling is extremely efficient by repeating the preceding argument,
but with momentum conservation as our guiding principle rather than energy
conservation. Writing the total impulse as E/c, we obtain

Rp,com ∼Kp,cos

[
E/c

ρb(zi)H(zi)

]1/4

(1 + z) (6.42)

=Kp,cos

(
GE/c

H 3
0�b

√
�m

)1/4

(1 + zi)
−1/8, (6.43)

where Kp,cos∼81/4.
To put these estimates in the context of star-forming halos, we use the

notation of §6.4.1 and write the energy released by a halo of mass M as E =
f�ωSNMg and the momentum input asE/c = (εf�Mgc

2)/c, where the gas mass
is Mg = (�b/�m)Mh. Then,

RE,com ∼ 1.2

(
ωSN

1049 erg M−1
�

f�

0.1

Mh

108 M�

)1/5

(1 + z)−1/5 Mpc, (6.44)

Rp,com ∼ 0.2
(
ε3
f�

0.1

Mh

108 M�

)1/4

(1 + z)−1/8 Mpc. (6.45)

It follows that the maximal volume enriched by halos scales as VE ∝ (f�M)
3/5,

or Vp ∝ (f�M)
3/4. In either case, the scaling is sublinear, which shows that

low-mass halos are much more efficient at enriching the IGM than massive
ones.

In practice, these maximal radii can be substantial overestimates for two rea-
sons. First, they neglect the gravitational attraction of the host halo. Second, the
expansion must occur slowly: if the deceleration is modest, a shell with an initial
speed vi will take a time t∼R/vi∼(vi/H)/vi∼1/H to reach the radius at which
that velocity matches the Hubble flow. Thus, using H(zi) in the estimates is
not formally correct.

To follow the time evolution in detail one must track the energy reservoir
driving the wind. Numerical calculations show that cosmological blast waves
develop shells even more rapidly than their counterparts in static media. The
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equation of motion for a shell is then

R̈ = 4πR2

Ms

(p − pIGM)− G

R2
[M(R)+Ms/2] +��(z)H

2(z)R − Ṁs

Ms

(Ṙ −HR),

(6.46)
whereMs is the shell mass, Ṁs = 4πR2ρb(Ṙ−HR) is the rate at which mass is
swept up, p is the pressure of the bubble interior, pIGM is the ambient pressure
of the IGM, and M(R) is the mass enclosed within the wind (including both
dark matter and any baryonic remnants). The first term is the pressure force
from the hot interior, the second involves the gravitational deceleration due to
the interior mass (and the shell itself), the third is the acceleration due to the
cosmological constant (which can be ignored at high redshifts), and the last is
the drag force from swept-up material. Equation (6.46) must be supplemented
with an equation for the energy of the bubble interior,

ṗ = L

2πR3
− 5p

Ṙ

R
. (6.47)

Here the last term is the pdV work from expanding the shell, while the first
represents energy inputs or losses. These include the energy source powering
the wind, and Compton cooling (which usually dominates at the low bubble
densities once the winds propagate into the IGM) or any other radiative process.

There is one additional subtlety in the cosmological case: the shell treatment
assumes that the ambient gas is accelerated to the shell velocity through in-
elastic collisions of its particles. In reality, L must also account for the energy
dissipated in this process. If the shell cooling time is short, most of it will be
lost (the static medium solutions described in §6.4.2 implicitly take this limit),
but some energy may be transmitted to the bubble interior through turbulence
if it is not lost in cooling. We let fd be the fraction of this energy transmitted to
the bubble interior; then L includes a term

Ld = fdṀs(Ṙ −HR)2/2. (6.48)

Figure 6.9 shows solutions to these shell expansion equations for halos with
Mh = 2×106 M� beginning at a variety of redshifts (for ease of comparison, the
IGM is assumed neutral and cold in all the curves). In all cases we assume an
instantaneous burst of star formation with f� = 1 and take fd = 1 and fd = 0
for the upper and lower curves, respectively. Expansion is truncated when the
bubble interior cools to low temperatures (i.e., at the end of the pressure-driven
snowplow phase). Note the fairly long times it takes the bubbles to reach these
limiting sizes.

Figure 6.10 shows the proper radii of wind bubbles surrounding halos (as a
function of mass) at several different redshifts. The points use a Monte Carlo
model of each halo’s merger history (generated following the excursion set for-
malism of §3.4.2) to trace the supernova histories of each halo; the variations in
the wind radius at a given mass therefore reflect variations in the star formation
histories of the galaxies. The model adopts f� = 0.1 and fd = 0, and also as-
sumes that 75% of the supernova energy is radiated away without contributing
to the wind. The solid lines show the virial radii of the host halos.
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Figure 6.9 Shell sizes as a function of redshift, in comoving distance, from galaxies
withMh = 2×106 M� forming at redshifts from z = 29 to z = 1. The model
assumes a star formation efficiency near unity. The upper set of curves take
fd = 1, while the lower set take fd = 0. The expansion is assumed to stop
when the bubble interior falls below T = 15,000 K. Tegmark, M., Silk, J.,
& Evrard, A., Astrophys. J. 417, 54 (1993). Reproduced by permission of the
AAS.

Clearly, the final wind sizes are only a weak function of halo mass, with
R ∝ M0.2−0.25

h , as expected from the analytic scaling. The magnitudes are con-
siderably below the maximal estimate from equation (6.44), because much of
the energy is assumed to be radiated away, the Hubble flow energy is assumed
unavailable, and the energy is not injected at a single instant. The results are,
however, reasonably close to the momentum limit of equation (6.45).

The numerical results turn over at high masses, because the gravitational po-
tential well of the host traps the wind. Typically, this occurs before the wind
escapes far into the IGM, so there is a severe cutoff in the maximum size—
recall that the gravitational binding energy scales as M2

h , while the available
energy scales only as Mh. This, together with the V ∝ E3/5 ∝ (f�Mh)

3/5 scal-
ing of the enriched volume, means that the smallest halos are likely the most
important ones for chemical enrichment, unless the star formation efficiency
itself decreases strongly at low halo masses.

6.5.2 Metals in the Intergalactic Medium

Given the fate of a wind bubble around any individual source, it is straightfor-
ward to estimate the fraction of space filled by these bubbles. Defining V (Mh, z)
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Figure 6.10 Proper radius of wind outflows at various redshifts, as a function of halo
mass. Each point is a realization of a merger-driven star formation model
(see text). The solid line shows the virial radius of the host halo. All the
points assume that f� = 0.1, 75% of the supernova energy is radiated away
without contributing to the wind, and fd = 0. Note that the mass and radius
scales change between panels. Furlanetto, S. R., & Loeb, A., Astrophys. J.
588, 18 (2003). Reproduced by permission of the AAS.

to be the volume filled by a bubble blown by a halo of mass Mh at redshift z,viii

we integrate over the halo mass function:

Q′
e(z) =

∫ ∞

Mmin

dM n(M, z)V (M, z), (6.49)

viiiIn reality, such a relationship will not be one-to-one, as halos (even of the same mass) form
and grow with different merger and star formation histories. Figure 6.10 demonstrates this point
explicitly.
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Figure 6.11 Filling factor of wind-enriched regions in different models of star formation
and wind expansion, produced using the same Monte Carlo methods as
in Figure 6.10. The solid and dotted sets of curves show models with and
without efficient star formation in halos below the atomic cooling threshold
(in all halos with Tvir>400 K); otherwise, we allow star formation only in
halos above the atomic cooling threshold (Tvir>104 K). Within each set, the
curves take f� = 0.5, 0.1, and 0.01, from top to bottom. For the H2 cooling
case, we assume that ωSN = 1050 ergM−1

� to reflect the powerful supernovae
of very massive Population III.1 stars. The dashed curve (nearly coincident
with the lowest solid curve) shows the H2 case with f� = 0.1 and ωSN =
1049 erg M−1

� . Furlanetto, S. R., & Loeb, A., Astrophys. J. 588, 18 (2003).
Reproduced by permission of the AAS.

where the integration extends over all star-forming halos. The resulting Q′
e is

the total volume filled by all the bubbles, not accounting for overlap. If the
bubbles were randomly distributed, and if overlapping winds did not aid one
another’s expansion, the true filling fraction of wind material would be Qe =
(1 − e−Q′

e ).
This simple estimate has an important shortcoming: it ignores the cluster-

ing of these galaxies. In reality, high-redshift galaxies form close to one another
along intersections of sheets and filaments in the cosmic web. Their wind bub-
bles therefore tend to overlap rather than fill new space. Because V ∝ E3/5,
multiple sources contributing to a single bubble are less efficient than individ-
ual sources generating their own bubbles, so clustering will tend to decrease
the filling fraction of the enriched material.

Figure 6.11 shows some example enrichment histories produced following
the same methods as in Figure 6.10 but ignoring clustering. We consider two
different sets of models: a maximal case that allows star formation in all halos
with Tvir>400 K (solid curves) and a more conservative one in which star for-
mation occurs only in halos able to cool through atomic hydrogen transitions,
with Tvir>104 K. Within each set, the three curves assume f� = 0.5, 0.1, and
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0.01, from top to bottom. In the small-halo case—which necessarily has to as-
sume that H2 cooling is extremely efficient—we also set ωSN = 1050 erg M−1

� ,
which is 10 times larger than the nominal value for normal star formation, to
reflect the large kinetic energy output expected from pair-instability supernovae
(see §5.5). We also take fd = 0 in this case; setting fd = 1 modestly increases
the filling factor. All these curves were generated through a Monte Carlo model
that accounts for the star formation histories of individual halos, and so they
are not necessarily smooth.

Figure 6.11 shows that for a large fraction of space to be filled with heavy
elements by z∼6, most of those metals must come from the shallow poten-
tial wells of very small halos, which also must produce stars very efficiently.
Indeed, if supernova and photoionization feedback is as efficient as our ear-
lier estimates suggest, it seems implausible to expect such halos to be able to
convert even 10% of their baryons into stars. Thus, metal enrichment in these
early phases seems likely to be very patchy, with important consequences for
structure formation (see §6.6).

In the galaxies that were likely responsible for most of the metal enrichment,
both supernova winds and radiation pressure from hot stars contributed to pow-
ering the outflows. The former ultimately provided more energy for the outflow,
but much of that energy may have been lost as the supernova blast waves prop-
agated through the dense ISM of the galaxies. The momentum inputs from
the two channels are comparable for typical IMFs, so even if supernova rem-
nant cooling is efficient, winds from starbursts should be able to enrich a small
percentage of the IGM at high redshifts.

Unfortunately, numerical cosmological simulations currently lack the dy-
namic range to model self-consistently the launch of these winds and their
propagation through the IGM (partly because the shells cannot be resolved,
but, more important, because our physical understanding of winds is still fairly
crude), although simulations of individual galaxies are beginning to examine
outflow dynamics in detail. In large-scale structure simulations, winds are
launched by hand with a parameterized model; their propagation through the
IGM is then tracked in the momentum-dominated limit. Such numerical sim-
ulations also show that plausible models for winds from halos above the 104 K
cooling threshold can enrich only a small percentage of the IGM. As the winds
continue to expand at later times, this fraction increases, but many models pre-
dict that much of the IGM remains pristine even to late times.

The mean metallicity of these enriched regions follows easily from the pre-
ceding models with only one additional parameter: the fraction fmet of the
galaxy’s metals that are ejected in the wind. This variable is usually parame-
terized with the mass-loading factor η, which describes how much material es-
capes the galaxy in units of the star formation rate, η = Ṁw/Ṁ�. According to
the model described in §6.4.1, η∼σ0/σ (see equation 6.33), assuming that the
momentum input rate simply scales with the star formation rate and that the
final velocity of the winds is just a few times the escape velocity of the halo.
Observations of low-redshift starbursts are consistent with this simple relation
if σ0∼300 km s−1, though we note that the proportionality constant depends on
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the IMF and may get larger if the IMF is top-heavy at high redshifts. However,
this, parameter provides yet another reason why small galaxies more efficiently
enrich the IGM with metals, as η ∝ σ−1 ∝ M

−1/3
h .

Assuming that the metals are perfectly mixed inside the galaxy this implies
that a fraction ηf� of the metals produced in each galaxy are ejected into the
IGM. This material is then diluted by a factor ∼Qefcoll as it spreads into the
IGM; thus, the mean IGM metallicity will be

ZIGM∼10−3 〈η〉
(
f�

0.1

fcoll

0.01

)
Zgal, (6.50)

where Zgal is the mean metallicity of material inside galaxies, and 〈η〉 is aver-
aged over the entire galaxy population. The mean metallicity of enriched regions
will be larger by ∼Q−1

e . BecauseQe should increase with fcoll, this result shows
that the metallicity of enriched regions is likely to be above the critical threshold
for the transition to Population II star formation in most plausible scenarios.

An alternative empirical estimate of the IGM metallicity follows by observing
the total density of stars (which, assuming an IMF, translates into a total metal
yield). Type II supernovae from high-mass stars forming in a typical Salpeter
IMF process ≈2.4% of the stellar mass into metals. If we use the observed
stellar mass estimates at z∼2, this result implies that the IGM should have
Z∼(1/30) Z� at that redshift.

However, only ∼10% of these metals predicted by measuring the stellar mass
of the Universe have actually been observed; the remainder may be buried in-
side additional galaxy populations or in diffuse IGM systems where the metal-
line optical depth is too small to resolve. In the latter case, the enrichment may
indeed be widespread, at least by z∼2–3.

For a similar constraint at higher redshifts, we can calibrate the stellar mass
to the number of ionizing photons produced per baryon, which will let us gauge
the overall level of enrichment near the time of reionization (see chapter 9). We
let QH II be the number of ionizing photons reaching the IGM per hydrogen
atom, QH II ≈ Nγfescf�fcoll, where Nγ is the number of ionizing photons pro-
duced per baryon in stars (∼4,000 for a Salpeter IMF), and fesc is the fraction
of these photons that escape their host galaxy into the IGM; we discuss these
parameters in more detail in chapter 9. Meanwhile, the mean metallicity im-
plied by these stars is Z/Z�∼1.3f�fcoll, where the factor 1.3 is the conversion
from the 2.4% metal yield to solar metallicity (which has 1.89% of the mass in
metals). Thus,

Z∼3 × 10−3QH II

(
400

Nγfesc

)
Z�. (6.51)

Again, the mean metallicty in enriched regions will be a factor of Q−1
e larger.

Our primary tools for constraining these winds are metal-line systems in the
Lyman-α forest (see §4.6). Metals seem nearly ubiquitous in the high–column
density systems that may be associated with virialized objects, which implies
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Table 6.2 Summary of Feedback Processes Affecting the First Stars and Galaxies.

Type Mechanism Effect

Radiative Lyman-α photons Pressure-driven winds
Lyman-Werner photons H2 photodissociation/

population III.2 stars
Ionizing photons Photoevaporation of halo gas,

gas entropy increase (see §9.9)
X-ray photons Free-electron formation,

gas entropy increase (see §9.9)

Mechanical Supernovae Halo disruption
Superwinds Gas suppression,

metal pollution
AGN winds Gas suppression (see §7.5)

Chemical Enrichment Population II stars

that such halos are highly enriched.ix This is not surprising, since the first stars
in any halo are themselves likely to enrich the hosts’ material to substantial
levels. More interesting is the wide scatter in the metallicity of lower-density
regions. The estimate in equation (6.50) is reasonably close to the observed
metallicities of these systems (Z∼10−3Z�), so careful studies of IGM metal
lines over time may shed light on winds and other outflows. In particular, even
at z > 6, these enriched regions will produce measurable absorption in quasar
or GRB spectra, although identifying each line’s origin may be difficult (see
§4.7).

As we will see in §8, these winds likely also play a crucial role in regulating
star formation within galaxies, and their parameters can therefore be estimated
not only through IGM metallicity measurements but also by comparison with
galaxy luminosity functions, metallicities, and other properties. This role pro-
vides another observational handle on winds and, indirectly, chemical enrich-
ment processes.

6.6 The First Galaxies

In chapter 5 we discussed the physics of primordial star formation. Although
there are many unanswered questions, the problem of first star formation is a
tractable one: the initial conditions are well-posed and the physics (dark matter
and baryonic collapse, chemistry of the primordial gas, accretion disk forma-
tion, and radiative feedback) is straightforward enough that one can at least
imagine solving the problem in full.

ixFor a counter example, see Fumagilli, M., O’Meara, J. M. & Prochaska, J. X., Science 334, 1245
(2011).
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In this chapter we have examined the myriad feedback mechanisms gen-
erated by these stars and their descendants, as summarized in Table 6.2. As
soon as the first stars formed, these processes complicated matters immensely,
and it is extremely difficult to imagine building a picture of the subsequent
generations of star formation from first principles—there are simply too many
uncertain parameters driving each one. Nevertheless, the underlying physics
of each process is relatively straightforward, and from detailed studies of each
individual process we can build some intuition for how the interplay may have
proceeded.

Such “global” formulations are coming into focus for the transformation of
the first stars to the first galaxies. We define a “galaxy” as a gravitationally-bound
system of stars embedded in a dark matter halo and exhibiting sustained star for-
mation (even if at a low level) over cosmological time periods (i.e., a substantial
fraction of the Hubble time), either in the past or ongoing at present. This de-
finition requires (i) a virialized dark matter halo able to accrete baryons (hence
M>Mfil); (ii) efficient cooling in the baryons (above a critical virial temperature
Tmin that depends on the chemistry of the constituent gas); (iii) sufficient mass
to be stable against feedback from its own stars; and (iv) sufficient mass to be
stable against feedback from neighboring halos.

Here we describe a plausible scenario for how such objects can appear at
high redshifts. It should be obvious, however, that though this represents a
best guess given present theoretical investigations, the lack of observational
constraints likely means that it is at best partially correct. Nevertheless, it pro-
vides a coherent synthesis of the concepts we have discussed and is a useful
baseline paradigm for future work. Figure 6.12 illustrates the following evolu-
tionary stages graphically and identifies some of their key points:

1. The first stars form inside halos cooled by molecular hydrogen, with char-
acteristic masses determined by the chemistry of H2 cooling (see §5.1.2
and Fig. 5.5) such that Tvir > 1,000 K. Massive Population III.1 stars form
at the center of these halos after cooling to low temperatures. The key
question is whether the gas cloud fragments before the material accretes
onto the protostar. If not, the final mass is likely regulated by radiative
feedback (withM�>100M�); otherwise, the first protostar’s accretion disk
is the most likely site for fragmentation, and the characteristic mass may
be several times smaller.

2. The first star (or star cluster) exerts extremely strong feedback on its host
halo’s gas. The H II region created by a very massive Population III.1
star evaporates any diffuse gas in the central regions of the halo (§6.3.1),
and the star’s death as a supernova triggers a blast wave that quickly
clears out the rest of the gas (provided, of course, the star does not col-
lapse directly to a black hole without generating an explosion; §6.4.3),
and it enriches the entire halo with heavy elements. Dense clumps well
on their way to star formation may survive this feedback (and, in fact,
the shock compression may even speed up their collapse), but noth-
ing else will. The feedback will be less severe, but still substantial, if
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1. First Pop III.1 stars 
form (Tvir ~ 2000 K)

2. Radiation/supernovae 
disrupt halos

3. Feedback triggers Pop 
III.2 star formation

4. Lyman-Werner photon 
background appears 

Mass scale of Pop III 
systems shifts upward

5.

Minihalos unable to form stars

First sustained galaxies 
appear in halos with 
Tvir = 104 K

Figure 6.12 Stages in a plausible scenario for the birth of the first stars and galaxies (see
text for details, and Color Plate 10 for a color version of the figure). (1) The
first Population III.1 stars form in small halos via H2 cooling. (2) These
stars empty their hosts of gas via photoevaporation and supernova blast
waves. (3) This feedback triggers Population III.2 star formation in nearby
minihalos. (4) The Lyman-Werner background from these stars suppresses
star formation in small minihalos, gradually increasing the characteristic
mass scale of star-forming objects. (5) The first self-sustaining galaxies
eventually form in halos above the atomic cooling threshold, Tvir∼104 K.

Population III.1 stars are less massive. Nevertheless, Population III.1 star
formation in any individual halo may occur only in a single rapid burst.

3. These same feedback mechanisms also operate on somewhat larger
scales, as the H II region and supernova blast wave are able to penetrate to
approximately kiloparsec scales. Any nearby halos are therefore subject to
the same effects: baryons in those that have not yet collapsed to high den-
sities evaporate at high entropies, while star formation is likely accelerated
in those already dense enough to self-shield from the ionizing radiation
(§6.3.1). However, because these systems form their stars from ionized
gas, the enhanced HD chemistry leads to more efficient cooling and hence
(probably) a smaller characteristic mass of Population III.2 stars (see §5.3).
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Figure 6.13 Results from a numerical simulation of the formation of a metal-free stars
and their feedback on the surrounding environment (see Color Plate 11 for
a color version of the figure). Radiative feedback around the first star in-
volves ionized bubbles (medium gray) and regions of high molecule abun-
dance (light gray). The large residual free-electron fraction inside the relic
ionized regions, left behind after the central star died, rapidly catalyzes
the re-formation of molecules and a new generation of lower-mass stars.
Reprinted from Nature, 459, 7243, Bromm, V., N. Yoshida, L. Hernquist,
& C. F. McKee, “The formation of the first stars and galaxies,” Figure 4,
Copyright 2007, with permission from Nature Publishing Group.

(Note that because supernova blast waves travel much slower than H II re-
gions, it is very possible for this triggered star formation to be metal free.)
Still, even with this positive feedback, the Population III.1 and Popula-
tion III.2 stars in a given cluster of minihalos form close together tempo-
rally (as otherwise, the clumps would have photoevaporated), leading to
“bursts” of Population III stars followed by long pauses as the halos reac-
crete their gas. Figure 6.13 illustrates some of the complexity of this stage:
note the several nearby stars that form and the complicated morphology
of the molecular gas catalyzed by the presence of the H II regions.

4. Feedback also operates on larger scales. All Population III stars produce
photons in the Lyman-Werner that photodissociate H2. As more stars
form, the Lyman-Werner background increases, gradually raising the crit-
ical virial temperature for cold gas formation inside minihalos (§6.1.5 and
Figure 6.4). Because more massive halos are also more rare, this tends to
self-regulate the global rate of star formation.

5. Eventually, the Lyman-Werner background becomes intense enough to
choke off Population III star formation in pristine minihalos entirely.
Then, star formation shifts to halos with Tvir>104 K, where H I is
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ionized by the virial shock, and atomic cooling is efficient (see Figure 5.1).
Most likely these halos had progenitors that formed Population III stars,
in which case they already preenriched with metals and begin to form Pop-
ulation II stars. It is possible, however, that some such halos form without
stars inside their progenitors (perhaps because they form relatively late
and so star formation is suppressed by the Lyman-Werner background).
In that case, their pristine, initially ionized gas triggers Population III.2
star formation.

6. Systems with Tvir> 104 K can also maintain reasonable (though still small)
star formation rates without completely disrupting their gas supplies (see
equation 6.26). It is therefore this “second generation” of star-
forming halos that hosts the first sustained galaxies.

7. Nevertheless, feedback continues to be important in regulating galaxy for-
mation at later times. Winds and outflows are likely crucial for regulating
star formation inside galaxies (see §8), and photoheating from ionizing
photons in the IGM gradually increases the Jeans mass and thus the min-
imum mass scale for galaxy formation (see §9.9, where we discuss this
topic in detail.)

The transition to star formation in long-lived galaxies likely occurred long
before the Universe was reionized. The intensity of the Lyman-Werner back-
ground can be estimated as

JLW∼cnLW

4π

(
hm

�mLW

)
(6.52)

where nLW is the number density of photons in the Lyman-Werner band and
�mLW is the bandwidth in frequency space. We then write nLW∼fLW/ionQH II/

fescnH, where fLW/ion is the number of Lyman-Werner photons produced per
ionizing photon by stars (which is ∼0.1 for very massive Population III stars, or
near unity for Population II stars),QH II is the number of ionizing photons that
escape into the IGM per hydrogen atom, and fesc is the fraction of all ionizing
photons that manage to escape in this way. Then,

JLW,21∼100QH II

(
0.1

fesc

fLW/ion

0.1

)(
1 + z

20

)3

. (6.53)

Lyman-Werner photons suppress H2 cooling completely when JLW,21 > 1 (see
equation 6.4), which should occur long before enough ionizing photons are pro-
duced to reionize the IGM. Thus, it seems very likely that the primary
sources responsible for reionizing the Universe were long-lived galaxies rather
than the bursty minihalos in which the first stars themselves formed.

Although this is a very plausible picture consistent with detailed theoretical
work, there are a number of points at which seemingly minor differences may
dramatically alter the results. We list several here to give a flavor for the uncer-
tainties:

• If fragmentation is efficient in accretion disks composed of primordial
stars, the first halos will form clusters of moderately sized stars rather
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than single very massive stars. The resulting feedback will be less efficient,
potentially allowing gas to remain in halos somewhat below the usual
Tvir∼104 K atomic cooling threshold. The mass scale of the first galaxies
would shift downward.

• If Population III stars form in the mass ranges 40–100M� or 140–260M�,
they will die by imploding rapidly to black holes without explosions. This
would allow their halos to retain more of their gas, with only the photoe-
vaporation feedback to contend with, and allow sustained star formation
to continue in low-mass halos. Moreover, they would not enrich their en-
vironments (except perhaps weakly through stellar winds), allowing Popu-
lation III.1 and III.2 to persist for longer timescales—possibly even to the
atomic cooling threshold.

• If the shells that form at the edges of supernova blast waves are gravitation-
ally unstable, they can fragment and form stars as well. If the fragmenta-
tion scale is small, these could even be long-lived stars that exert relatively
small feedback.

• If black holes form abundantly and accrete gas efficiently from binary star
companions or the ISM (see §7), then their X-ray background increases the
free-electron fraction inside halos, promoting H2 formation and possibly
counteracting photodissociation from Lyman-Werner photons. This would
allow much more rapid primordial star formation in low-mass halos.

• The consequences of enrichment inside minihalos has been largely unex-
plored, because the gas is expected to be expelled. But if some is retained,
the metals allow rapid cooling and hence more efficient star formation
than H2. This, too, could lead to smaller galaxies.

Obviously, there is a great deal of uncertainty in how the first stars will grow
into the first galaxies—most likely, observations will be necessary to settle the
question. However, in closing we stress that most of the underlying physics is
well understood in isolation and has many applications to other areas of astro-
physics. It is the complex interplay of the processes we have described here that
makes the problem challenging and exciting to explore observationally.
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Supermassive Black Holes

7.1 Quasars and Black Holes: An Overview

A black hole is the end product of the complete gravitational collapse of a
material object, such as a massive star. It is surrounded by a horizon from
which even light cannot escape. Black holes have the dual virtues of being
extraordinarily simple solutions to Einstein’s equations of gravity (as they are
characterized only by their mass, charge, and spin) but also the most disparate
from their Newtonian analogs. In Einstein’s theory of gravity, black holes
represent the ultimate prisons: you can check in, but you can never check
out.

Ironically, black hole environments are the brightest objects in the universe.
Of course, it is not the black hole that is shining but, rather, the surrounding
gas heated by viscously rubbing against itself and shining as it spirals into the
black hole like water going down a drain, never to be seen again. The origin
of the radiated energy is the release of gravitational binding energy as the gas
falls into the deep gravitational potential well of the black hole. More than 10
percent of the mass of the accreting material can be converted into heat (more
than an order of magnitude beyond the maximum efficiency of nuclear fusion).
Astrophysical black holes appear in two flavors: stellar-mass black holes that
form when massive stars die, and the monstrous supermassive black holes that
sit at the center of galaxies, reaching masses of up to 10 billion Suns. The latter
type are observed as active galactic nuclei (AGN). It is by studying these accret-
ing black holes that all our observational knowledge of black holes has been
obtained.

A quasar—the most powerful type of AGN—is a point-like (“quasi-stellar”)
bright source at the center of a galaxy. Many lines of evidence indicate that a
quasar involves a supermassive black hole that is accreting gas from the core of
its host galaxy. The supply of large quantities of fresh gas is often triggered by
a merger between two galaxies. The infalling gas heats up as it spirals toward
the black hole and dissipates its rotational energy through viscosity. The gas
is expected to drift inward in an accretion disk until it reaches the last possible
stable orbit according to general relativity. Interior to this point, the gas plunges
into the black hole in such a short time that it has no opportunity to radiate most
of its thermal energy. However, as is described in detail in §7.2, the fraction of
the rest mass of the gas that gets radiated away just outside this orbit is high,
ranging between 5.7% for a nonspinning black hole to 42.3% for a maximally
spinning black hole (see Figure 7.5). This “radiative efficiency” is far greater
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Figure 7.1 Redshift evolution of the luminosity function of quasars at different ob-
served wavelengths: B-band (center-left panels), soft X-rays (0.5–2 keV) (cen-
ter), hard X-rays (2–10 keV) (center-right), and mid-IR (15µm) (right). The
left panels show the distribution of bolometric luminosities (integrated over
all wavelengths). Lines show the best-fit evolving double power-law model to
data points at all redshifts (solid), the best-fit model at the given redshift
(dashed), and the best-fit model that allows only the break luminosity to
evolve (dotted). Hopkins, P. F., Richards, G. T., & Hernquist, L., Astrophys. J.
654, 731 (2007). Reproduced by permission of the AAS.

than the mass–energy conversion efficiency provided by nuclear fusion in stars,
which is < 0.7%.

Fortunately, quasars are very easy to see when the accretion occurs through a
thin disk, and we have a great deal of demographic information on their proper-
ties out to very high redshifts. Quasar activity is observed in a small fraction of
all galaxies at any cosmic epoch. Figure 7.1 shows the evolution of the luminos-
ity function of quasars at different observed wavelengths in the redshift interval
z = 2–5. Mammoth black holes weighing more than a billion solar masses have
been discovered at redshifts as high as z ∼ 6–7, less than a billion years after
the Big Bang. The highest redshift quasar known (as of winter 2012) is ULAS
J1120+0641 at z = 7.085 (only 0.77 Gyr after the Big Bang), with a bolometric
luminosity of 6.3 × 1013 L� and an estimated black hole mass of 2 × 109 M�;
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Figure 7.2 Simulated image of an accretion flow around a black hole spinning at half its
maximum rate, from a viewing angle of 10◦ relative to the rotation axis (see
Color Plate 12 for a color version of this figure). The coordinate grid in the
equatorial plane of the spiraling flow shows how strong lensing around the
black hole bends the back of the apparent disk up. The left side of the image
is brighter owing to its rotational motion toward the observer. The bright arcs
are generated by gravitational lensing. A dark silhouette appears around the
location of the black hole because the light emitted by gas behind it disap-
pears into the horizon and cannot be seen by an observer on the other side.
Recently, the technology for observing such an image from the supermas-
sive black holes at the centers of the Milky Way and M87 galaxies has been
demonstrated as feasible [Doeleman, S., et al., Nature 455, 78 (2008)]. To
obtain the required resolution of tens of micro-arcseconds, interferometers
operating at millimeter wavelengths across the earth are necessary. Broder-
ick, A., & Loeb, A. Journal of Physics Conf. Ser. 54, 448 (2006); Astrophys. J.
697, 1164 (2009). Reproduced by permission of the AAS.

we show a partial spectrum of this quasar in Figure 11.8, where we discuss this
object in the context of the reionization of the Universe.

There is clear and direct evidence for supermassive black holes, even be-
yond the AGN population. In our own Milky Way galaxy, stars are observed
to zoom around the Galactic center at speeds of up to 10,000 km s−1, owing to
the strong gravitational acceleration near the central black hole (with a mass
∼ 4 × 106 M�).1 But closer-in observations are forthcoming. Existing technol-
ogy should soon be able to image the silhouette of the supermassive black holes
in the Milky Way and M87 galaxies directly (see Figure 7.2).
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Chandra X-ray

VLA radio HST optical

Figure 7.3 Multiwavelength images of the highly collimated jet emanating from the
supermassive black hole at the center of the giant elliptical galaxy M87 (see
Color Plate 13 for a color version of this figure). The X-ray image (top) was
obtained with the Chandra X-ray observatory, the radio image (bottom left)
was obtained with the Very Large Array (VLA), and the optical image (bottom
right) was obtained with the Hubble Space Telescope (HST). Courtesy of
CXO/NASA.

Nevertheless, many questions remain about black holes. If the accreting ma-
terial is organized into a thin disk, where the gas can efficiently radiate its re-
leased binding energy, then its theoretical modeling is straightforward. Less
well understood are radiatively inefficient accretion flows, in which the inflow-
ing gas obtains a thick geometry. It is generally unclear how gas migrates from
large radii to near the horizon and how, precisely, it falls into the black hole. For
example, we presently have very poor constraints on how magnetic fields em-
bedded and created by the accretion flow are structured, and how that structure
affects the observed properties of astrophysical black holes. While it is begin-
ning to be possible to perform computer simulations of the entire accreting
region, we are decades away from true ab initio calculations, and thus observa-
tional input plays a crucial role in deciding between existing models and moti-
vating new ideas.

More embarrassing is our crude understanding of black hole jets (see
Figure 7.3) and other feedback mechanisms. These extraordinary exhibitions of
the power of black holes are moving at nearly the speed of light and involve nar-
rowly collimated outflows whose base has a size comparable to the solar system,
while their front reaches scales comparable to the distance between galaxies.2

Unresolved issues are as basic as what jets are made of (whether electrons and
protons, electrons and positrons, or primarily electromagnetic fields) and how
they are accelerated in the first place. The answers to these questions depend
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Figure 7.4 Left panel: The comoving black hole mass density of quasars from the data
(circles) and the best-fit luminosity function (solid line). The inset shows the
fraction of the mass density relative to today’s value, ρBH(z)/ρBH(0), on a
linear scale. Right: The black hole mass function at z = 0 (thick black line)
and z = 1, 2, 3 (from top to bottom). The shaded region shows the 1σ
observational uncertainty. Hopkins, P. F., Richards, G. T., & Hernquist, L.,
Astrophys. J. 654, 731 (2007). Reproduced by permission of the AAS.

on critically on the role of the black hole spin in the jet-launching process. The
bright radiation and powerful jets of AGN can have dramatic feedback effects
on the black hole’s host galaxy.

If massive black holes grew at early cosmic times, should their remnants be around
us today? Indeed, searches for black holes in local galaxies have found that every
galaxy with a stellar spheroid harbors a supermassive black hole at its center,
which implies that quasars are rare simply because their activity is short-lived.
The inferred growth in the comoving mass function of black holes along with its
integral over all black hole masses (i.e., the comoving mass density) are shown
in Figure 7.4. Moreover, there appears to be a tight correlation between black
hole mass and the gravitational potential-well depth of their host spheroids of
stars (as measured by the velocity dispersion of these stars), as described in
detail in §7.5.1.

This suggests that the black holes grow up to the point where the heat they
deposit into their environment or the piston effect from their winds prevents
additional gas from feeding them further, or else the feedback from star for-
mation in the vicinity of the black holes affects or controls their self-regulation.
The black hole is like a baby who gets more energetic as he eats more at the
dinner table, until his hyperactivity becomes so intense that he pushes the food
off the table and cannot eat any more. This principle of self-regulation explains
why quasars are short-lived and why the final black hole mass is dictated by the
depth of the potential in which the gas feeding it resides.3 Evidently, the growth
of supermassive black holes is intimately linked to the hierarchical growth of
their host galaxies. Most black holes today are dormant or “starved” because
the gas around them was mostly used up in making the stars, or because their
activity heated or pushed it away a long time ago.
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This state of affairs can easily be understood from the fact that the binding
energy per unit mass in a typical galaxy corresponds to velocities v of hundreds
of kilometers per second or a fraction ∼ (v/c)2 ∼ 10−6 of the binding energy
per unit mass near a black hole. Hence, a small amount of gas that releases its
binding energy near a black hole can have a large effect on the rest of the gas in
the galaxy.

Why did the collapsed matter in the Universe end up making galaxies and not
black holes? One would have naively expected spherical collapse to end with the
formation of a point mass at its center. But, as it turns out, tides from neighbor-
ing objects torque the infalling material and induce asphericity and some spin
into the final collapse. The induced angular momentum prevents the gas from
reaching the center on a direct plunging orbit. After the gas cools and loses
its pressure support against gravity, it instead assembles into a disk in which
the centrifugal force balances gravity. The finite size of the luminous region
of galaxies is then dictated by the characteristic spin acquired by galaxy halos,
which typically corresponds to a rotational velocity that is ∼5% of the virial cir-
cular velocity, with a negligible dependence on halo mass. In the previous two
chapters we discussed how this material forms stars and, eventually, galaxies.

But star formation does not imply that no gas accumulates at the center. In
fact, galactic spheroids are observed generically to harbor a central black hole,
whose formation is most likely linked to the small mass fraction of galactic
gas (<0.1%) with unusually small amount of angular momentum. The small
mass fraction of the central black holes implies that their gravitational effect is
restricted to the innermost cusp of their host galaxy.

In this chapter, we study formation mechanisms for supermassive black
holes, their observable characteristics, and their interactions with their host
galaxies and the wider Universe. We begin with a short introduction to the
properties of black holes in general relativity.

7.2 Basic Principles of Astrophysical Black Holes

In Newtonian gravity, the gravitational field at any radius outside a spherical
mass distribution depends only on the mass interior to that radius. This result
is also true in Einstein’s general relativity, where Birkhoff’s theorem (see §1.2.2)
states that the only vacuum, spherically symmetric gravitational field is that
described by the static Schwarzschild metric,

ds2 = −
(

1 − rSch

r

)
c2dt2 +

(
1 − rSch

r

)−1
dr2 + r2d�, (7.1)

where d� = (dθ2 + sin2 θ dφ2). The Schwarzschild radius is related to the mass
M of the central (nonspinning) black hole,

rSch = 2GM

c2
= 2.95 × 105 cm

(
M

1 M�

)
. (7.2)
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The black hole horizon, rHor (= rSch here), is a spherical boundary from which
no particle can escape. [The coordinate singularity of the Schwarzschild metric
at r = rSch can be removed through a transformation to the Kruskal coordi-
nate system (r, t) → (u, v), where u = (r/rSch − 1)1/2 er/2rSch cosh(ct/2rSch);
v = u tanh(ct/2rSch).] The existence of a spatial region into which particles
may fall but never come out breaks the time-reversal symmetry that charac-
terizes the equations of quantum mechanics. Any grander theory that would
unify quantum mechanics and gravity must remedy this conceptual
inconsistency.

In addition to its mass M , a black hole can be characterized only by its spin
J and electric charge Q (similarly to an elementary particle). In astrophysical
circumstances, any initial charge of the black hole would quickly be neutralized
through the polarization of the background plasma and the preferential infall of
electrons or protons. The residual electric charge would exert an electric force
on an electron comparable to the gravitational force on a proton, eQ ∼ GMmp,
which implies that (Q2/GM2) ∼ Gm2

p/e
2 ∼10−36 and a negligible contribution

of the charge to the metric. A spin, however, may modify the metric consider-
ably.

The general solution of Einstein’s equations for a spinning black hole was de-
rived by Kerr in 1963 and can be written most conveniently in Boyer-Lindquist
coordinates:

ds2 = −
(

1 − rSchr

�k

)
c2 dt2 − 2jrSchr sin2 θ

�k
cdt dφ + �k

�
dr2

+�k dθ2 +
(
r2 + j 2 + rSchj

2r sin2 θ

�k

)
sin2 θ dφ2, (7.3)

where the black hole is rotating in the φ direction, j = [J/Mc] is the normal-
ized angular momentum per unit mass (in units of cm), � = r2 − rrSch + j 2,
and �k = r2 + j 2 cos2θ . The dimensionless ratio a = j/(GM/c2) is bounded
by unity, and a = 1 corresponds to a maximally rotating black hole. The hori-
zon radius rHor is now located at the larger root of the equation � = 0, namely,
r+ = (1/2)rSch[1 + (1 − a2)1/2]. The Kerr metric converges to the Schwarz-
schild metric for a = 0. There is no Birkhoff’s theorem for a rotating black
hole.

Test particle orbits around black holes can be simply described in terms of an
effective potential. For photons around a Schwarzschild black hole, the potential
is simply Vph = (1−rSch/r)/r

2, which leads to circular photon orbits at a radius
rph = (3/2)rSch. For a spinning black hole,

rph = rSch

[
1 + cos

(
2

3
cos−1[±a]

)]
, (7.4)

where the upper sign refers to orbits that rotate in the direction opposite that
of the black hole (retrograde orbits), and the lower sign to corotating (prograde)
orbits. For a maximally rotating black hole (|a| = 1), the photon orbit radius is
rph = (1/2)rSch for a prograde orbit and 2rSch for a retrograde orbit.
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Figure 7.5 The left panel shows the radius of the black hole horizon rHor (dashed line)
and the innermost stable circular orbit (ISCO) around it rISCO (solid line), in
units of the Schwarzschild radius rSch (see equation 7.2), as functions of the
black hole spin parameter a. The limiting value of a = 1 (a = −1) corre-
sponds to a corotating (counterrotating) orbit around a maximally spinning
black hole. The binding energy of a test particle at the ISCO determines the
radiative efficiency ε of a thin accretion disk around the black hole, shown in
the right panel.

Circular orbits of massive particles exist when the first derivative of their
effective potential (including angular momentum) with respect to radius van-
ishes, and these orbits are stable if the second derivative of the potential is pos-
itive. The radius of the innermost stable circular orbit (ISCO) defines the inner
edge of any disk of particles in circular motion (such as fluid elements in an
accretion disk). At smaller radii, gravitationally bound particles plunge into the
black hole on a dynamical time. This radius of the ISCO is given by4

rISCO = 1

2
rSch

{
3 + Z2 ± [(3 − Z1)(3 + Z1 + 2Z2)]

1/2} , (7.5)

whereZ1 = 1+(1−a2)1/3[(1+a)1/3+(1−a)1/3], andZ2 = (3a2+Z2
1)

1/2. Figure
7.5 shows the radius of the ISCO as a function of spin. The binding energy of
particles at the ISCO defines their maximum radiative efficiency, because they
spend a short time on their plunging orbit interior to the ISCO. This efficiency
is given by

ε = 1 −
r2 − rSchr ∓ j

√
1
2 rSchr

r(r2 − 3
2 rSchr ∓ 2j

√
1
2 rSchr)1/2

. (7.6)

The efficiency ranges between ε = (1 − √
8/9) = 5.72% for a = 0, to (1 −√

1/3) = 42.3% for a prograde (corotating) orbit with a= 1, and (1−√
25/27)=

3.77% for a retrograde orbit.
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7.3 Accretion of Gas onto Black Holes

7.3.1 Bondi Accretion

Consider a black hole embedded in a hydrogen plasma of uniform density ρ0 =
mpnH and temperature T0. The thermal protons in the gas are moving around
at roughly the sound speed cs ∼ √

kBT /mp. The black hole gravity can drive
accretion of gas particles that are gravitationally bound to it, namely, interior to
the radius of influence, rinf ∼ GM/c2

s . The steady mass flux of particles entering
this radius is ρ0cs . Multiplying this flux by the surface area associated with the
radius of influence gives the supply rate of fresh gas,

Ṁ ≈ πr2
infρ0cs = 15

(
M

108 M�

)2 ( nH

1 cm−3

) (
T0

104 K

)−3/2

M� yr−1. (7.7)

In a steady state this supply rate equals the mass accretion rate into the black
hole (see also §5.2.1).

The explicit steady-state solution to the conservation equations of the gas
(mass, momentum, and energy), which is self-similar, was first derived by
Bondi in 1952. This exact solution introduces a correction factor of the or-
der of unity to equation (7.7).5 Well inside the sonic radius (i.e., the point at
which the infall and sound speeds are equal), the velocity is close to freefall
u ∼ (2GM/r)1/2, and the gas density is ρ ∼ ρ0(r/rinf)

−3/2. The radiative ef-
ficiency is small, because either the gas is tenuous, so that its cooling time is
longer than its accretion (free-fall) time, or the gas is dense, and the diffusion
time of the radiation outward is much longer than the free-fall time. If the in-
flowing gas contains near-equipartition magnetic fields, then cooling through
synchrotron emission typically predominates over free-free emission.

A black hole that is moving with a velocity V relative to a uniform medium
accretes at a lower rate than a stationary black hole. At high velocities, the radius
of influence of the black hole is then ∼ GM/V 2, which suggests that the sound
speed cs should be crudely replaced with ∼ (c2

s + V 2)1/2 in equation (7.7). A
similar suppression factor applies for the accretion of baryons onto dark matter
halos when the baryons have a net bulk velocity relative to the dark matter (see
§2.1.2 and 3.2.2).

7.3.2 Thin-Disk Accretion

If the inflow is endowed with rotation, the gas will reach a centrifugal bar-
rier from which it can accrete farther inward only after its angular momen-
tum is transported away. This limitation follows from the steeper radial scaling
of the centrifugal acceleration (∝ r−3 if angular momentum is conserved; see
equation 5.33) compared with the gravitational acceleration (∝ r−2). Near the
centrifugal barrier, where the gas is held against gravity by rotation, an accre-
tion disk will form around the black hole, centered on the plane perpendicu-
lar to the rotation axis. The accretion time will then be dictated by the rate at
which angular momentum is transported through viscous stress, and it could
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be significantly longer than the free-fall time for a nonrotating flow (as in the
solution described by the Bondi accretion model). As the gas settles to a disk,
the dissipation of its kinetic energy into heat will make the disk thick and hot,
with a proton temperature close to the gravitational potential energy per proton,
∼1012 K(r/rSch)

−1 in the absence of radiative processes. However, if the cooling
time of the gas is shorter than the viscous time, then a thin disk will form. This
latter regime is realized for the high gas inflow rate during the processes (such
as galaxy mergers) that feed quasars. To better understand such objects, we start
by exploring the structure of thin disks that characterize the high accretion rate
of quasars.6

We imagine a planar thin disk of cold gas orbiting a central black hole and
wish to describe its structure in polar coordinates (r, φ). Each gas element or-
bits at the local Keplerian velocity vφ = r� = (GM/r)1/2, where � is the an-
gular velocity, and spirals slowly inward with radial velocity vr 	 vφ as vis-
cous torques transport its angular momentum to the outer part of the disk.
The associated viscous stress generates heat, which is radiated away locally
from the the disk surface. We assume that the disk is fed steadily, and so it
manifests a constant mass accretion rate at all radii. Mass conservation implies
that

Ṁ = 2πr�vr = constant, (7.8)

where �(r) is the surface mass density of the disk.
In the limit of a geometrically thin disk with a scale height h 	 r , the hy-

drodynamic equations decouple in the radial and vertical directions. We start
with the radial direction. The Keplerian velocity profile introduces shear, which
dissipates heat as neighboring fluid elements rub against one another. The con-
cept of shear viscosity can easily be understood in the one-dimensional exam-
ple of a uniform gas whose velocity along the y-axis varies linearly with the
x-coordinate, V = V0 + (dVy/dx)x. A gas particle moving at the typical ther-
mal speed v traverses a mean free path λ along the x-axis before it collides
with other particles and shares its y-momentum with them. The y-velocity is
different across a distance λ by an amount �V ∼ λ dVy/dx. Since the flux of
particles streaming along the x-axis is ∼ nv, where n is the gas density, the
net flux of y-momentum transported per unit time, ∼ nvm�V , is linear in the
velocity gradient η dVy/dx, with a viscosity coefficient η ∼ ρvλ (in g cm−1 s−1),
where ρ = mn is the mass density of the gas. Since the excess kinetic en-
ergy density across a mean free path, (1/2)ρ(λ dVy/dx)2, is dissipated every
collision time ∼ (λ/v), viscosity heats the gas at a rate per unit volume of
Hvis ∼ [η(dVy/dx)]2/η.

Similar arguments show that within a Keplerian accretion disk, the flux of
φ-momentum transported in the positive r-direction is given by the viscous
stress fφ = (3/2)η�. This dissipation is expected to be effective down to the
ISCO, from which the gas plunges into the black hole over a free-fall time. We
therefore set the inner boundary of the disk as rISCO, depicted in Figure 7.5.
Conservation of angular momentum requires that the net rate of its change
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within a radius r be equal to the viscous torque, namely,

fφ × (2πr × 2h)× r = Ṁ
[
(GMr)1/2 − (GMrISCO)

1/2] . (7.9)

The production rate of heat per unit volume by the viscous stress is given by
Hvis = f 2

φ /η. Substituting for fφ in equation (7.9), we have

2hHvis = 3Ṁ

4πr2

GM

r

[
1 −

( rISCO

r

)1/2
]
. (7.10)

This power provides a local radiative flux that leaves the system vertically from
the top and bottom surfaces of the disk,

F = 1

2
× 2hHvis = 3Ṁ

8πr2

GM

r

[
1 −

( rISCO

r

)1/2
]
. (7.11)

The total luminosity of the disk is given by

L =
∫ ∞

rISCO

2F × 2πr dr = 1

2

GMṀ

rISCO
, (7.12)

where we have ignored general-relativistic corrections to the dynamics of the
gas and the propagation of the radiation it emits.

In the absence of any vertical motion, momentum balance in the vertical
z-direction yields

1

ρ

dp

dz
= −GM

r2

z

r
, (7.13)

where z 	 r and p and ρ are the gas pressure and density, respectively. This
equation fixes the disk scale height h ≈ cs/�, where cs ≈ (P/ρ)1/2 is the sound
speed.

Because of the short mean free path for particle collisions, the particle-level
viscosity is negligible in accretion disks. However, such disks are susceptible to
the powerful magnetorotational instability (MRI) that amplifies magnetic turbu-
lence over an orbital time. The origin of the instability can easily be understood
by imagining two fluid elements that are threaded by a single magnetic field
line and are slightly displaced from each other in the radial direction. The mag-
netic field acts as a spring owing to its tension. In a Keplerian disk the inner
fluid element orbits more rapidly than the outer element, causing the spring
to stretch. The inner fluid element is then forced by the spring to slow down,
to reduce its angular momentum, and therefore to move to a lower orbit. The
outer fluid element, meanwhile, is forced by the spring to speed up, to increase
its angular momentum, and therefore to move to a higher orbit. The spring
tension increases as the two fluid elements separate farther, and eventually the
process runs away. The magnetorotational instability7 is likely to develop turbu-
lent eddies in the disk that are much more effective at transporting its angular
momentum than particle viscosity. In this case λ and v should be replaced by
the typical size and velocity of an eddy. The largest value that these variables
can attain are the scale height h and sound speed cs in the disk, which implies
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that fφ < (ρcsh)� ≈ ρc2
s ≈ p. We may then parameterize the viscous stress as

some fraction α of its maximum value, fφ = αp.
The total pressure p in the disk is the sum of the gas pressure pgas =

2(ρ/mp)kBT , and the radiation pressure, prad = 1/3aradT
4. We define the frac-

tional contribution of the gas to the total pressure as

β ≡ pgas

p
. (7.14)

In principle, the viscous stress may be limited by the gas pressure only; to reflect
this possibility, we write fφ = αpβb, where b is 0 or 1 if the viscosity scales with
the total pressure or just the gas pressure, respectively.

Since the energy of each photon is just its momentum times the speed of
light, the radiative energy flux is simply given by the change in the radiation
pressure (momentum flux) per photon mean free path,

F = −c dprad

dτ
, (7.15)

where the optical depth τ is related to the frequency-averaged (so-called
Rosseland-mean) opacity coefficient of the gas, κ ,

τ =
∫ h

0
κρ dz ≈ 1

2
κ�, (7.16)

where � = 2hρ. For the characteristic mass density ρ and temperature T en-
countered at the midplane of accretion disks around supermassive black holes,
there are two primary sources of opacity: electron scattering with

κes = σT

mp
= 0.4 cm2 g−1, (7.17)

and free-free absorption with

κff ≈ 8 × 1022cm2 g−1

(
ρ

g cm−3

) (
T

K

)−7/2

, (7.18)

where we have assumed a pure hydrogen plasma for simplicity.
It is customary to normalize the accretion rate Ṁ in the disk relative to the

so-called Eddington rate ṀE , which produces the maximum possible disk lu-
minosity, LE (see the derivation in equation 7.33). When the luminosity ap-
proaches the Eddington limit, the disk bloats and h approaches r , violating the
thin-disk assumption. We write ṁ = (Ṁ/ṀE), with ṀE ≡ (LE/εc

2), where ε
is the radiative efficiency for converting rest mass to radiation near the ISCO
(shown in Figure 7.5).

Utilizing the preceding equations, we are now in a position to derive the
scaling laws that govern the structure of the disk far away from the ISCO. For
this purpose we use the following dimensionless parameters: r1 = (r/10rSch),
M8 = (M/108 M�), ṁ−1 = (ṁ/0.1), α−1 = (α/0.1) and ε−1 = (ε/0.1).

In local thermodynamic equilibrium, the emergent flux from the surface
of the disk (equation 7.11) can be written in terms of the midplane disk
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temperature T as F ≈ caradT
4/κ�. The surface temperature of the disk is

then roughly

Td ≈
(

4F

arad

)1/4

= 105 K M−1/4
8 ṁ

1/4
−1 r

−3/4
1

[
1 −

(
r

rISCO

)1/2
]
. (7.19)

Note that the disk surface temperature increases at small black hole masses
and reaches the X-ray regime for stellar-mass black holes. (Nonthermal X-ray
emission from a hot corona or a jet can supplement this disk emission.) Stellar-
mass black holes can therefore be important X-ray sources at high redshifts,
especially if they get incorporated into a binary system where they accrete gas
from a companion star. In the local Universe, black hole X-ray binaries come
in two flavors, depending on the mass of the companion star: low-mass X-ray bi-
naries, in which a low-mass companion transfers mass owing to the tidal force
exerted by the black hole, and high-mass X-ray binaries (BH-HMXBs or micro-
quasars), in which the companion is a massive star that can also transfer mass to
the black hole through a wind. At redshifts z > 6, when the age of the Universe
was short, BH-HMXBs were probably most important, since they are known
to produce their X-rays over a short lifetime (<109 yr). The cumulative X-ray
emission from BH-HMXBs is expected to be proportional to the star formation
rate. If, indeed, the early population of stars was tilted toward high masses, and
binaries were common, BH-HMXBs may have been more abundant per star
formation rate in high-redshift galaxies. As we discuss elsewhere, the X-rays
produced by BH-HMXBs may have had important observable effects as they
catalyzed H2 formation (§6.2), heated the IGM (§9.8.2), and modified the 21-cm
signal from neutral hydrogen (§12.3.2). Their overall influence was, however,
limited: hydrogen could not have been reionized by X-ray sources based on cur-
rent limits on the unresolved component of the X-ray background. Throughout
this chapter, we focus our attention on supermassive black holes, which are
brighter and hence easier to detect individually at high redshifts.

For supermassive black holes, the accretion disk can be divided radially into
three distinct regions,8

1. Inner region: where radiation pressure and electron-scattering opacity
dominate

2. Middle region: where gas pressure and electron-scattering opacity domi-
nate

3. Outer region: where gas pressure and free-free opacity dominate

The boundary between regions 1 and 2 is located at the radius

r1,im ≈ 54α2/21
−1 (ṁ−1/ε−1)

16/21M
2/21
8 if b = 1, (7.20)

58α2/21
−1 (ṁ−1/ε−1)

16/21M
2/21
8 if b = 0, (7.21)

and the transition radius between regions 2 and 3 is

r1,mo ≈ 4 × 102 (ṁ−1/ε−1)
2/3. (7.22)

The surface density and scale height of the disk are given by
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Inner region:

�(r)≈ (3 × 106 g cm−2)α
−4/5
−1

(
ṁ−1

ε−1

)3/5

M
1/5
8 r

−3/5
1 if b = 1, (7.23)

(8 × 102 g cm−2)α−1
−1

(
ṁ−1

ε−1

)−1

r
3/2
1 if b = 0, (7.24)

h(r)≈ rSch

(
ṁ−1

ε−1

)
. (7.25)

Middle region:

�(r)≈ (3 × 106 g cm−2)α
−4/5
−1

(
ṁ−1

ε−1

)3/5

M
1/5
8 r

−3/5
1 , (7.26)

h(r)≈ 1.4 × 10−2rSchα
−1/10
−1

(
ṁ−1

ε−1

)1/5

M
−1/10
8 r

21/20
1 . (7.27)

Outer region:

�(r)≈ (6 × 106 g cm−2)α
−4/5
−1

(
ṁ−1

ε0.1

)7/10

M
1/5
8 r

−3/4
1 , (7.28)

h(r)≈ 10−2rSchα
−1/10
−1

(
ṁ−1

ε−1

)3/20

M
−1/10
8 r

9/8
1 . (7.29)

The midplane temperature is given by

Tm(r)≈
(
16π2)−1/5

(
mp

kBσT

)1/5

α−1/5κ1/5Ṁ2/5�3/5β−(1/5)(b−1). (7.30)

The preceding scaling laws ignore the self-gravity of the disk. This assump-
tion is violated at large radii. The instability of the disk to gravitational frag-
mentation due to its self-gravity occurs when the so-called Toomre parameter,
Q = (cs�/πG�), drops below unity (see §5.2.3). For the preceding scaling
laws of the outer disk, the onset of fragementation occurs at the outer radius,

r1,out ≈ 2 × 104α
28/45
−1 (ṁ−1/ε−1)

−22/45M
52/45
8 . (7.31)

Outside this radius, the disk gas fragments into stars, and the stars may mi-
grate inward as the gas accretes onto the black hole. The energy output from
stellar winds and supernovae will supplement the viscous heating of the disk
and may regulate the disk to have Q ∼ 1 outside this boundary. We therefore
conclude that star formation will inevitably occur on larger scales, before the
gas is driven into the accretion disk that feeds the central black hole. Indeed,
the broad emission lines of quasars display very high abundances of heavy ele-
ments in the spectra out to arbitrarily high redshifts. Since the total amount of
mass in the disk interior to this radius constitutes only a small fraction of the
mass of the supermassive black hole, quasars must be fed by gas that crosses
this boundary after being vulnerable to fragmentation.9
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7.3.3 Radiatively Inefficient Accretion Flows

When the accretion rate is considerably lower than its Eddington limit (Ṁ/ṀE

< 10−2), the gas inflow switches to a different mode, called a radiatively ineffi-
cient accretion flow (RIAF) or an advection-dominated accretion flow (ADAF), in
which either the cooling time or the photon diffusion time is much longer than
the accretion time of the gas, and heat is mostly advected with the gas into the
black hole. At the low gas densities and high temperatures characterizing this
accretion mode, the Coulomb coupling is weak, and the electrons do not heat
up to the proton temperature, even with the aid of plasma instabilities. Viscosity
heats primarily the protons, since they carry most of the momentum. The other
major heat source, compression of the gas, also heats the protons more effec-
tively than the electrons. As the gas falls inward and its density ρ rises, the tem-
perature T of each species increases adiabatically as T ∝ ργ−1, where γ is the
corresponding adiabatic index. At radii r < 102rSch, the electrons are relativistic,
with γ = 4/3, and so their temperature rises inward with increasing density as
Te ∝ ρ1/3, while the protons are nonrelativistic, with γ = 5/3, and so Tp ∝ ρ2/3.
The result is a two-temperature plasma in which the protons are much hotter
than the electrons. Typical analytic models10 yield Tp ∼ 1012 K(r/rSch)

−1 and
Te ∼ min(Tp, 109−11 K). Because the typical sound speed is comparable to the
Keplerian speed at each radius, the geometry of the flow is thick— making
RIAFs the viscous analogs of Bondi accretions.

Analytic models imply a radial velocity that is a factor of ∼ α smaller than
the free-fall speed and an accretion time that is a factor of ∼α longer than the
free-fall time. However, since the sum of the kinetic and thermal energies of a
proton is comparable to its gravitational binding energy, RIAFs are expected to
be associated with strong outflows.

The radiative efficiency of RIAFs is smaller than the thin-disk value (ε). The
thin-disk value applies to high accretion rates above some critical value, ṁ >

ṁcrit, where ṁ is the accretion rate (in Eddington units) near the ISCO, after
taking into account the fact that some of the infalling mass at larger radii is lost
to outflows. Analytic RIAF models typically admit of a radiative efficiency of

L

Ṁc2
≈ ε

(
ṁ

ṁcrit

)
(7.32)

for ṁ < ṁcrit, with ṁcrit ∼ 0.01–0.1. For example, in the nucleus of the Milky
Way, massive stars shed ∼10−3M� yr−1 of mass into the radius of influence of
central black hole Sgr A*, but only a tiny fraction ∼10−5 of this mass accretes
onto the black hole.

Since mergers are rare at low redshifts and much of the gas in galaxies has
already been consumed in making stars, most local supermassive black holes
are characterized by a very low accretion rate. The resulting low luminosity of
these dormant black holes, such as the 4 × 106M� black hole lurking at the
center of the Milky Way galaxy, is often described using RIAF/ADAF models.
Although this mode of accretion is characterized by a low mass infall rate, it
could persist over a period of time that is orders of magnitude longer than the



chapter7 August 31, 2012

232 CHAPTER 7

quasar mode discussed earlier, so its contribution to the growth of black holes
in galactic nuclei may not be negligible.

7.4 The First Black Holes and Quasars

What seeded the formation of supermassive black holes only a billion years after the
Big Bang? We know how to make a black hole out of a massive star. When the
star ends its life, it stops producing sufficient energy to hold itself against its
own gravity, and its core collapses to make a black hole. Long before evidence
for black holes was observed, this process leading to their existence was un-
derstood theoretically by Robert Oppenheimer and Hartland Snyder in 1937.
However, growing a supermassive black hole is more difficult. There is a max-
imum luminosity at which the environment of a black hole of mass MBH may
shine and still accrete gas.i

This Eddington luminosity, LE , was derived in equation (5.27) by balancing
the inward force of gravity on each proton by the outward radiation force on
its companion electron (which is the momentum flux carried by the radiation
times the scattering cross section of the electron) at a distance r :

GMBHmp

r2
= LE

4πr2c
σT , (7.33)

where mp is the proton mass, and σT = 0.67 × 10−24 cm2 is the electron cross
section for scattering a photon (Thomson scattering). Interestingly, the limit-
ing luminosity is independent of radius in the Newtonian regime. Since the
Eddington luminosity represents an exact balance between gravity and radia-
tion forces, it equals the luminosity of massive stars that are held at rest against
gravity by radiation pressure, as described by equation (7.33). This limit is for-
mally valid in a spherical geometry, and exceptions to it were conjectured for
other accretion geometries over the years (and we shall consider one such possi-
bility for a spherical geometry in §7.4.1). But, remarkably, observed quasars for
which black hole masses can be measured by independent methods appear to
respect this limit. When we substitute all constants, the Eddington luminosity
is given by

LE = 1.3 × 1044

(
MBH

106 M�

)
erg s−1, (7.34)

As discussed previously, we can write the total luminosity from gas accreting
onto a black hole, L, as some radiative efficiency ε times the mass accretion

iWhereas the gravitational force acts mostly on the protons, the radiation force acts primarily on
the electrons. These two species are tied together by a global electric field, so that the entire plasma
behaves as a single quasi-neutral fluid that is subject to both forces. Under similar circumstances,
electrons are confined to the Sun by an electric potential of about a kilovolt (corresponding to a
total charge of ∼ 75 C). The opposite electric forces per unit volume acting on electrons and ions
in the Sun cancel out, so that the total pressure force is exactly balanced by gravity, as for a neutral
fluid. An electric potential of 1–10 kV also binds electrons to clusters of galaxies (where the thermal
velocities of these electrons, ∼ 0.1c, are well in excess of the escape speed from the gravitational
potential).11
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rate Ṁ ,

L = εṀc2, (7.35)

where the black hole accretes the nonradiated component, ṀBH = (1 − ε)Ṁ .
The equation that governs the growth of the black hole mass is then

ṀBH = MBH

tE
, (7.36)

where (after we substitute all fundamental constants),

tE = 4 × 107

(
ε/(1 − ε)

0.1

) (
L

LE

)−1

yr. (7.37)

We therefore find that as long as fuel is amply supplied, the black hole mass
grows exponentially in time, MBH ∝ exp{t/tE}, with an e-folding time tE . Since
the growth time in equation (7.37) is significantly shorter than the ∼109 years
corresponding to the age of the Universe at a redshift z ∼ 6—where black holes
with a mass ∼109 M� are found—one might naively conclude that there was
plenty of time to grow the observed black hole masses from small seeds. For
example, a seed black hole from a Population III star of 100 M� can grow in
less than a billion years to ∼109 M� for ε ∼ 0.1 and L ∼ LE . However, the
intervention of various processes makes it unlikely that a stellar mass seed is
able to accrete continuously at its Eddington limit without interruption.

For example, mergers were very common in the early Universe. Whenever
two gas-rich galaxies come together, their black holes are likely to coalesce. The
coalescence is initially triggered by “dynamical friction” from the surround-
ing gas and stars and is completed—once the binary gets tight—as a result
of the emission of gravitational radiation.12 The existence of gravitational waves
is a generic prediction of Einstein’s theory of gravity. They represent ripples
in space–time generated by the motion of the two black holes as they move
around their common center of mass in a tight binary. The energy carried by
the waves is taken away from the kinetic energy of the binary, which therefore
tightens with time. Computer simulations reveal that when two black holes with
unequal masses merge to make a single black hole, the remnant gets a kick ow-
ing to the nonisotropic emission of gravitational radiation at the final plunge
(see §7.7). This kick was calculated recently using advanced computer codes
that solve Einstein’s equations (a task that was plagued for decades with nu-
merical instabilities).13 The typical kick velocity is hundreds of kilometers per
second (and up to ten times more for special spin orientations), much larger
than the escape speed from the first dwarf galaxies. Thus, continuous accretion
was likely punctuated by black hole ejection events14 that forced the merged
dwarf galaxy to grow a new black hole seed from scratch.

7.4.1 Supermassive Stars

If continuous feeding is halted, or if the black hole is temporarily removed
from the center of its host galaxy, then one is driven to the conclusion that
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the black hole seeds must have started more massive than ∼100 M�. More
massive seeds may originate from supermassive stars, defined as hydrostatic
configurations with masses of 103 to 108 M�. Such systems have not been
observed yet. Theoretically, they are expected to be supported almost entirely
by radiation pressure and hence their luminosity equals the Eddington limit,
LE = 1.3 × 1044(M�/106 M�) erg s−1. Supermassive stars steadily contract
and convert their gravitational binding energy to radiation with a total lifetime
<106 yr before they collapse to a black hole.

Was it possible to make such stars in early galaxies? Yes: numerical simula-
tions indicate that stars of mass ∼ 106 M� could have formed at the centers
of early dwarf galaxies that were barely able to cool their gas through transi-
tions of atomic hydrogen and had Tvir ∼ 104 K and no H2 molecules (which
were suppressed by a Lyman-Werner background). Such systems had a total
mass several orders of magnitude higher than the earliest Jeans-mass conden-
sations discussed in §3.2. In both cases, the gas lacks the ability to cool well
below Tvir, and so it fragments into one or two major clumps. The simulation
shown in Figure 7.6 results in clumps of several million solar masses, which
inevitably form massive black holes. The existence of such massive seeds would
have given a jump start to the black hole growth process.

First, we show that the envelope of such stars must be convective. The condi-
tion for convective instability is that the star exhibit a negative entropy gradient.
This follows from the fact that convective eddies that are hotter and rarefied
relative to their environment tend to rise toward the star’s surface and decrease
their density adiabatically (at constant entropy) in pressure equilibrium with
their environment. If the background entropy decreases as the eddies rise, then
they become even more rarefied relative to their environment (lower ambient
entropy at the same pressure implies higher ambient density) and continue
to rise even further, hence leading to an instability. The energy transport by
convective eddies drives the star to a state of marginal stability, namely, nearly
uniform entropy. Let us first show that in the absence of convection, a super-
massive star tends to develop a negative entropy gradient as it radiates away its
energy.

The entropy of each electron–proton fluid element in a supermassive star
changes according to the local radiative heat flux F at a rate

2Tg
mp

∂s

∂t
= − 1

ρ
∇ · F, (7.38)

where ρ, Tg , and s are the mass density, temperature, and specific entropy of
the element, respectively. If the opacity is dominated by Thomson scattering,
then the local radiative heat flux F is related to the radiation pressure gradient
by

F = −mp
σT

1

ρ
∇prad. (7.39)
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Figure 7.6 Numerical simulation of the collapse of an early dwarf galaxy with a virial
temperature just above the cooling threshold of atomic hydrogen and no H2

(see Color Plate 14 for a color version of this figure). The image shows a
snapshot of the gas density distribution 500 million years after the Big Bang,
indicating the formation of two compact objects near the center of the galaxy
with masses of 2.2×106 M� and 3.1×106 M�, respectively, and radii< 1 pc.
Sub-fragmentation into lower mass clumps is inhibited because hydrogen
atoms cannot cool the gas significantly below its initial temperature. These
circumstances lead to the formation of supermassive stars that inevitably
collapse to make massive seeds for supermassive black holes. The simulated
box size is 200 pc on a side. Bromm, V., & Loeb, A., Astrophys. J. 596, 34
(2003). Reproduced by permission of the AAS.

If we ignore gas pressure and rotation, the hydrostatic equilibrium equation
is simply

1

ρ
∇prad = g, (7.40)

where the gravitational field g obeys Poisson’s equation,

∇ · g = −4πGρ. (7.41)

Combining equations (7.39)–(7.41), we find that the right-hand side of equation
(7.38) is constant,

1

ρ
∇ · F = 4πGmp

σT
= constant. (7.42)
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Therefore, the gradient of equation (7.38) gives

∂

∂t
∇s = 2πGm2

p

σT

∇Tg
T 2
g

< 0. (7.43)

The radial temperature gradient is negative, since heat flows out of the star,
which implies that the star will develop a negative entropy gradient and become
convectively unstable. This result holds also for a rotating star, as long as the
rotation period is much longer than the dynamical time, tdyn ∼ (Gρ)−1/2 =
1.1 hr(ρ/1 g cm−3)−1/2.

The nearly uniform entropy established by convection makes the structure
of supermassive stars simple (equivalent to a so-called polytrope with an index
n = 3) with a unique relation between their central temperature Tc and central
density ρc,15

Tc = 2 × 106 K
(

ρc

1 g cm−3

)1/3 (
M�

106 M�

)1/6

. (7.44)

Because of this modest temperature, nuclear reactions are insignificant in
metal-poor stars with masses M� > 105 M�. General-relativistic corrections
make the star unstable to direct collapse to a black hole as soon as its radius
contracts to a value

R� < Rcrit = 1.59 × 103

(
M�

106 M�

)1/2 (
GM�

c2

)
. (7.45)

Rotation can stabilize supermassive stars to smaller radii, but even rotating
stars are expected to eventually collapse to a black hole after shedding their
angular momentum through a wind. If the supermassive star is made of preen-
riched gas, then powerful winds will inevitably be driven at its surface, where
the opacity due to lines from heavy elements far exceeds the Thomson value,
making the outward radiation force stronger than gravity (see §7.5).

We note that the infall of a sufficiently dense, optically thick spherical en-
velope of gas cannot be prevented by radiation pressure even if the radiation
production rate exceeds the Eddington limit near the center. To see this, let
us consider a gas shell falling inward with a velocity vin(r) at a radius r . If
the outward diffusion time of photons through the gas, tdiff ∼ τr/c (where
τ ∼ σT ρr/mp is the shell’s optical depth to Thomson scattering), exceeds the
infall time, tin ∼ r/vin, then the radiation will be dragged by the infalling gas
into the black hole. Even though the radiation is diffusing outward in the local
rest frame of the gas, it is moving inward in the black hole frame of reference
when tdiff > tin. In that regime, the radiation will never be able to counteract the
collapse of gas shells that are farther out. Expressing the mass accretion rate as

Ṁ = 4πρr2vin, (7.46)

we find that tdiff > tin if

Ṁ

ṀE
> ε

(
r

GM/c2

)
, (7.47)
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where M is the mass interior to radius r , and ṀE = LE/εc
2 is the mass accre-

tion rate that produces the Eddington luminosity (equation 7.34) for a radiative
efficiency ε. We therefore conclude that as long as the mass infall rate is suf-
ficiently high, the Eddington limit will not apply because of photon trapping.
Super-Eddington accretion can therefore grow a seed black hole rapidly, as long
as the blanket of infalling gas advects the radiation inward as it accretes onto
the black hole. This “obscured” mode of black hole accretion (which is hidden
from the view of observers) could be particularly important at high redshifts
when the gas density and infall rate onto galaxies ottain their highest values.

7.5 Black Holes and Galaxies

7.5.1 The Observed Correlations between Supermassive Black Holes and
Host Galaxies

As described in §7.1, there are clear correlations between the supermassive
black holes that reside at the centers of galaxies and their host spheroids of
stars. In particular, Figure 7.7 shows the strong correlation between the mass
of the central black hole and the velocity dispersion of stars in the host galaxy’s
spheroid, σ�. (Note that this is not necessarily identical with the virial velocity
of the galaxy, because it samples motions on much smaller scales.) The data
at z ∼ 0 follow a tight correlation, MBH ∝ σ 4

� , with only a small apparent
intrinsic scatter. Other correlations also exist; especially important is the ob-
served relationship between the black hole mass and spheroid luminosity at
z ∼ 0, MBH ∝ Lsp, and that between the black hole mass and spheroid mass,
MBH ∼ 0.0014Msp.16

These relationships explain how quasars may shine much brighter than their
host galaxies. A typical star like the Sun emits a luminosityL�=4×1033 erg s−1,
which can also be written as a fraction ∼3 × 10−5 of its Eddington luminosity
LE = 1.3 × 1038 erg s−1. At the present day, black holes grow up to a fraction
∼ 10−3 of the stellar mass of their spheroid. When they shine close to their
Eddington limit, they may therefore outshine their host galaxy by up to a factor
of ∼ 10−3/(3 × 10−5), namely, one to two orders of magnitude. The factor is
smaller during short starburst episodes, which are dominated by massive stars
with larger Eddington fractions.

Measuring black hole masses and host galaxy properties at high redshift is
difficult, so the extrapolation of these relationships toward the cosmic dawn is
not yet clear. The best way to do so is to resolve directly the region of influence of
the black hole, where its gravitational potential dominates the motion of stars.
Crudely, its mass can then be measured by fitting a Keplerian rise to the velocity
dispersion at decreasing separations from the center. In practice, this is difficult
because of the complex structure of galaxies and the projection of stars outside
the region into the measured region. Nevertheless, the technique has been used
successfully in dozens of nearby galaxies, as shown in Figure 7.7.

At higher redshifts, such direct observations are impossible, so indirect tech-
niques are necessary. These rely on local “virial relations” between black hole
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Figure 7.7 Dynamical measurements of the correlation between supermassive black
hole mass, MBH, and velocity dispersion of stars in the spheroid of its host
galaxy, σ� (see Color Plate 15 for a color version of this figure). The symbol in-
dicates the method of black hole mass measurement: dynamics of stars (pen-
tagrams), dynamics of gas (circles), dynamics of maser sites (asterisks). Arrows
indicate 3σ upper limits to black hole mass. The shade of the error ellipse in-
dicates the Hubble type of the host galaxy: elliptical, S0, or spiral. The line is
the best-fit relation to the full sample: MBH = 108.12 M�(σ�/200 km s−1)4.24.
The mass uncertainty for NGC 4258 has been plotted much larger than its
actual value to show on this plot. Gültekin, K., et al., Astrophys. J. 698, 198
(2009). Reproduced by permission of the AAS.

mass and spectroscopic properties of the AGN. These luminous sources typi-
cally show broad emission lines that (based on atomic physics considerations)
are believed to originate from dense, highly ionized gas clouds near the black
hole. Assuming that the velocity dispersion of these clouds v (which is of the
order of a few thousand kilometers per second) is gravitationally induced by the
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central black hole at their characteristic orbital radius r , we have v2 ∼ GMBH/r .
The velocity can be measured from the Doppler width of the corresponding
emission line. However, to obtain MBH one also needs a measurement of the
orbital radius of these clouds, which can be obtained through reverberation map-
ping observations that monitor the AGN spectrum over time. If the continuum
emission (from the inner region of the accretion disk around the black hole)
increases, then the broad-line region emission should also increase—but there
will be a time delay as the continuum light propagates to that region, which can
be measured with intensive monitoring programs. Cosmic time dilation makes
this measurement more difficult for massive black holes (which are the only
ones that can be easily observed) at high redshift.

Instead, an indirect proxy for the orbital radius is usually used. Empirically,
the broad-line regions of all AGN are characterized by roughly the same UV
flux, L/4πr2 ∼ const. A possible interpretation of this scaling is that the emis-
sion lines originate near the outermost boundary where dust sublimates (and
the cloud gas is exposed to the central UV illumination), which determines a
particular threshold for the UV flux.17 Thus, r ∝ L1/2 (with a proportionality
constant that is fixed by the geometry and kinematics of the region), and the
radius r can simply be estimated from the AGN luminosity. Measurements of
nearby AGN are used to calibrate the proportionality constant.18 The local AGN
samples focus on emission lines easily accessible to optical telescopes observ-
ing at z ∼ 0 (such as Hβ); extension to higher redshifts requires rest-UV lines
(such as C IV) that redshift into the optical range. The calibration is not trivial,
but it provides at least an indirect route to estimating black hole masses at high
redshifts.

These techniques allow an estimate of the black hole mass, but to under-
stand the relationship between the black hole and its host galaxy, one must
also measure that galaxy’s properties. This is also very difficult, because the
only quasars visible at high redshifts are themselves extremely luminous—and
hence dramatically outshine their host galaxies. Extremely good angular reso-
lution is required to distinguish the pointlike AGN from the surrounding stars
and gas (which is easiest to achieve for quasars that are magnified by inter-
vening gravitational lenses). This measurement is most feasible in the radio,
where the molecular line widths also provide a reasonably good estimate for the
velocity dispersion and mass of the central star-forming portion of the galaxy.
Assuming that we can classify that region as a spheroid, the highest-redshift
quasars appear to have much more massive black holes than the local relations
would suggest, with MBH ∼ 0.02Msp. The data are so far sparse, but interest-
ingly, there appears to be a much weaker correlation with σ� than in the local
Universe.19

7.5.2 Galaxies and Their Supermassive Black Holes

Regardless of their extension to higher redshifts, the tight correlations in the lo-
cal Universe described in §7.5.1 suggest an intimate connection between
the growth of galaxy spheroids (or bulges) and their central black holes. This
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relation in turn suggests that either feedback from the black hole affects the
galaxy’s gas and stars, or feedback from those stars affects the black holes—or
both. Both cases suggest that the relationship is an extremely important one for
galaxy formation and evolution.

Since the mass of a galaxy at a given redshift scales with its virial velocity
as Mg ∝ V 3

c (see equation 3.31), the binding energy of galactic gas scales as
MgV

2
c ∝ V 5

c . Meanwhile, the momentum required to expel the gas from its
host scales as MgVc ∝ V 4

c . Both scalings are reasonably close to the observed
correlation shown in Figure 7.7 and can be tuned to explain the observed rela-
tions by appealing to feedback from the black hole to shut off star formation in
the galaxy.

More concretely, suppose that accretion onto a black hole launches a wind
that couples to the galaxy’s ISM, driving it out of the potential well. As an ex-
ample, suppose that this feedback contains a total energy that is a fraction εw
of the rest mass of the black hole. Using similar arguments to those leading to
equation (6.26), we find that this energy can unbind the gas in the galaxy once

MBH ∼ 2 × 104

(
0.05

λ

0.1

εw

) (
Mh

1010 M�

)5/3 (
1 + z

10

)
M� (7.48)

∼ 2 × 104

(
0.05

λ

0.1

εw

) (
Vc

78 km s−1

)5 (
1 + z

10

)−3/2

M�, (7.49)

where we have written the limit in terms of both the halo mass and circular
velocity for convenience. One can then imagine that because this same gas is
ultimately the fuel source for the black hole, both it and the galaxy’s stellar
population will stop growing once it reaches this limiting size, establishing the
tight underlying correlation. Importantly, this limiting size implies that black
holes—like supernovae—are much more efficient at expelling gas from small
halos than large ones, so black holes may also play a very significant role at high
redshifts.

Similarly, following the arguments leading to equation (6.31), we see that the
momentum input from a black hole wind will suffice to drive the gas out of a
galaxy if ii

MBH ∼ 6 × 106

(
0.1

εw

) (
Mh

1010 M�

)4/3 (
1 + z

10

)
M� (7.50)

∼ 6 × 106

(
0.1

εw

) (
Vc

78 km s−1

)4 (
1 + z

10

)−1

M�. (7.51)

As expected, this approach provides a more stringent limit because it assumes
that the outflow loses energy as it propagates through the galaxy.

This general picture is an attractive one, but note that neither of these simple
scenarios has a straightforward connection to the observed correlations. This

iiHere we use V 2
c = 2σ 2

� for a singular isothermal sphere profile, and we assume that the black
hole releases most of its energy over a dynamical time ∼ σvir/r�.
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is easiest to see by noting that although the scaling with velocity could easily
be interpreted as mimicking the observed scaling with σ�, that would require a
nonlinear relationship between spheroid mass (or luminosity) and halo mass.
A key question for understanding how black holes interact with their hosts is
then obviously how the spheroid properties like σ� relate to the halo proper-
ties. One simple correction may be to note that if the fuel supplies of stellar
bulges and supermassive black holes are identical, a linear relation between
bulge mass and black hole mass may be naturally described by the feedback-
regulated growth picture described. In that case, the relation between bulge
mass and velocity dispersion is an interesting one that reflects how galaxies
accumulate and process cold gas.

This relationship then raises an interesting “chicken and egg” problem, be-
cause both the black hole and stellar component generate feedback on the gas
supply, and it is difficult to diagnose from observations which is more signifi-
cant. The energy injected by supernovae of bulge stars is ∼ ωSNMsp, whereMsp

is the stellar mass of the bulge component, and ωSN is the energy output per
unit mass in stars, ∼1049 ergM−1

� for typical stellar populations. The energy in-
jected by the black hole is ∼εwfBHMspc

2, where fBH is the fraction of the stellar
bulge mass in the black hole (∼0.0014 in the nearby Universe, and possibly in-
creases in massive halos at higher redshift; see §7.5.1). Then, the energy output
from the black hole dominates if

εw > 0.004
(

0.0014

fBH

) (
ωSN

1049 erg M−1
�

)
, (7.52)

which is clearly very small. However, as we discuss in §7.5.3, it is not clear how
this energy reservoir couples to the galaxy ISM.

The answers to these questions depend on the way in which black holes (and
the central stellar regions) are fed by gas in their host galaxies, which requires
either a way to dissipate the angular momentum of the gas or an external force
that can torque the gas toward the center. Viscous dissipation (even from in-
stabilities like the MRI described in §7.3.2) is quite slow in the ISM and is not
thought sufficient to feed an AGN.

Instead, the most popular model is one in which supermassive black holes in
galaxies are fed with gas in episodic events of gas accretion triggered by mergers
of galaxies. Tides and gravitational interactions during major mergers (i.e., in
which the two merging components have comparable mass) provide massive
torques that efficiently drive a large fraction of the gas toward the center of the
merging components. However, black hole growth does not require a merger;
any other process that can drive gas toward the galaxy center will also suffice,
such as global disk instabilities. These can themselves be triggered by accretion
streams that feed the galaxy halo itself at a high rate.

In the merger case, the fundamental cosmological input to modeling the
growth of black holes is the merger rate of dark matter halos. For example, it is
possible to “dress up” the mass distribution of halos in Figure 3.10 using the
excursion set model to estimate their merger rates (see §3.4.2). The key physical
inputs are the black hole–halo mass relation and a light curve for the quasar.
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The former can be fixed via the observedMBH–σ� relation. The latter then deter-
mines the (observable) luminosity from the black hole properties. In its most
crude form, this value requires a maximum luminosity (which can be set as
a fixed fraction of the Eddington limit, for example) and a duty cycle (which
may be related to the black hole growth time tE of equation 7.37 or to the dy-
namical time of the host galaxy, which is approximately the merger timescale).
This simple approach can be tuned to give good agreement with the data on
the quasar luminosity function shown in Figure 7.1. In the crudest form of the
model, reasonable agreement with observations requires that quasars deposit
∼5% of their Eddington luminosity in the ISM of their host galaxy.20

Regardless of its origin, the inflow of cold gas toward galaxy centers during
the growth phase of their black holes is naturally accompanied by a burst of star
formation. The fraction of gas not consumed by stars or ejected by supernova-
driven winds continues to feed the black hole. It is therefore not surprising that
quasars and starbursts coexist in ultraluminous galaxies, and that all quasars
show strong spectral lines of heavy elements.21 In fact, as discussed in §7.3.2,
the outskirts of accretion disks are very likely gravitationally unstable and sus-
ceptible to fragmentation to form stars.

7.5.3 Jets and Winds: Black Hole Feedback Mechanisms

Although the general picture of black holes’ exerting strong feedback on their
host galaxies is very attractive, the details remain vague, primarily because lit-
tle direct evidence exists that any given feedback mechanism affects the host
galaxy. The coupling mechanism is unknown, though several plausible candi-
dates do exist: the process could be related to either the bright radiation or fast
outflows that are known to be produced by quasars.

One possibility traces back to the fact that the scattering cross section per
unit mass for UV radiation on dust is larger than σT /mp (which is used to set
the Eddington luminosity in equation 7.34) by two orders of magnitude.22 Al-
though dust is destroyed within ∼104GMBH/c

2 by the strong illumination from
an Eddington-limited quasar, it should survive at larger distances. Hence, the
radiation pressure on dust would exceed the gravitational force toward the black
hole and drive powerful outflows.

Spectral lines could be even more effective than dust in their coupling to
radiation. The integral of the absorption crosssection of a spectral line over fre-
quency, ∫

σ(m) dm = fosc

(
πe2

mec

)
, (7.53)

where fosc is the absorption oscillator strength, is typically orders of magnitude
larger than the Thomson value. For example, the Lyman-α transition of hydro-
gen, for which fosc = 0.416 (see §4.2), provides an average cross section that
is seven orders of magnitude larger than σT when averaged over a frequency
band as wide as the resonant frequency itself. Therefore, lines could be even
more effective at driving outflows in the outer parts of quasar environments.
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A second possibility for launching outflows is a (magneto)hydrodynamical
effect within the accretion disk. We have already described how radiatively inef-
ficient accretion flows can launch outflows, but there is good evidence for out-
flows in strongly emitting AGN as well. These outflows take (at least) two types.
The first are jets, as shown in Figure 7.2, which are thought to be launched from
the inner regions of accretion disks owing to complex magnetohydrodynamical
effects. The material inside travels relativistically and may carry a great deal of
energy, comparable to the radiative luminosities of the sources. However, such
jets have extremely narrow opening angles and do not appear to interact with
much of the galaxy’s ISM. They are therefore unlikely to provide efficient feed-
back. The second possibility is a more classic “wind” launched from the disk
itself, perhaps along open magnetic field lines threading the disk.

However they are launched, there is good evidence for these winds in some
quasars. Called broad absorption line quasars (BALQSOs), these objects have
strong redshifted absorption lines with extremely large widths vBAL ∼ 0.1c that
are thought to represent outflowing material. The total kinetic luminosity in
these winds is difficult to measure:

LK ≈ 2πfcNHmpv
3
BALRBAL, (7.54)

where fc is the covering factor of the outflow, NH is the column density of
material in the absorber, and RBAL is its distance from the central source. The
covering fraction is uncertain, but a “unified” quasar model in which BALQ-
SOs differ from “normal” quasars only because of the observer’s viewing angle
implies that fc ∼ 0.1. The radius of the absorbing material is even more un-
certain, relying on modeling of the gas or outflow shock. Models suggest that
εw ∼ 0.03 for BALQSOs, though with a large uncertainty.23

Although a wind can clearly couple to the ISM better than a narrow jet, it is
still not obvious how the wind propagates from the central AGN point source
through the much larger star-forming region. A great deal of work is required
to understand the physics of quasar outflows and their influence on their host
galaxies.

7.5.4 Black Holes and “External” Feedback

So far, we have focused on the interplay of black holes and their host galax-
ies. However, the possibility that black holes can expel large fractions of the
gas from their hosts also indicates that their feedback mechanisms may influ-
ence the surrounding IGM and halos. Energetically, equation (7.52) suggests
that even a modest coupling between feedback energy and the ISM or IGM
suffices to make AGN outflows important relative to the radiative or supernova
feedback from their host. There is even some direct evidence for AGN feed-
back in the local Universe: many galaxy clusters contain hot bubbles of material
fed by radio jets from their massive central galaxies. Clusters also provide the
strongest indirect evidence for intergalactic AGN feedback, where AGN are of-
ten invoked to explain the lack of apparent cooling in the cluster gas. (More
generally, models often appeal to them to avoid the “overcooling problem”
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described in §8.2, though there is little direct evidence for their activity in dark
matter halos smaller than groups of galaxies.)

Fortunately, these large-scale black hole outflows can be modeled in the same
way as their stellar counterparts (see §6.5.1), because of the approximate self-
similarity of blast waves in an expanding Universe. AGN outflows will have
many of the same effects as stellar superwinds, though the details will, of
course, differ. For example, quasar winds may not carry as much of the host
ISM out of the galaxy as their stellar counterparts and will therefore cause less
IGM metal enrichment. However, plasmas launched from the highly magne-
tized accretion disk may drag magnetic fields with them, seeding an intergalac-
tic magnetic field at high redshifts.

7.6 Black Hole Binaries

Nearly all nearby galactic spheroids are observed to host a nuclear black hole.
Therefore, the hierarchical buildup of galaxies through mergers must gener-
ically produce black hole binaries. Such binaries tighten through dynamical
friction with the background gas and stars and ultimately coalesce through the
emission of gravitational radiation.

When a tight binary is created from a merger of separate galaxies, the mass
ratio of two black holes cannot be too extreme. A satellite of mass Msat in a
circular orbit at the virial radius of a halo of mass Mhalo will sink to the center
in a dynamical friction time of ∼ 0.1tH (Mhalo/Msat), where tH is the Hubble
time. If the orbit is eccentric with an angular momentum that is a fraction ε
of a circular orbit with the same energy, then the sinking time is reduced by a
factor of 24 ∼ε0.4. Therefore, massive satellites with Msat > 0.1Mhalo bring their
supermassive black holes to the center of their host halos over the age of the
Universe.

As a satellite galaxy sinks, its outer envelope of dark matter and stars is
stripped by tidal forces. The stripping is effective down to a radius inside which
the mean mass density of the satellite is comparable to the ambient density
of the host galaxy.25 Eventually, the two black holes are stripped down to the
cores of their original galaxies and are surrounded by a circumbinary envelope
of stars and gas. As long as the binary is not too tight, the reservoir of stars
within the binary orbit can absorb the orbital binding energy of the binary and
allow it to shrink. However, when the orbital velocity starts to exceed the local
velocity dispersion of stars, a star impinging on the binary is typically expelled
from the galactic nucleus at a high speed. This expulsion occurs at the so-called
hardening radius of the binary,

ahard ≈ 0.1
q

(1 + q)2
M6

( σ�

100 km s−1

)−2
pc, (7.55)

at which the binding energy per unit mass of the binary exceeds (3/2)σ 2
� , where

σ� is the velocity dispersion of the stars before the binary tightened. Here, M ≡
(M1 +M2) is the total mass, M1 and M2 are the masses of the two black holes,
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M6 = (M/106M�), q = M1/M2 is the mass ratio. We also let µ = M1M2/(M1 +
M2) be the reduced mass of the binary.

A hard binary will continue to tighten only by expelling stars that cross its or-
bit. Unless the lost stars are replenished by new stars scattered into an orbit that
crosses the binary (through dynamical relaxation processes in the surrounding
galaxy, whose relaxation time is typically very long), the binary will stall. This
“final parsec problem” is circumvented if gas streams into the binary from a
circumbinary disk. Indeed, the tidal torques generated during a merger extract
angular momentum from any associated cold gas and concentrate the gas near
the center of the merger remnant, where its accretion often results in a bright
quasar.

If the two black holes are in a circular orbit of radius a < ahard around each
other, their respective distances from the center of mass are ai = (µ/Mi)a,
where i = 1, 2. We define the parameter ζ = 4µ/(M1 + M2), which equals
unity if M1 = M2 and is smaller otherwise. The orbital period is given by

P = 2π(GM/a3)−1/2 = 1.72 × 10−2 a
3/2
14 M

−1/2
6 yr, (7.56)

where a14 ≡ (a/1014 cm). The angular momentum of the binary can be ex-
pressed in terms of the absolute values of the velocities of its members v1 and
v2 as J = �i=1,2Miviai = µva, where the relative orbital speed is

v = v1 + v2 = (2πa/P ) = 1.15 × 104M
1/2
6 a

−1/2
14 km s−1. (7.57)

In gas-rich mergers, the rate of inspiral decreases as soon as the gas mass in-
terior to the binary orbit falls below µ, when the enclosed gas mass is no longer
sufficient to carry away the entire orbital angular momentum of the binary, J .
Subsequently, momentum conservation requires that fresh gas steadily flow to-
ward the binary orbit for it to shrink. The binary tightens by expelling gas out of
a region twice as large as its orbit (similarly to a blender’s opening a hollow gap)
and by torquing the surrounding disk through spiral arms. Fresh gas reenters
the region of the binary as a result of turbulent transport of angular momen-
tum in the surrounding disk. Since the expelled gas carries a specific angular
momentum ∼va, the coalescence time of the binary is inversely proportional
to the supply rate of fresh gas into the binary region. In a steady state, the mass
supply rate of gas that extracts angular momentum from the binary, Ṁ , is pro-
portional to the accretion rate of the surrounding gas disk. Given that a fraction
of the mass that enters the central gap accretes onto the black holes and fuels
quasar activity, it is appropriate to express Ṁ in Eddington units, ṁ ≡ Ṁ/ṀE ,
corresponding to the accretion rate required to power the limiting Eddington
luminosity with a radiative efficiency of 10%, ṀE = 0.023M� yr−1M6. We then
find that the gas-driven coalescence timescale is

tgas ≈ (J/Ṁva) = µ/Ṁ = 1.1 × 107 ζ ṁ−1 yr. (7.58)

For a steady ṁ, the binary spends equal amounts of time inside each logarith-
mic interval of radius a until gravitational waves start to dominate its loss of
angular momentum.
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The coalescence timescale due to gravitational wave emission is given by26

tGW = 5

256

c5a4

G3M2µ
= 2.53 × 103 a4

14

ζM3
6

yr. (7.59)

By setting tGW = tgas, we can solve for the orbital speed, period, and separation
at which gravitational waves take over:

vGW = 4.05 × 103 ζ−1/4(ṁM6)
1/8 km s−1; (7.60)

PGW = 0.4 ζ 3/4M
5/8
6 ṁ−3/8 yr; (7.61)

aGW = 2.6 × 10−4 ζ 1/2M
3/4
6 ṁ−1/4 pc. (7.62)

For a binary redshift z, the observed period is (1 + z)PGW. The orbital speed
at which gravitational waves take over is very weakly dependent on the supply
rate of gas, vGW ∝ Ṁ1/8, and generically corresponds to an orbital separation
of the order of ∼103 rSch. The probability of finding binaries deeper in the grav-
itational wave–dominated regime, P ∝ tGW, diminishes rapidly at increasing
orbital speeds, with P ∝ (v/vGW)

−8.
Black hole binaries can be identified visually or spectroscopically. At large

separations the cores of the merging galaxies can easily be identified as sep-
arate entities. If both black holes are active simultaneously, then the angular
separation between the brightness centroids can in principle be resolved at
X-ray, optical, IR, or radio wavelengths. The UV illumination by a quasar usu-
ally produces narrow lines from gas clouds at kiloparsec distances within its
host galaxy or broad lines from denser gas clouds at subparsec distances from
it. Therefore, the existence of a binary can be inferred from various spectro-
scopic offsets: (i) between two sets of narrow lines if the galaxies are separated
by more than a few kiloparsecs and both have quasar activity at the same time;
(ii) between the narrow emission lines of the gas and the absorption lines of
the stars due to the tidal interaction between the galaxies at a multikiloparsec
separation; (iii) between narrow lines and broad lines if the black hole binary
separation is between the kilopersec and parsec scales.

The last of these offset signatures also can be produced by a single quasar
that gets kicked out of the center of its host galaxy while carrying the broad-line
region with it. Such a kick can be produced either by the anisotropic emission
of gravitational waves during the coalescence of a binary (which generates a re-
coil of up to ∼200 km s−1 in a merger of nonspinning black holes, and up to
∼4,000 km s−1 for special spin orientations), or from triple black hole systems
that form when a third black hole is added to a galaxy center before the binary
there has coalesced.27 Aside from testing general relativity in the strong field
limit, fast recoils have an important feedback effect in forcing a fresh start for
the growth of black holes in small galaxies at high redshifts. The expected kick
velocities of these early recoils offer a very interesting possibility for fossil signa-
tures in the local Universe, because they are much larger than the escape speeds
of the dwarf galaxy hosts but comparable to or smaller than the escape speeds
of these galaxies’ descendants, like the Milky Way. For example, the hierarchi-
cal formation of the Milky Way may have left recoiled black holes floating in its
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halo, which are detectable through the compact star clusters that remain bound
to these intermediate-mass black holes following their ejection from their host
dwarf galaxies at high redshifts.28

7.7 Gravitational Waves from Black Hole Mergers

As just described, the final phase of black hole binary coalescence is driven by
the emission of gravitational waves. The emitted waves could be detected by
new observatories that are currently being planned or constructed.

As long as the binary separation is much larger than its Schwarzschild radius,
the emitted gravitational wave luminosity can be derived in the post-Newtonian
approximation. For two black holes on a circular orbit, the luminosity is29

LGW = 32

5

G4

c5

M3µ2

a5
. (7.63)

The loss of energy to the emitted waves leads to a decrease in the binary sep-
aration a and an eventual coalescence of the two black holes after a time tGW

given by equation (7.59). Supermassive binaries with comparable mass mem-
bers merge in less than a Hubble time once their separation shrinks to a <
103.5rSch (see equation 7.2) or once their relative orbital velocity v = (GM/a)1/2

> 10−2c = 3 × 103 km s−1.
Future detectors will be sensitive to the gravitational wave amplitude. To

an order of magnitude, the observed wave amplitude from an equal-mass bi-
nary with a Schwarzschild radius rSch and an orbital velocity v is given by
h ∼ (1+z)(rSch/dL)(v

2/c2), where dL is the luminosity distance to the binary.30

Since the signal amplitude declines only as the inverse distance rather than the
inverse distance squared (as for electromagnetic detectors that respond to pho-
ton flux), the first generation of sensitive gravitational wave observatories will
be able to find sources at cosmological distances.

More accurately, in a reference frame centered on the solar system’s barycen-
ter, the gravitational wave amplitude in its two polarization states is given by31

h+ = 2M5/3
z [πfobs]2/3

dL

[
1 + (L̂ · n̂)2

]
cos[2�(t)]; (7.64)

h× = −4M5/3
z [πfobs]2/3(L̂ · n̂)

dL
sin[2�(t)]; (7.65)

where the so-called redshifted chirp massMz ≡ (1 + z)µ3/5/M2/5 sets the rate
at which the binary shrinks, determining the “chirp” of its orbital frequency
P = 2π/

√
GM/a3. The precise orbital phase of the binary �(t) then depends

on the masses and spins of the binary members and yields the observed wave
frequency fobs(t) = [π ]−1(d�/dt), which is (1 + z) times smaller than the
emitted wave frequency. The unit vector n̂ points from the solar system frame
to the binary—defining the sky coordinates of the source, and the unit vector L̂
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Figure 7.8 Sensitivity of the future gravitational wave observatories, LISA and
Advanced-LIGO, to equal-mass (M1 = M2 = M/2) binaries (see Color
Plate 16 for a color version of this figure). Top panel: Root-mean-square noise
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points along the direction of the binary angular momentum vector—defining
the binary orientation relative to the line of sight. The inspiral signal does not
explicitly provide the cosmological redshift separately from the binary masses,
but the redshift can be inferred from dL(z) (or from an electromagnetic coun-
terpart to the gravitational wave signal). Any particular detector is sensitive to a
linear combination of the two polarization signals, with coefficients that depend
on the orientation of the source relative to the detector.

Figure 7.8 shows the sensitivity of various gravitational wave observatories.
The Laser Interferometer Space Antenna (LISA)32 is a planned interferometer
consisting of three spacecraft whose positions mark the vertices of an equilat-
eral triangle 5 km on a side in an orbit around the Sun. As evident from Figure
7.8, LISA will be able to detect ∼104 to 107 M� binaries out to arbitrary red-
shifts during the cosmic dawn. The next-generation ground-based interferom-
eter, Advanced-LIGO,33 will be sensitive to binaries involving black hole rem-
nants of massive Population III stars (with ∼102 to 103 M�) out to z  1.

An electromagnetic counterpart would greatly reduce the positional error and
also determine the redshift of the gravitational wave source, enabling its use as
a “standard siren” for precision cosmological distance measurements. Electro-
magnetic radiation could naturally be produced by a circumbinary accretion
disk prior to coalescence, through a variety of possible effects: viscous dissi-
pation of gravitational wave energy in the disk might result in a weak electro-
magnetic transient shortly after the merger, reequilibration of the inner edge
of the disk could create an X-ray brightening on a timescale of 10–103 yr, and
shocks produced by the remnant’s recoil might generate electromagnetic rever-
berations that might take ∼104 years to dissipate as enhanced IR luminosity.34

It is not obvious whether these signals could be distinguished from the much
more abundant sources of temporal variability in quasars with a single black
hole. Moreover, the luminosity of any circumbinary disk is expected to be sig-
nificantly reduced by the cavity associated with the decoupling of the black hole
binary from the inner edge of the disk in the final stage of inspiral. The disk
is not expected to refill the cavity and return to its full luminosity for at least

Figure 7.8 (Continued.) amplitude of LISA hrms from the detector only (dashed) and
from the detector combined with the anticipated foreground confusion
(dash-dotted), along with the characteristic amplitudes hchar of three binary
masses M (solid). The locations on each hchar curve correspond to the peak
amplitude (circle), 1 hour before the peak (filled circle), 1 day before the peak
(circle with inscribed cross), and 1 month before the peak (circle with in-
scribed square) in the observer frame, as well as times of 25rSch/c (square)
and 500rSch/c (diamond) before the peak in the source frame. Middle panel:
Contour plot of the signal-to-noise ratio (SNR) with binary mass and redshift
dependence for LISA. Bottom panel: SNR contour plot with mass and red-
shift dependence for Advanced-LIGO. Reprinted Figures 16, 17, and 19 with
permission from Baker, J., et al., Phys. Rev. D75, 4024 (2007). Copyright 2007
by the American Physical Society.
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a decade after coalescence. On longer timescales, the portion of the accretion
disk that remains bound to the recoiled black hole remnant is expected to be
detectable as a kinematically and eventually a spatially offset quasar, although
its lifetime is limited by the supply of gas that can remain gravitationally bound
to it.35 Interestingly, the recoil of the remnant black hole allows it to frequently
disrupt stars along its path and produce a prompt electromagnetic signal that
does not depend on the prior existence of a gaseous disk in the vicinity of the
merging binary.36 Tidal disruption of stars can be observed out to cosmological
distances in cases where a relativistic jet is produced.37

The expected event rate of massive binary mergers can be calculated based
on the halo merger rate predicted by the excursion set formalism (§3.4.1) un-
der various assumptions about the relation between the black hole and halo
masses. For reasonable assumptions, LISA is expected to detect many cos-
mological events per year. The actual detection of these signals would open
a new window into the Universe and enable us to trace the hierarchical assem-
bly of black holes in galaxies throughout cosmic history. Moreover, because
gravitational waves pass freely through all forms of matter, gravitational wave
observatories might discover new populations of black hole binaries that
are electromagnetically faint because of their modest mass relative to bright
quasars, or because they are enshrouded by gas and dust.
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Chapter Eight

Physics of Galaxy Evolution

Let us summarize briefly what we have learned in the previous chapters.
According to the popular cold dark matter cosmological model, dwarf galax-
ies started to form when the Universe was only 100 million years old. Lacking
heavy elements to cool the warm primordial gas left over from the Big Bang to
lower temperatures, the gas could have fragmented only into relatively massive
clumps that condensed to make the first stars. Computer simulations indicate
that these first stars were much more massive than the Sun. These stars were
efficient factories of ionizing radiation. Once they exhausted their nuclear fuel,
some of them exploded as supernovae and dispersed the heavy elements cooked
by nuclear reactions in their interiors into the surrounding gas. The heavy ele-
ments cooled the diffuse gas to lower temperatures and allowed it to fragment
into lower-mass clumps that made the second generation of stars. Somewhere
along the way—either as remnants of massive stars or through direct collapse—
black holes formed, merged, and accreted gas until they grew to become bright
quasars. The UV radiation emitted by all generations of stars (and quasars)
eventually leaked into the IGM and ionized gas far outside the boundaries of
individual galaxies.

The earliest dwarf galaxies eventually merged and made bigger galaxies.
A present-day galaxy like our own Milky Way was constructed over cosmic his-
tory by the assembly of a million building blocks in the form of the first dwarf
galaxies.

Thus, it is galaxies—distant ancestors of our own Milky Way—that formed
the building blocks of large-scale structure during the reionization era (and
likely most of the cosmic dawn). In this chapter we examine these objects in
some detail from a largely theoretical perspective. Along the way, we must bear
in mind that although the described progression of events is plausible, at this
time it is only a conjecture in the minds of theorists that has not yet been con-
firmed by observational data. We discuss many of these efforts in Part III of
this book, but for now we focus on the physics that drives the objects.

8.1 High-Redshift Galaxies

The most fundamental processes in galaxy formation are those that drive the
cycle of baryons from the IGM, into the galactic ISM, into stars, and back into
the ISM (and possibly the IGM) through supernovae or stellar winds. Buried
within these steps are a multitude of feedback processes, from photoionization,
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supernovae, and gas accretion onto a central black hole. A comprehensive un-
derstanding of the physical details of these feedback mechanisms is lacking.
Nevertheless, we can at least identify the important processes that drive the
evolution of galaxies. In this chapter, we briefly describe these ingredients, ded-
icating special attention to how they might affect models and observations at
high redshifts.

The starting point for understanding the abundance, clustering, and other
properties of galaxies is the dark matter halo distribution, n(m). We wish to un-
derstand the mapping from halo mass to luminosity (in many different bands
or lines), stellar mass, metallicity, star formation history, velocity distribution,
and any other physical properties of interest. Of course, there is nothing to
demand that this mapping be one-to-one, or even that these physical proper-
ties depend exclusively on halo mass, as they could also depend on the halo’s
larger-scale environment, mass accretion history, and so forth. The challenge of
research on galaxy formation and evolution is to understand which factors are
most important and how all of them interact to produce the objects we observe.

In the crudest representation, galaxies are machines that transform accreted
material (whether acquired through slow accretion of diffuse gas or through
rapid mergers) into stars and black holes. The crucial complication is feed-
back, which can both prevent gas from accreting onto a halo in the first place
and expel material that is already present (preventing it from forming stars or
providing potential fuel for later accretion episodes). Because this feedback is
generated on the smallest scales (through stars or black holes), understanding
galaxy evolution requires a model spanning a large range of physical scales and
processes.

Theoretical astrophysicists examine many of these problems individually
(and hence generally in isolation from one another). Their results inform
coarser models—including both “semianalytic” approaches that rely on rela-
tively simple models for the many processes involved, as well as numerical
simulations (which rarely span the required dynamic range and so also con-
tain simple prescriptions for at least some of the processes). For the sake of
brevity, we follow the former approach and aim only to parameterize the im-
portant processes and suggest some intuition for the underlying physics. This
is by no means a comprehensive treatment but should give a flavor for the
“less” exotic processes that affect galaxy evolution even at the present day. The
full suite of physical inputs is described in many other books and review articles
(see Further Reading for related resources).

The very simplest model involves two free parameters: (i) the fraction of
baryons converted into stars within a host halo, f�, and (ii) the duty cycle of
vigorous star formation activity during which the host halo is luminous and the
stars are formed, fduty. This model defines the star formation timescale t� as the
product of fduty and cosmic time tH (z) ≈ 2/3H(z) at the redshift of interest z.
The star formation rate Ṁ� is then related to halo mass Mh as follows:

Ṁ�(Mh) = f� × (�b/�m) × Mh

t�
. (8.1)
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Figure 8.1 Diagram of the basic steps in galaxy formation, each of which is discussed
in this chapter. The process begins with a dark matter halo that forms and
accretes more matter (either through smooth accretion or mergers). The gas
then settles into a rotationally supported “disk.” Within the disk’s ISM, self-
regulation occurs through cooling and feedback, which ejects some fraction
of the halo’s gas through winds. Gas flowing toward the center of the galaxy
may accrete onto a central black hole, which then unbinds other ISM gas
through winds or jets.

Within the context of this simplest model, the physics of galaxies determines
the values of f� and t� (which may depend on halo mass as well, and presumably
have some scatter between different halos at the same mass). More complex
models are obviously necessary to track more detailed properties of the sources.
Some of these ingredients are described next; we summarize the major steps
in Figure 8.1.

8.2 Gas Accretion

The fuel for star and black hole formation is provided by gas accretion onto
the halo, either in a relatively slow, steady mode or in a stochastic “merger”
mode. The first is relatively easy to describe and model (see Figure 8.2). First,
consider a spherical system. Provided the gas accretes supersonically—as it will
if the halo has a virial temperature Tvir larger than the IGM temperature—we
generically expect an accretion shock to form, at a radius comparable to the
virial radius of the halo. However, such a configuration is stable only if the hot
gas behind the shock can support it. If, instead, this gas cools rapidly, the shock
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Figure 8.2 A diagram of the “baryon cycle” in which gas flows into and out of galax-
ies. The central galaxy is embedded in a much larger dark matter halo. Gas
accreting onto the halo follows one of two fates: (1) in large halos, some is
shocked at the virial radius and heated to high temperatures (from which
point it must cool radiatively to settle onto the central galaxy); or (2) in small
halos (and to some extent in larger ones), it travels along filamentary “cold
flows” directly to the central galaxy. As the galaxy’s gas is turned into stars,
feedback launches winds, which both heat the halo gas (preventing it from
cooling onto the galaxy) and expel some gas into the IGM.

will sink inward. The radiative cooling time is

tcool = 3

2

1

µmp

kTρ(r)

�(T , Z)
, (8.2)

where � is the radiative energy cooling rate per unit volume. It is dominated
by Compton cooling (at very high redshifts) and atomic line transitions, and
therefore depends sensitively on the metallicity and temperature of the gas.
Finally, the shock will stabilize very near the galaxy when the sound-crossing
time tsc ∼ r/cs becomes smaller than this cooling time. In more detail, the
condition for virialization shock stability is1

r�(T , Z)

ρu3µ2m2
p

< 0.0126, (8.3)

where T is the postshock temperature, and u is the infall velocity. The cooling
rate therefore determines the geometry of the gas distribution inside the halo.

The transition between these rapid and slow cooling regimes depends on
the halo mass and redshift. Crudely, halos with masses above a critical thresh-
old Mcool have hot “atmospheres” that cool slowly. Gas accretes onto these at-
mospheres rather than the galaxy, and the rate of accretion onto the galaxy itself
is limited not by cosmological processes but by cooling within the atmosphere.
In contrast, halos with mass Mh < Mcool are limited only by the cosmological in-
fall rate (and feedback from the galaxy itself; see further). This critical threshold
occurs at ∼1011 M� for gas with primordial composition, or at ∼1012 M� for gas
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with solar composition, with only a mild dependence on redshift (the left-hand
side of equation 8.3 is ∝ ρrvir�/u3 ∝ (1+z)1/2�). This mass is sufficiently large
that most very high redshift galaxies are fed through the rapid-cooling regime
and so are limited only by the rate of cosmological infall.

Recently, high-resolution simulations have shown that the filamentary geom-
etry of the cosmic web changes this picture slightly: the “rapid-cooling” regime
is generally fed by accretion along filaments that reaches the galaxy’s star-
forming region without any shocks until the gas strikes the high-density ISM.
These cold flows provide the primary fuel supply for small galaxies, but the fila-
mentary structures can persist in larger galaxies as well. The transition between
these two cooling regimes is therefore not an abrupt one.

The overall growth of halo mass can be tracked with analytic arguments and
simulations. In particular, the extended Press-Schechter formalism described
in §3.4.2 provides a mechanism to estimate this growth, which matches nu-
merical simulations reasonably well. In the standard cosmology, this approach
yields2

Ṁh/Mh

H(z)
≈ 2.3

(
M

1010 M�

)0.15 (
1 + z

7

)0.75

, (8.4)

which illustrates how rapidly accretion occurs at these very high redshifts. (In
absolute terms, a 1010 M� halo at z = 7 accretes gas at a rate of 2.6 M� yr−1.)

Before discussing the fate of the cold flow gas in the small halos most impor-
tant for high redshifts, we briefly describe a long-standing problem for halos
in the slow-cooling regime, M > Mcool, that motivates much contemporary
work on galaxy evolution. Although gas in this regime does indeed cool slowly,
it is still relatively fast by cosmological standards. Thus, high-mass galaxies at
low redshifts should still have accreted most of their baryons and formed stars
from them. However, observations show an exponential decline in the number
density of galaxies (with L� comparable to the Milky Way luminosity) at mass
scales well below the exponential cutoff in the halo mass function n(m) at the
present time (which occurs near galaxy cluster scales). Evidently, then, some
mechanism must prevent gas in massive halos from overcooling onto their cen-
tral galaxies. This mechanism is likely to be feedback, operating either within
the halos themselves or in the surrounding gas.

8.3 Halo Mergers

A second channel for adding mass to a galaxy is through a merger with a nearby
halo. These merger rates are also described (roughly) by the extended Press-
Schechter formalism, and equation (8.4) implicitly includes such growth in the
overall accounting. However, the dynamics of such mergers differ greatly from
smooth accretion.

Mergers are often divided into two classes, depending on the mass ratio of the
merging systems. Let m1 and m2 be the masses of the two systems, with m1 >

m2. Major mergers are usually defined to have a mass ratio m1/m2 < 4. Such
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an interaction is quite dramatic, and so-called violent relaxation (due to time-
varying gravitational potentials during the interaction) largely determines the
structure of the resulting merger remnant, which may bear no resemblance to
the merging galaxies. (Indeed, the classical picture for the formation of elliptical
galaxies is through major mergers of spirals.) In minor mergers, the mass ratio
m1/m2 > 4. The second system then imprints only a small perturbation on the
first, and the remnant retains the overall structure of the more massive object.

In particular, gravitational tides raised by mergers disrupt both the stars and
gases inside the individual systems. The former can mix freely, but the lat-
ter collide via shocks, possibly triggering widespread star formation over short
timescales (typically a few dynamical times of the interacting galaxies). Such
starbursts can be closely studied in nearby galaxies and, indeed, often show evi-
dence for strong gravitational perturbations. The rapid growth of high-redshift
galaxies naively suggests that such starbursts may have been very common in
the early universe. Mergers are difficult to model analytically, so they have most
often been studied with numerical simulations. These show that equal mass
mergers can enhance significantly the star formation efficiency over isolated
systems when averaged over the merger time.3 Mergers can also funnel gas
toward the center of the remnant galaxy, fueling any supermassive black hole
there and triggering an AGN phase (see §7.5).

8.4 Disk Formation

As halo gas cools, it loses the pressure supporting it against gravity and con-
tracts to higher densities. This contraction continues until the gas becomes ro-
tationally supported by its own angular momentum.

The net angular momentum J of a galaxy halo of mass Mh, virial radius rvir,
and total energy E, is commonly quantified in terms of the dimensionless spin
parameter

λ ≡ J |E|1/2G−1M
−5/2
h . (8.5)

Expressing the halo rotation speed as Vrot ∼ J/(Mhrvir) and approximating
|E| ∼ MhV 2

c with V 2
c ∼ GMh/rvir, we find that λ ∼ Vrot/Vc, that is, λ is roughly

the ratio of the actual rotation speed to the maximal value above which it will
break up.

After cooling, the gas settles to a rotationally supported disk. Let us write the
disk mass as a fraction m̃d of the halo mass and let the disk angular momentum
be a fraction j̃d of that of the halo. The size of the disk is set by rotational
support. As a simple estimate, let us take an isothermal profile for the dark
matter halo and neglect the self-gravity of the disk. We further assume that the
disk has an exponential surface density profile,

�(R) = �0 exp(−R/Rd), (8.6)

where Rd is the disk scale radius. The total disk mass is then Md = 2π�0R2
d . Be-

cause the circular velocity of an isothermal sphere is constant, the total
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angular momentum of the disk is

Jd = 2π

∫
Vc�(R)R2 dR = 2MdRdVc. (8.7)

Setting this expression equal to a fraction j̃d of the total angular momentum of
the halo, as in equation (8.5), we obtain an expression for the Rd

4

Rd = 1√
2

(
j̃d

m̃d

)
λ rvir. (8.8)

Note that the factor j̃d/m̃d is simply the specific angular momentum of the disk
material. The characteristic density and scale height of an isothermal disk at the
hydrogen temperature floor of ∼104 K can then be easily derived as a function
of redshift.5 The assumptions behind this simple expression are questionable:
the self-gravity of the disk likely cannot be ignored once it collapses to a small
size; the dark matter profile is not exactly isothermal (and it may respond to the
gravity of the disk as well); and finally, the disk may not have organized itself
into a simple exponential profile. Nevertheless, it proves to be a useful model
in comparison with simulations.

We also require some way to calibrate the specific angular momentum of the
disk material and the spin parameter. The observed distribution of disk sizes in
local galaxies suggests that the specific angular momentum of the disk is sim-
ilar to that expected theoretically for dark matter halos, and so we assume that
j̃d/m̃d = 1. The distribution of disk sizes is then determined by the distribution
of spin parameters and halo masses.6 Numerical simulations indicate that the
former approximately follows a lognormal probability distribution,7

p(λ) dλ = 1

σλ

√
2π

exp

[
− ln2

(λ/λ̄)

2σ 2
λ

]
dλ

λ
(8.9)

with λ̄ = 0.05 and σλ = 0.5.
Despite its potential flaws, this simple model shows the expected scaling of

the disk sizes with redshift: the size of a disk at a fixed halo mass is expected
to scale as Rd ∝ (1 + z)−1. Observations do, indeed, indicate that the luminous
cores of galaxies follow this expected trend over the wide redshift range 2 <

z < 8, as illustrated in Figure 8.3 (though note that these galaxies are binned by
luminosity rather than mass).

For high-redshift galaxies, the primary lesson is that even though the angular
diameter distance decreases with z at high redshifts, the small masses and rapid
cooling of the halo gas likely mean that the sources are extremely compact.
Figure 8.4 shows the extrapolated relation between galaxy size and redshift, cal-
ibrated by current data on the size distribution and luminosity function of high-
redshift galaxies. The graph implies that even the James Webb Space Telescope
(JWST) will be able to resolve galaxies at an AB magnitude limit mAB < 31 only
out to a redshift of z ∼ 14. The next generation of large ground-based telescopes
will resolve all galaxies discovered with JWST, but only if they are sufficiently
clumpy to enable detection above the bright thermal sky.
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Figure 8.3 Observed evolution of the mean half-light radius of galaxies across the
redshift range 2 < z < 8 in two bins of fixed intrinsic luminosity:
(0.3–1)L∗(z = 3) (top) and (0.12–0.3)L∗(z = 3) (bottom), where L∗(z = 3)

is the characteristic luminosity of a galaxy at z = 3 (equation 10.3). Differ-
ent point types correspond to different methods of analyzing the data. The
dashed lines indicate the scaling expected for a fixed halo mass (∝ (1 + z)−1;
black) or at fixed halo circular velocity (∝ (1 + z)−3/2; gray). The central
solid lines correspond to the best fit to the observed evolution described by
∝ (1 + z)−m, with m = 1.12 ± 0.17 for the brighter luminosity bin, and
m = 1.32 ± 0.52 at fainter luminosities. Oesch, P. A., et al., Astrophys. J. 709,
L21 (2010). Reproduced by permission of the AAS.

8.5 Star Formation in Galaxies

Once the gas has cooled and collapsed to high densities, star formation can
commence. Determining the conversion efficiency of gas to stars is arguably
the most important, and most challenging, aspect of galaxy formation. Never-
theless, theorists and observers have made enormous strides over the past few
decades in understanding the relevant processes, at least in the local Universe.
We illustrate these steps in Figure 8.5.

Traditionally, the star formation rate per unit area �̇� has been calibrated
empirically as a function of the total gas surface density �gas. Observationally in
the local Universe, these quantities correlate reasonably well over nearly seven
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Figure 8.4 Theoretically extrapolated relation between galaxy size and redshift for four
values of apparent AB magnitude. The top and central panels show the phys-
ical (Rgal) and apparent angular sizes (θgal), respectively. The thick gray lines
indicate the resolution of telescopes with diameters corresponding to HST
(2.5 m), JWST (6.5 m) and a ground-based extremely large telescope (ELT)
(30 m). The bottom panel shows the average surface brightness within a
galaxy scale radius as a function of redshift. In each panel, the gray band
around the case of mAB = 29 mag shows the 68% range of uncertainty on the
mean. Wyithe, J. S. B., & Loeb, A., Mon. Not. R. Astron. Soc. 413, L38 (2011).
Copyright 2011 by the Royal Astronomical Society.



chapter8 August 31, 2012

260 CHAPTER 8

Star cluster

Giant molecular
cloud

Cool
atomic gas

Cooling
instability

Gas cooling,
radiation
shielding

Jeans
instability

Recombination
lines (e.g., Hα)

Hot
ambient
medium

Fine structure line
radiation (e.g., [C II])

Molecular line
radiation (e.g., CO)

Supernovae,
photoevaporation

Figure 8.5 Diagram of baryon flows in the ISM. The multiphase ISM is a hot, ambient
medium surrounding cold gas clouds, which form when a thermal instabil-
ity allows the hot gas to cool locally, producing recombination line radiation
(such as Hα). Inside these cool, neutral clouds, radiative cooling continues
(largely through fine-structure lines such as [C II]), and the gas column even-
tually becomes sufficiently thick to shield H2 from dissociating radiation, al-
lowing a giant molecular cloud to form. Within the cloud, cooling continues
via molecular transitions (such as CO), until regions became gravitationally
unstable and form stars. The radiation and eventual explosions of these stars
return gas and energy into the hot ISM, so that the process is self-regulating.

orders of magnitude in surface density, with

�̇� ∝ �n
gas, (8.10)

where n ≈ 1.4 ± 0.1. This so-called Kennicutt-Schmidt relation8 can also be
interpreted in terms of the conversion of a fixed fraction of the gas into stars
per orbital time in the associated galactic disks. In other words, if the (three-
dimensional) star formation rate density satisfies ρ̇� ∝ ρg/tdyn, where ρg is the
gas density, then we have ρ̇� ∝ ρ

3/2
g , which is very close to the observed two-

dimensional relation. Despite the apparent success of this simple scaling, as
an empirical relation it must still be tested beyond the local Universe, and it is
unclear whether star formation would have obeyed the same relation at the low
metallicity and low initial magnetization of the gas within the first galaxies.

Thus, a deeper understanding of star formation is highly desirable. As a first
step, note that stars in the local Universe form in molecular clouds. One might
therefore expect a more fundamental scaling of the star formation rate with
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the density of molecular (rather than atomic) gas. We write fH2 for the fraction
of molecular gas. Furthermore, local observations show that molecular clouds
turn a constant fraction εff ≈ 0.015 of their gas into stars per free-fall time.9

This suggests a relation

ρ̇� = εfffH2ρ/tff (8.11)

for the star formation rate, which requires an estimate of the molecular frac-
tion (and an extrapolation of the star formation efficiency parameter to high-z
galaxies).

The molecular fraction is significantly more challenging to compute than the
analogous calculation in §5.1, because enriched gas has more channels for H2

formation (particularly on the surface of dust grains), a much more complex
radiation field (owing to the embedded star formation), dust shielding, and a
turbulent, inhomogeneous ISM. The physical picture that emerges is one in
which molecular gas is confined to the interior of cold, high-density gas com-
plexes. We must then determine (i) the relative mass of the cold phase and
(ii) the fraction of the cloud able to go fully molecular. The latter is determined
by balancing the rate of H2 formation on dust grains with photodissociation
by the (dust-extinguished) radiation field, using calculations similar to those
presented in chapter 5.

The fraction of gas in the cold phase is determined ultimately by the feedback
from hot stars and supernovae. The canonical picture assumes a multiphase
ISM, with a “hot” phase of diffuse ionized gas and a cold phase of dense star-
forming gas (and likely an intermediate warm phase of atomic gas). Crudely,
gas is exchanged between the phases (as well as the stellar component) through
three basic processes: (i) star formation (from cold gas to stars), (ii) cooling in
the diffuse ISM (from hot to cold gas), and (iii) supernovae (from stars and cold
gas to hot gas). The last process includes not only the supernova ejecta but also
cloud evaporation through conduction with the surrounding hot gas.

Radiative cooling is challenging to model in the ISM unless the galaxy is fully
resolved, because the density (and possibly composition) is highly inhomoge-
neous. For example, simply assuming a uniform cooling rate (even enhanced
by a clumping factor) throughout the entire galaxy would not allow any gas to
cool to very low temperatures. In reality, cooling is driven primarily by various
thermal instabilities: because the cooling is most rapid in densest gas, this ma-
terial quickly cools and becomes neutral, while the low-density gas remains hot.
In other words, when cooling occurs, it is so efficient that a gas parcel usually
drops out of the hot medium and rapidly enters the cold, molecular phase rather
than mixing and lowering the temperature of the entire hot phase. In practice,
the simple assumption of a two-phase medium, each with a characteristic fixed
temperature, appears to provide a reasonable approximation. In this case, the
radiated energy determines the mass flow rate from the hot to the cold phase.

Meanwhile, giant molecular clouds have much higher pressures than the
surrounding ISM (at least in local galaxies), which suggests that their proper-
ties are set by internal feedback processes rather than by coupling to the ISM.10

In particular, H II regions from embedded stars appear to provide the most
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important feedback mechanism. Because they are internally regulated, the
properties of these clouds do not vary much among galaxies, which explains
the apparent constancy of εff—though, of course, the conditions within high-
redshift galaxies may be very different (for example, the ambient pressure will
depend on its ISM density).

Numerical simulations have shown results consistent with equation (8.10),
except that n ≈ 2 for massive galaxies and n ≈ 4 for dwarfs, as required by
recent data.11

An alternative approach to this “bottom-up” view (which is fundamentally
based on understanding the “microphysics” of star formation) is to treat it
within a global context. The basic idea is that star formation can occur only if
some sort of large-scale gravitational instability allows fragmentation to higher
densities.12 The condition for fragmentation to occur is the Toomre criterion (see
§5.2.3),

Q ≡ csκe

πG�g

< 1, (8.12)

where κe = (2�/R) d(�R2)/dR is the epicyclic frequency for an angular fre-
quency of rotation �(R) = v/R at a (cylindrical) radius R within the disk.
Once fragmentation begins, feedback from star formation heats the gas (and
increases the sound speed), slowing further fragmentation. However, if star
formation does not occur, the gas cools rapidly, decreasing Q. The expectation
(which appears to be realized in nearby galaxies) is therefore that galaxies form
stars sufficiently quickly to maintain Q ∼ 1 in a sort of self-regulated flow. To-
gether with a model for the feedback effects of stars, this provides an alternative
method for determining �̇�.

The two most obvious feedback mechanisms are stellar radiation pressure
and supernovae, which “puff up” the disk and support the gas against the ver-
tical component of gravity. Focusing on radiation pressure due to UV photons
for concreteness, we can write (cf. the momentum injection rate from radiation
in §6.4.1)

prad ∼ (1 − fesc)ε�̇�c, (8.13)

where ε = 10−3ε−3 is the fraction of the baryonic rest energy converted to
photons. (In nearby galaxies, supernovae produce a comparable pressure, but
at high redshifts the elevated ambient densities make them less important.) The
factor (1 − fesc) accounts for the fact that high-energy photons that escape the
galaxy do not couple to the gas and so provide no radiation pressure.

As in §6.4.1, let us take the simple model of an isothermal density profile
within the halo with a 1D velocity dispersion σ and assume that the disk con-
tains a fraction fg of the total matter. The fraction fg is likely to be much
larger than �b/�m, because the baryonic component has already cooled and
collapsed into a disk. Assuming a thin disk, we can write the vertical compo-
nent of hydrostatic equilibrium as h ∼ cs/�, where � is the rotation rate (see
§7.3.2). If we write �g = 2ρh, equation (8.12) provides an expression for the
gas density inside the disk. With these two relations and c2

s ∼ p/ρ, we can solve
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equation (8.13) for the required star formation rate to support the disk:

�̇� ∼ 3
(

Q

ε−3(1 − fesc)

)(
fg

0.25

)2 (
σ

50 km s−1

)4 (
100 pc

r

)2

M� yr−1 kpc−2
,

(8.14)

where we have scaled σ to a 1010 M� galaxy at z = 7 (using V 2
c = 2σ 2 for an

isothermal sphere and equation 3.31).
This particular estimate ignores the pressure contribution from supernovae

and a possible enhancement in the radiation pressure from IR emission by
dust, but it gives a sense for how the global self-regulation criterion can be
used to estimate the large-scale properties of galaxies. Such models typically
connect more closely to the cosmological input parameters (the dark matter
halo mass and its accretion rate Ṁh). For example, given Ṁh, one can integrate
the star formation rate inward and determine the gas fraction fg at each radius
self-consistently.13 The advantage of this approach is that it does not require
a calibration to local galaxies and so is more robust to any unknown changes
in the small-scale physics of star formation at high redshift; the disadvantage
is that it makes strong assumptions about Q, the structure of the disk, and
the relation between star formation feedback and the disk properties (ignoring
other sources of pressure support like turbulence, for example).

However, the preceding relation does produce a surface-density law consis-
tent with local models. If we define εSFR via �̇� = εSFR�g�, where � is the
angular velocity (comparable to the dynamical time, and roughly the growth
rate of global instabilities in disk galaxies), self-regulation at Q ∼ 1 via radia-
tion pressure yields εSFR of a few percent for moderately large galaxies, with a
predicted scaling εSFR ∝ �g .

8.6 Black Hole Growth in Galaxies

As described in chapter 7, it is now well established that nearly all present-
day galaxies with spheroids also have supermassive black holes in their center.
Because the properties of these black holes correlate with their host galaxies,
and because their feedback may be important in regulating the stellar and gas
contents of galaxies (see §7.5), it is natural to include them in models of galaxy
formation and evolution.

Black holes may be fed smoothly and relatively slowly during the normal
growth of a galaxy: some small fraction of the accreted gas may sink all the
way through the galaxy and be swept into the black hole. The minimal accretion
rate is given by the Bondi estimate from §5.2.1, ṀBH ∼ G2M2

BHρ/c3
s , where

the density ρ and sound speed cs are evaluated at the accretion radius Racc ∼
GMBH/c2

s . However, this estimate generally produces slow accretion.
A more efficient method of feeding black holes is to channel gas toward

them (see §7.5.2). This channeling can include any global instability (such as
bars or spiral waves), but in the cosmological context galaxy mergers are often
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identified as the most likely mechanism. As described previously, the torques
generated during instabilities and mergers can be large, and a fair fraction of
this gas can be fed toward the center of the remnant according to numerical
simulations. Dimensionally, such strong torques produce inward radial veloci-
ties comparable to the local sound speed or orbital velocity,14 many times larger
than the expected effect of viscosity.

However, the fate of this gas is difficult to determine analytically, because
it is of course also subject to star formation and feedback. Global disk models
(as described in the previous section) can in principle follow the gas toward
the galaxy’s center, but a more phenomenological approach is often taken by
assuming that the MBH–σ relation holds for all spheroidal galaxies and using
it to assign a total accreted mass following a merger. As usual, one must worry
about whether this relation holds during the earliest phases of galaxy formation
(and, in particular, how it extrapolates with redshift; see §7.5.2).

Of course, if both galaxies in a merger have black holes, the resulting object
will likely host a binary black hole. The fate of this merging system is described
in §7.6, and it may have interesting signatures even beyond electromagnetic
radiation. If the binary does not coalesce before the next merger, a triple (or
higher multiple) system will form, from which the lightest black hole may be
ejected at a speed of thousands of kilometers per second. Owing to the increase
in the merger rate at high redshifts, multiple black hole systems are expected
to have been more common in early galaxies.15

8.7 Feedback and Galaxy Evolution

Feedback from stars and black holes is crucial for galaxy evolution models in
at least three respects. First, as we have already seen, it sets the properties of
the star-forming gas within the galaxy itself, through radiation from stars and
mechanical energy input via supernovae. Second, it enriches the gas, changing
its dust content, cooling rates, and stellar properties. Finally, winds (whether
driven by radiation pressure or supernovae) offer a second end point (other
than stars) for accreted gas: it can be ejected entirely from the halo.

Modeling these different aspects is clearly very challenging, and often they
are parameterized in simple fashions. For example, we have already seen that
the “internal” feedback regulating star formation can be implicitly included in
star formation laws with relatively simple phenomenological prescriptions like
the Kennicutt-Schmidt law or its more recent modifications (though, again, one
must always worry whether such prescriptions can be extrapolated robustly to
the high redshifts of interest).

Chemical enrichment is probably the simplest of these effects to model:
given an initial mass function, the rate at which material is enriched and
returned to the ISM is straightforward to calculate. The ejecta are typically
assumed to mix efficiently with the ISM, so that future generations of stars
have monotonically increasing metallicity. The major uncertainties in chemical
evolution are the properties of the gas accreting onto the galaxy (whether it is
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preenriched) and the fraction of the ejected metals entrained into winds and
carried out of the galaxy.

Perhaps the most significant aspect of feedback is mass loss through winds,
which can dramatically affect the overall star formation efficiency in small galax-
ies. We have already discussed the complex physics of winds in §6.4. We expect
feedback to be most important in the small gravitational potential wells of low-
mass galaxies. The most crucial question is how the wind efficiency varies with
galaxy mass, which depends largely on the underlying physics (i.e., momentum
driven or energy driven). For example, suppose that the supernova energy accel-
erates a fraction of ISM material (with a mass loss rate Ṁw) to the escape speed
of the dark matter halo. Then, we have Ṁw ∝ Ṁ�ωSN/v2

esc. If, however, much of
the energy is lost through cooling, so that the momentum input of the super-
nova or radiation pressure from the stars drives the wind, then Ṁw ∝ Ṁ�/vesc,
which has a significantly gentler dependence on vesc ∝ M

1/3
h .

We note that beyond this overall scaling, the mass loading of the winds is
also highly uncertain, because their total matter content is difficult to observe.
So far, the best evidence comes from redshifted metal lines in galaxy spectra,
which at best provide a velocity and column density of the material; without the
distance of the absorbing material from the galaxy, the total mass is difficult to
assess. Typically, however, the mass loss rate is assumed to be roughly equal to
the star formation rate.

Finally, winds not only entrain gas but also can prevent circumgalactic gas
from accreting onto the galaxy by heating it. This reduces the inflow rate onto
the galaxy.

Given the basic energetics of the process, the prevailing expectation is that
supernova feedback may suppress star formation in small galaxies and may
help explain the relative dearth of low-luminosity galaxies compared with the
number of small-mass halos. This hypothesis is consistent with local observa-
tions, where the total stellar mass is ∝ M

2/3
h for Mh < Mcrit ∼ 3 × 1010 M� and

proportional to Mh above it.16 Assuming that the total supernova energy input
ESN ∝ M�, and that star formation continues until supernovae clear the halo
of its remaining baryons by injecting an energy comparable to the binding
energy of the gas, we would expect M�/Mh ∝ V 2

c ∝ M
2/3
h . If this explanation

applies at higher redshifts as well, we would expect a similar suppression there,
in galaxies with Vc < 100 km s−1.

We should also consider feedback from black holes during accretion episodes
of quasar activity, which may be important in driving galactic winds. As we de-
scribed in §7.5, the energy input from quasars can exceed that from star forma-
tion, although the coupling of this energy to the ISM is not yet understood. (In
some cases, such as jets from radio quasars, the energy may escape the galaxy
in narrow channels without clearing all the gas.) However, the tight MBH–σ re-
lation is highly suggestive of a fundamental relationship between the growth of
black holes and their host galaxy’s stars. Because (at least naively) this relation-
ship suggests that the black hole mass scales superlinearly with halo mass, this
feedback channel is more effective in larger galaxies and is often invoked as a
potential solution to the “overcooling” problem in massive low-redshift galaxies.
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Given the common “merger models” for AGN growth, one plausible physical
picture is that the merger funnels large quantities of gas toward the remnant’s
center, triggering a starburst. Some of the gas continues to fall inward and is
accreted by the black hole, which drives a wind outward into the galaxy. Once
the black hole grows large enough, this wind unbinds the remaining gas and
halts the star formation episode, at least until another major accretion event
occurs. This scenario naturally explains many aspects of the low-redshift Uni-
verse (such as the relation of black holes to spheroids rather than to disks), but
its application to very high redshifts—where spheroids may or may not even ex-
ist, and the much more rapid growth of galaxy-sized halos likely prevents active
black holes from entirely halting star formation—is far from clear.

8.8 From Galaxy Model to Stellar Spectra

In addition to the raw star formation rate, most observables depend on the ini-
tial mass function (IMF) of the stars. We discussed this in sections 5.2.4 and
5.3.3, where we described how local measurements are consistent with a (bro-
ken) power law in the stellar mass range of ∼0.1–100 M�. Once true galax-
ies form, with reasonably enriched gas, the IMF likely approaches this form,
though (as we argued before) the characteristic mass may increase at higher
redshifts owing to the higher CMB temperature.

An additional issue that appears to be important for generating realistic stel-
lar populations is the finite mass of the gas clouds from which stars form,
as it now appears that most stars form in groups (though they may later dis-
perse). The range of allowable star cluster masses is called the cluster initial
mass function; local observations are consistent with a power-law distribution
of the cluster number count per unit mass of slope ∼ − 2 (reflecting an equal
amount of mass per logarithmic mass bin) between a few tens of solar masses
to ∼106 M�.17 These clusters are important because the total fuel mass may
limit the maximum stellar mass that can form in that environment—in other
words, even if the underlying stellar IMF stretches smoothly to very high
masses, a dearth of high-mass gas clouds will cause a dearth of high-mass stars.
In the past, the cluster sites were generally ignored, and a population of stars
was generated by drawing from the IMF over a uniform range of stellar masses.
More accurate stellar population models can be constructed by stochastically
sampling the cluster IMF to generate a set of star clusters and then stochasti-
cally sampling the stellar IMF (taking into account the maximum stellar mass
allowed within each one).i

Given a metallicity and following this procedure for a set of stars forming at
a particular instant, one can then calculate how the luminosity and spectrum

iTo many readers, it might seem more natural to define the IMF as the net result of this process,
since that would provide the galaxy-wide IMF of stars relevant for cosmologists. However, to mea-
sure the stellar IMF, one must find a population of stars that formed simultaneously—in other
words, a single cluster. Thus, the canonical stellar IMF—measured long before the importance of
the cluster IMF was recognized—is only part of the “real” mass distribution of stars.
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of the population evolve with time using libraries of stellar models. Although
isolated nonrotating stars are well understood, there remain some important
uncertainties in this modeling. The fundamental challenge is that the ionizing
luminosity comes from only a small fraction of the stars (those with the highest
masses). Thus, small variations in their formation efficiency or properties can
cause substantial uncertainties in the models.

For example, the ionizing flux of stars cannot be observed directly and instead
must be modeled from their feedback effects on surrounding H II regions.
Meanwhile, the massive stars responsible for these photons have atmospheres
that are out of local thermodynamic equilibrium and often undergo substantial
mass loss through line-driven winds. These so-called Wolf-Rayet stars present
particular challenges to models.

As a second example, most (>75%) stars are born with neighbors (as bina-
ries or even larger multiple systems) in the local Universe. Binarity can dra-
matically affect the evolution of the component stars. For example, suppose
the more massive star reaches its supergiant phase first. It expands rapidly,
with some of its envelope passing the Roche limit and escaping. The “naked”
surface of this more massive star then becomes hotter, producing more ion-
izing photons. Meanwhile, the neighbor may accrete some of its neighbor’s
lost mass and itself become more massive (and hence hotter) and possibly
gain angular momentum and rotate faster (which also tends to make it
hotter).

Overall, different stellar models vary by a factor of a few in their ionizing
flux, even at a fixed metallicity and stellar IMF.18 They are generally more con-
sistent with one another at longer wavelengths, but the differences can still be
important. Nevertheless, the following general trends are apparent:

• Stellar age: Because the most massive stars have the shortest lifetime,
the spectrum (particularly at high frequencies) is extremely sensitive to
the elapsed time since a star formation episode. Figure 8.6(a) shows this
explicitly. After only 1 Myr, many stars have not yet evolved into their hot
phase, and so the ionizing flux is relatively small. The ionizing spectra
harden shortly afterward and then rapidly fade away as the hot stars die.
Meanwhile, the continua also fade steadily as more stars fade into white
dwarves or explode in supernova.

• Star formation history: A corollary of the previous point is that spectral
measurements can determine the star formation history of a galaxy. There
is, however, the important possibility that star formation may not be in-
stantaneous. If it instead continues at a constant rate for a long time period
(i.e., much longer than the age of the most massive stars), the high-energy
photons will still be sensitive to the high-mass, short-lived stars (and hence
the current star formation rate), but the lower-energy photons will depend
on the integrated population of low-mass stars and so will measure the to-
tal stellar mass. Figure 8.6(b) shows spectra with ongoing star formation
over timescales of 106, 107, 108, 109, and 1010 years (from lower to up-
per curves). Note how the spectra roughly converge after long times, only
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Figure 8.6 Spectral synthesis models of stellar populations. (a) Spectra for an instanta-
neous burst of star formation with M� = 106 M�. (b) Spectra for a constant
star formation rate with Ṁ� = 1 M� yr−1. Both panels show predicted spectra
for populations 106, 107 108, 109, and 1010 yr after the onset of star forma-
tion. The calculation assumes Z = 0.05 Z�, includes binaries, and ignores
nebular reprocessing in all cases. It adopts an IMF with a slope of −1.3 for
0.1–0.5 M�, and −2.35 for 0.5–120 M�, and does not account for the finite
mass of star-forming clouds. Generated using the BPASS population synthe-
sis code (http://www.bpass.org.uk).

increasing at very long wavelengths as the galaxy continues to accumulate
more and more low-mass stars.

However, we should emphasize that the starburst and constant star for-
mation rate histories are only simple examples; more detailed observations
can constrain more complex histories. For the high redshifts of interest to
us, where galaxies grow extremely rapidly, so-called exponential histories,
where SFR ∝ et/t� when smoothed over cosmological times, may also be
appropriate. However, any single accretion event may lead to a burst of star
formation that dies off rapidly with time, so that SFR ∝ e−t/t ′

� .
• Metallicity: In general, the higher opacities of heavy elements lead to

slightly cooler stellar atmospheres and hence redder spectra. Of course,
they also change the spectral lines substantially. Figure 8.7 illustrates this
relationship for low- and high-metallicity models (see also §5.4 for a com-
parison with Population III models). Although the long-wavelength tail is
nearly unchanged, increasing the metallicity decreases the ionizing flux
by a substantial factor. The nontrivial differences among these spectra in-
dicate that the metallicity is an observable quantity given high-resolution
spectra. However, one must bear in mind that metallicity is likely to evolve
as star formation proceeds, since it is the stars themselves that enrich the
medium, so the cumulative stellar population in a galaxy may not be well
described by a single metallicity.
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Figure 8.7 Spectral synthesis models of stellar populations: (a) variation with metallic-
ity; (b) contribution of stellar binaries (assuming Z = 0.05 Z�). Both panels
show predicted spectra for a constant star formation rate of 1 M� yr−1, 108 yr
after the star formation began. The calculation ignores nebular reprocessing
in all cases, adopts an IMF with a slope of −1.3 for the stellar mass range
0.1–0.5 M� and a slope of −2.35 for masses between 0.5 and 120 M�. It does
not account for the finite mass of star-forming clouds. Generated using the
BPASS population synthesis code (http://www.bpass.org.uk).

• Binaries: Finally, we have already mentioned that the inclusion of binary
evolution can substantially modify the far-UV fluxes of stellar populations.
Figure 8.7(b) shows this effect explicitly. Binaries only slightly change the
long-wavelength flux but increase the ionizing flux significantly.

8.9 Signatures of the Interstellar Medium

In the previous section we saw how “synthesized” galaxy spectra can be created
given information about the stars and their formation history. Of course, the
other major component of the galaxy—its ISM—also has important observable
consequences that can affect both the observed continuum of the stars and, es-
pecially, the galaxy’s spectral lines. A firm grasp of these effects is necessary to
understand the stellar component, but it also allows us to learn about the dif-
fuse component of the galaxy and hence its fuel supply and feedback processes.
Here, we briefly outline the most important of these effects.

8.9.1 Nebular Emission Lines

The raw stellar spectra computed in §8.8 likely do not reach an observer with-
out substantial modification by their surroundings. The most immediate is the
interaction of ionizing photons with the local ISM: presuming that the stars
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Figure 8.8 Effects of host galaxy absorption on stellar spectra. The curve extending
to short wavelengths is the raw stellar spectrum (identical to the curve
with binaries in Figure 8.7(b). The other two curves show the spectrum as-
suming that all ionizing photons are absorbed by the galaxy ISM and re-
processed into emission lines at longer wavelengths. The upper curve as-
sumes Z = 0.05 Z�; the lower curve assumes solar metallicity for both the
stars and ISM. The latter is shifted down by two orders of magnitude for clar-
ity of presentation. Generated using the BPASS population synthesis code
(http://www.bpass.org.uk).

form in dense environments, many of those photons will be absorbed by local
hydrogen or helium atoms. We typically parameterize the fraction that escape
their host galaxy as fesc, which is at most a few percent in low redshift galaxies
(see §9.2.2). The remaining photons ionize atoms in their host galaxy, which
then undergo radiative cascades, reprocessing the energy originally contained
in ionizing photons into emission lines at longer wavelengths.

Figure 8.8 shows two examples of this reprocessing, for two different as-
sumed metallicities (note that the solar metallicity curve has been shifted down
by a factor of 100 for clarity of presentation; its continuum amplitude is in real-
ity just slightly smaller than that for the low-metallicity model). The strengths
of these recombination lines are determined by ionization balance in the H II
regions. Assuming that the regions are Strömgren spheres (see §9.1), the to-
tal number of recombinations per second is equal to the total number of ion-
izations, so the emission lines measure the ionizing luminosity. The relative
strengths of the hydrogen lines (and helium lines, for very low metallicities and
hot stars) depend on atomic physics and so provide a measure of the
temperature of the gas.

However, metal lines can also be important diagnostics, if they exist. These
are usually collisionally excited forbidden transitions, such as [O II], [O III],
and [N II]; they are important because such lines have excitation temperatures
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∼ 104 K, comparable to the expected temperatures of stellar H II regions. The
ratios of the strength of these emission lines to those of hydrogen depend on
the (gas) metallicity and can be used to estimate it; this dependence has proved
to be very useful at lower redshifts, though it is not yet possible at z > 4.

Nebular emission lines also offer a useful probe of the escape fraction, be-
cause their strength is proportional to (1 − fesc). Reprocessing shifts photons
from the short-wavelength tail to longer wavelengths and so can even change
broadband colors (i.e., a significant fraction of the energy measured in a par-
ticular observational filter may be contained in emission lines rather than in
the raw stellar continuum). For example, suppose one estimates a spectral in-
dex fλ ∝ λ−β from the average broadband colors. The difference between full
nebular reprocessing and full escape corresponds to a range in β ∼ 2.2–3.1 for
very young stellar populations (<3 Myr), though the difference falls to ∼ 0.1 for
older populations (>100 Myr).19 This difference is particularly useful, because
even when fesc ∼ 1, photons with λ < 912 Å will not be directly observable,
owing to absorption by the intervening IGM at z > 5. The longer-wavelength
emission lines may thus provide the best direct diagnostics of this important
quantity.

8.9.2 Dust

The other obvious effect on the stellar spectrum comes from dust, which ab-
sorbs stellar photons (especially those with short wavelengths), heats up, and
ultimately reradiates that energy in the IR or submillimeter bands. The effects
of dust depend on its total mass, its composition, and the relative geometry
of the stellar and dust components of the ISM. The total dust mass deter-
mines the overall extinction of the gas, while its composition determines the
relative extinction across different wavelengths. Unfortunately, this extinction
law is found to vary even among nearby galaxies, particularly for short wave-
lengths. Given that high-redshift galaxies exist much earlier in their life cycle
than nearby objects, one would also expect their dust to have very different com-
positions from those in the present-day Universe. Moreover, if the dust prefer-
entially surrounds star-forming regions, it will have a larger effect on young,
hot stars than on the low-mass stars that may have wandered far from their
birth sites. Thus, predicting the dust absorption from early galaxies is rather
difficult.

The dust emission is equally interesting. Each particle will radiate thermally,
though the spectrum will not typically be a true blackbody because dust in
different environments may vary in temperature (in the Milky Way, ranging
from ∼20 to 40 K in the low-density ISM up to several hundred Kelvins in
star-forming regions) and because dust particles range in size (the blackbody
approximation is not valid for wavelengths smaller than the particle radius).
In a simple model, the dust emission spectrum can be parameterized by two
quantities: (i) the dust temperature Td and (ii) the dust emissivity εm,dust.

The dust temperature Td is set by balancing the incident energy against the
dust emission. In the simplest model, we assume blackbody emission and



chapter8 August 31, 2012

272 CHAPTER 8

write

T 4
d ≈ T 4

CMB + T 4
m + T 4

� + T 4
AGN, (8.15)

where the four terms account for the CMB radiation field, the nonradiative en-
ergy input (via cosmic rays or supernovae), the stellar radiation field, and any
energy input from AGN (which appears to be important in some galaxies). The
last two quantities presumably scale with the surface density of star formation
and black hole accretion rate, respectively, though locally they appear to saturate
at ∼60 K and ∼150 K, respectively.20 The CMB contribution is rarely important
at the present day, but becomes much more significant at higher redshifts.

The dust emissivity is often approximated as a power law, εdust(m) ∝ mβ , with
β ∼ 1 at high photon frequencies m (to match observations) and β → 2 at
long wavelengths from standard scattering theory. If the dust is optically thin,
the spectrum will follow fm,dust ∝ εm,dustBm, and the normalization will be deter-
mined by balancing the input luminosity (from stars or AGN) with this thermal
emission. At low and moderate redshifts, some very rapidly star forming galax-
ies have such high dust content that nearly all their radiative output emerges in
the IR and submillimeter bands. Whether more distant analogs for these exist
is so far unknown and depends primarily on how quickly galaxies can build
large dust columns.

Although it is clearly difficult to predict from first principles, this dust emis-
sion has one very important property from an observer’s perspective: the spectra
of dusty star-forming galaxies are such that in the submillimeter band, the ob-
served fluxes will be nearly independent of redshift well into the cosmic dawn.
This phenomenon occurs because the peak of the blackbody spectrum usually
lies blueward of the observational bands, so it moves into the observed bands
as the galaxy’s redshift increases. Such a negative K-correction makes submil-
limeter observations potentially extremely powerful for observing distant galax-
ies. Figure 8.9 illustrates this for a model galaxy based on a local composite of
dust-dominated galaxies. It shows how the observed flux for galaxies in three
different bands varies with redshift for three fiducial dust temperatures. Inter-
estingly, at the longest wavelengths and/or lowest dust temperatures, the flux
hardly varies with redshift. If a telescope (such as ALMA) can detect a given
galaxy population at z ∼ 1, it may be able to detect a similarly dusty galaxy the
way to z ∼ 10.

8.9.3 Interstellar Absorption Lines

In addition to metal emission lines from H II regions (see §8.9.1), a galaxy
spectrum will also have absorption lines owing to heavy elements in the ISM.
In principle, these are interesting for measuring the gas-phase metallicity of the
ISM; however, in lower-redshift galaxies the strongest lines tend to be saturated
(as can be noted through the relative strengths of doublet lines), which makes
such a measurement extremely difficult.21

Instead, these absorption lines are useful for measuring the properties of
galactic winds. Interestingly, although many of the lines appear saturated, they
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Figure 8.9 Observed flux density as a function of redshift in three submillimeter bands,
for several different fiducial dust temperatures. The solid, dotted, and dashed
lines assume observations in the 850, 450, and 175 µm bands, respec-
tively. The three curves within each set take different dust temperatures,
T = 20, 40, and 80 K, from thick to thin lines. All assume that the dust
has a power-law emissivity with index β = 1.5. Reprinted from Phys. Rep.,
369, 2, “Submillimeter galaxies,” 111–176, Copyright 2002, with permission
from Elsevier.

do not completely attenuate the starlight. The depth of the absorption there-
fore tells us the covering fraction of the high-metal-column gas. Meanwhile,
these absorption lines are nearly always redshifted, as would be expected for
gas flowing out of the galaxy along the line of sight toward the observer. These
lines (together with Lyman-α, which we discuss in chapter 11) provide the best
direct evidence for galactic outflows at lower redshifts. However, their interpre-
tation remains extremely difficult because they provide no information about
the distance the gas has traveled from the galaxy.

8.9.4 Radio Emission Lines

Another important tracer of the gas phase is emission from molecular and
atomic lines: these provide a significant fraction of the cooling radiation that
escapes galaxies, especially in star-forming regions. We describe two important
examples here: CO, which is an excellent tracer of star formation in the local
Universe (and at moderate redshifts), and the [C II] fine-structure line (with
a rest wavelength of 157.7 µm), which contains ∼ 0.1%–1% of the bolometric
luminosity of nearby star-forming galaxies. Table 8.1 lists many other possible
transitions, together with their approximate (local) relation between luminosity
and star formation rate.
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Table 8.1 Prominent Interstellar Emission Lines in Star-Forming Galaxies, along with
Their Typical Ratio R between the Luminosity and Star Formation Rate [in
units of L�(M�yr−1)−1]. For the first seven lines R is measured from a sam-
ple of low redshift galaxies; the other lines have been calibrated based on the
galaxy M82. E. Visbal, & A. Loeb, JCAP 11, 16 (2010).

Species Emission wavelength (µm) R[L� (M� yr−1)−1]
C II 158 6.0 × 106

O I 145 3.3 × 105

N II 122 7.9 × 105

O III 88 2.3 × 106

O I 63 3.8 × 106

N III 57 2.4 × 106

O III 52 3.0 × 106

12CO(1–0) 2610 3.7 × 103

12CO(2–1) 1300 2.8 × 104

12CO(3–2) 866 7.0 × 104

12CO(4–3) 651 9.7 × 104

12CO(5–4) 521 9.6 × 104

12CO(6–5) 434 9.5 × 104

12CO(7–6) 372 8.9 × 104

12CO(8–7) 325 7.7 × 104

12CO(9–8) 289 6.9 × 104

12CO(10–9) 260 5.3 × 104

12CO(11–10) 237 3.8 × 104

12CO(12–11) 217 2.6 × 104

12CO(13–12) 200 1.4 × 104

C I 610 1.4 × 104

C I 371 4.8 × 104

N II 205 2.5 × 105

13CO(5–4) 544 3900
13CO(7–6) 389 3200
13CO(8–7) 340 2700
HCN(6–5) 564 2100

CO has a ladder of rotational levels J → (J −1) with frequencies mJ = J mCO,
where mCO = 115.3 GHz, which corresponds to an excitation temperature of
TCO = 5.5 K. This low temperature means that CO is excited even in the cold,
dense molecular clouds out of which stars form. Moreover, because carbon and
oxygen are relatively abundant, it is by far the strongest metal line in such re-
gions. At low to moderate redshifts, there is a tight correlation between CO
luminosity (here expressed in the 1–0 transition) and the star formation rate,22

LCO(1−0) = 3.2 × 104L�
(

SFR

M� yr−1

)3/5

. (8.16)
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As usual, it is not clear whether this relation can safely be extrapolated to high
redshifts. In fact, the astute reader may notice that equation (8.16) is inconsis-
tent with our assumption that LCO ∝ SFR in Table 8.1: different galaxy samples
and different conversions from luminosity to SFR yield different results, and
hence the scaling to higher-redshift galaxies is especially difficult.

To predict the CO luminosity on more physically motivated grounds, we need
to know the molecule’s abundance as well as its excitation temperature. The
latter is set by the cloud’s dust (Td in equation 8.15). The metallicity may not be
as important as it seems: in local galaxies, giant molecular clouds are optically
thick in CO, so decreasing the CO content does not (at first) decrease the overall
luminosity. However, if the dust opacity decreases far enough, the interstellar
UV background can dissociate the CO, decreasing the CO luminosity. In fact,
nearby low-metallicity galaxies fall well below the relation in equation (8.16),
though the much more compact high-redshift galaxies may have very different
characteristics.23

Moreover, because TCO is so small, many individual levels can be excited
and many transitions can be visible. In local thermodynamic equilibrium, the
line ratios depend only on temperature, but at different temperatures and
densities the higher levels may not be thermalized. Ideally, one would then like
to observe a wide range of lines to fully characterize the molecular
clouds.

An alternative bright probe is the fine-structure 157.7 µm line of [C II], which
is much less sensitive to the chemistry of the molecular clouds. This line, which
arises from a 2P3/2 → 2P1/2 electronic transition, has an excitation temperature
set primarily by collisions with free electrons and interactions with CMB pho-
tons, so it can be predicted much more robustly; the primary uncertainty is
simply the mass of atomic carbon, or the metallicity of the gas. For z > 6, the
[C II] line is redshifted into the submillimeter or millimeter range and may be
observed with the ALMA telescope.

We will return to radio line emission in §13.2.2, where we discuss its utility
in comparison with that of other probes.

8.10 Gravitational Lensing

We end this chapter by describing the physics behind an important technique
for understanding the matter content of galaxies, one that is provided for free by
nature: gravitational lensing. Rich clusters of galaxies have such a large concen-
tration of mass that their gravity bends the light rays from any source behind
them and magnifies its image. This allows observers to probe fainter galaxies at
higher redshifts than ever probed before. The redshift record from this method
is currently held by a strongly lensed galaxy at z = 7.6.24 As of the writing of
this book, this method has provided candidate galaxies with possible redshifts
up to z ∼ 10, though without further spectroscopic confirmation to make these
detections robust. We will return to the utility of these lenses in chapter 10; for
now we focus on the theoretical background.
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The chance alignment of a foreground object along the line of sight to a
high redshift source could result in the magnification, distortion, and poten-
tial splitting of the source image owing to the deflection of its light rays by
the gravitational field of the foreground object. The probability for gravitational
lensing grows with increasing source redshift, because of the increase in the
path length of the source photons. Although the lensing probability (<1%) is
only of anecdotal significance for sources at z < 2, its magnitude could rise
by an order of magnitude and affect the statistics of bright sources during the
epoch of reionization.

Assuming that the gravitational potential of the lens is nonrelativistic,
|�/c2| 
 1, the effect of space–time curvature on the propagation of light rays
is equivalent to a medium with an effective index of refraction n,

n = 1 − 2

c2
�. (8.17)

This result follows from the deviation imparted to the phase of the electromag-
netic wave by the potential of the lens (relative to a flat space–time metric). The
lens potential � is negative and approaches zero at infinity. As in normal geo-
metric optics, a refractive index n > 1 implies that light travels slower than in
vacuum. Thus, the effective speed of a ray of light in a gravitational field is

v = c

n
� c − 2

c
|�|. (8.18)

The total time delay �t , the so-called Shapiro delay, is obtained by integrating
over the light path from the observer to the source:

�t =
∫ observer

source

2

c3
|�| dl. (8.19)

A light ray is defined as the normal to the phase front. Since � and hence the
phase delay of the electromagnetic wave varies across the lens, a light ray will
be deflected by the lens as in a prism. The deflection is the integral along the
light path of the gradient of n perpendicular to the light path, that is,

α̂ = −
∫

∇⊥n dl = 2

c2

∫
∇⊥� dl. (8.20)

Note that α̂ is not a unit vector; rather, the hat is conveniently used to differen-
tiate it from the reduced deflection angle defined in equation (8.28). In all cases
of interest the deflection angle is very small. We can therefore simplify the com-
putation of the deflection angle considerably if we integrate ∇⊥n not along the
deflected ray but along an unperturbed light ray with the same impact para-
meter (with multiple lenses, one takes the unperturbed ray from the source as
the reference trajectory for calculating the deflection by the first lens, the de-
flected ray from the first lens as the reference unperturbed ray for calculating
the deflection by the second lens, and so on).

The simplest lens is a point mass M with a Newtonian potential,

�(b, z) = − GM

(b2 + z2)1/2
, (8.21)
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where b is the impact parameter of the unperturbed light ray, and z indicates
distance along the unperturbed light ray from the point of closest approach. We
therefore have

∇⊥�(b, z) = GM b
(b2 + z2)3/2

, (8.22)

where b is orthogonal to the unperturbed ray and points toward the point mass.
Equation (8.22) then yields the deflection angle

α̂ = 2

c2

∫
∇⊥� dz = 4GM

c2b
. (8.23)

Since the Schwarzschild radius is rSch = (2GM/c2), the deflection angle is
simply twice the inverse of the impact parameter in units of the Schwarzschild
radius. As an example, the Schwarzschild radius of the Sun is 2.95 km, and the
solar radius is 6.96×105 km. A light ray grazing the limb of the Sun is therefore
deflected by an angle of 8.4 × 10−6 rad = 1.7 arcsec.

The deflection angle from a more complicated mass distribution can be
treated as the sum of the deflections caused by the infinitesimal point mass
elements that make the lens. Since the deflection occurs on a scale ∼ b, which
is typically much shorter than the distances between the observer and the lens
or the lens and the source, the lens can be regarded as thin. The mass distrib-
ution of the lens can then be replaced by a mass sheet orthogonal to the line of
sight, with a surface mass density

�(ξ) =
∫

ρ(ξ , z) dz, (8.24)

where ξ is a two-dimensional vector in the lens plane. The deflection angle at
position ξ is the sum of the deflections from all the mass elements in the plane:

α̂(ξ) = 4G

c2

∫
(ξ − ξ ′)�(ξ ′)

|ξ − ξ ′|2 d2ξ ′. (8.25)

In general, the deflection angle is a two-component vector. In the special case
of a circularly symmetric lens, the deflection angle points toward the center of
symmetry and has an amplitude

|α̂(ξ)| = 4GM(ξ)

c2ξ
, (8.26)

where ξ is the distance from the lens center, and M(ξ) is the mass enclosed
within radius ξ ,

M(ξ) = 2π

∫ ξ

0
�(ξ ′)ξ ′ dξ ′. (8.27)

The basic lensing geometry is illustrated in Figure 8.10. A light ray from a
source S is deflected by the angle α̂ at the lens and reaches an observer O. The
angle between some arbitrarily chosen axis and the true source position is β,
and the angle between the same axis and the image I is θ . The angular diameter
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Figure 8.10 Geometry of gravitational lensing. The light ray propagates from the source
S at transverse distance η from an arbitrary axis to the observer O, passing
the lens at transverse distance ξ . It is deflected by an angle α̂. The angu-
lar separations of the source and the image from the axis as seen by the
observer are β and θ , respectively. The distances between the observer and
the source, the observer and the lens, and the lens and the source are Ds,
Dd, and Dds, respectively.

distances between observer and lens, lens and source, and observer and source
are denoted here as Dd, Dds, and Ds, respectively.

It is convenient to introduce the reduced deflection angle

α = Dds

Ds
α̂. (8.28)

The triangular geometry in Figure 8.10 implies that θDs = βDs − α̂Dds, so that
the positions of the source and the image are related through the simple lens
equation,

β = θ − α(θ). (8.29)

The nonlinear lens equation allows for multiple images θ at a fixed source posi-
tion β. In a flat Universe, the comoving angular-size distances simply add, with
Dds(1 + zs) = Ds(1 + zs) − Dd(1 + zd).

Because of the equivalence principle, the gravitational deflection is indepen-
dent of photon wavelength. In addition, since the phase-space density of pho-
tons must be conserved (Liouville’s theorem), gravitational lensing preserves
the surface brightness of the source and changes only its apparent surface area.
The total flux received from a gravitationally lensed image of a source is there-
fore changed in proportion to the ratio between the solid angles of the image
and the source. For a circularly symmetric lens, the magnification factor µ is
given by

µ = θ

β

dθ

dβ
. (8.30)
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An extended source is lensed as a sum over infinitesimal (pointlike) segments,
each centered on different sky coordinates and having its own magnification
factor.

8.10.1 Special Examples of Lenses

8.10.1.1 Constant Surface Density

For a mass sheet with a constant surface density �, equation (8.26) implies a
reduced deflection angle of

α(θ) = Dds

Ds

4G

c2ξ
(�πξ 2) = 4πG �

c2

DdDds

Ds
θ, (8.31)

where ξ = Ddθ . In this special case, the lens equation is linear with β ∝ θ . Let
us define a critical surface-mass density

�crit ≡ c2

4πG

Ds

DdDds
= 0.35 g cm−2

(
D

1 Gpc

)−1

, (8.32)

where the effective distance D is defined through the following combination of
distances:

D ≡ DdDds

Ds
. (8.33)

For a lens with � = �crit, the deflection angle is α(θ) = θ , and so β = 0 for
all θ . Such a lens focuses perfectly, with a single focal length. For a typical grav-
itational lens, however, light rays that pass the lens at different impact parame-
ters cross at different distances behind the lens. Usually, lenses with � > �crit

can produce multiple images of the source.

8.10.1.2 Circularly Symmetric Lenses

For a circularly symmetric lens with an arbitrary mass profile, equations (8.26)
and (8.28) give

β(θ) = θ − Dds

DdDs

4GM(θ)

c2 θ
. (8.34)

A source that lies exactly behind the center of symmetry of the lens (β = 0) is
imaged as a ring. Substitution of β = 0 in equation (8.34) yields the angular
radius of the ring,

θE =
[

4GM(θE)

c2

Dds

DdDs

]1/2

. (8.35)

This Einstein radius defines the characteristic angular scale of lensed images:
when multiple images are produced, the typical angular separation between
them is ∼2θE. Also, sources that are closer than ∼θE in projection (relative to the
lens center), experience strong lensing in the sense that they are significantly
magnified, whereas sources that are located well outside the Einstein ring are
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magnified very little. In many lens models, the Einstein ring also roughly rep-
resents the boundary between source positions that are multiply imaged and
those that are only singly imaged. Interestingly, by comparing equations (8.32)
and (8.35), we see that the mean surface-mass density inside the Einstein radius
is just the critical density �crit.

For lensing by a galaxy mass M at a cosmological distance D, the typical
Einstein radius is

θE = (0.′′4)

(
M

1011 M�

)1/2 (
D

5 Gpc

)−1/2

, (8.36)

with a value that is larger by two orders of magnitude for rich galaxy clusters
(M ∼ 1015M�).

8.10.1.3 Point Mass

For a point mass M the lens equation has the form

β = θ − θ2
E

θ
. (8.37)

This equation has two solutions,

θ± = 1

2

(
β ±

√
β2 + 4θ2

E

)
. (8.38)

Any source is imaged twice by a point mass lens. The two images are on oppo-
site sides of the source, with one image inside the Einstein ring and the other
outside. As the source moves away from the lens (i.e., as β increases), one of
the images approaches the lens and becomes very faint, while the other image
approaches the true position of the source and asymptotically approaches its
unlensed flux.

By substituting β from the lens equation (8.37) into equation (8.30), we ob-
tain the magnifications of the two images,

µ± =
[

1 −
(

θE

θ±

)4
]−1

= u2 + 2

2u
√

u2 + 4
± 1

2
, (8.39)

where u is the angular separation of the source from the point mass in units of
the Einstein angle, u = βθ−1

E . Since θ− < θE, µ− < 0, and so the magnification
of the image inside the Einstein ring is negative, implying that the parity of this
image is flipped with respect to the source. The net magnification of flux in the
two images is obtained by adding the absolute magnifications,

µ = |µ+| + |µ−| = u2 + 2

u
√

u2 + 4
. (8.40)

When the source lies on the Einstein radius, we have β = θE and u = 1, so the
total magnification becomes

µ = 1.17 + 0.17 = 1.34. (8.41)
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8.10.1.4 Singular Isothermal Sphere

A simple model for the mass distribution of a galaxy halo assumes that its col-
lisionless particles (stars and dark matter) possess the same isotropic velocity
dispersion everywhere. Surprisingly, this simple model appears to describe ex-
tremely well the dynamics of stars and gas in the cores of disk galaxies (whose
rotation curve is roughly flat), as well the strong lensing properties of spheroidal
galaxies.

We assume a spherically symmetric gravitational potential that confines the
collisionless particles that produce it. We can associate an effective “pressure”
with the momentum flux of these particles at a mass density ρ,

p = ρσ 2
v , (8.42)

where σv is the one-dimensional velocity dispersion of the particles, assumed to
be constant across the galaxy. The equation of hydrostatic equilibrium (which
is derived from the second moment of the collisionless Boltzmann equation)
gives

1

ρ

dp

dr
= −GM(r)

r2
,

dM(r)

dr
= 4π r2 ρ, (8.43)

where M(r) is the mass interior to radius r . A particularly simple solution of
equations (8.42) through (8.43) is

ρ(r) = σ 2
v

2πG

1

r2
. (8.44)

This mass distribution is called the singular isothermal sphere (SIS). Since ρ ∝
r−2, the mass M(r) increases ∝ r , and therefore the rotational velocity of test
particles in circular orbits in the gravitational potential is

V 2
c (r) = G M(r)

r
= 2 σ 2

v = constant. (8.45)

As mentioned previously, this model naturally reproduces the flat rotation
curves of disk galaxies.

By projecting the mass distribution along the line of sight, we obtain the
surface-mass density

�(ξ) = σ 2
v

2G

1

ξ
, (8.46)

where ξ is the distance from the center of the two-dimensional profile. The
deflection angle from equation (8.26),

α̂ = 4π
σ 2

v

c2
= (1.′′16)

( σv

200 km s−1

)2
, (8.47)

is independent of ξ and points toward the center of the lens. The Einstein radius
of the SIS follows from equation (8.35):

θE = 4π
σ 2

v

c2

Dds

Ds
= α̂

Dds

Ds
= α (θ). (8.48)
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Owing to circular symmetry, the lens equation is one-dimensional. Multiple
images are obtained only if the source lies inside the Einstein ring. If β < θE,
the lens equation has the two solutions

θ± = β ± θE . (8.49)

The images at θ±, the source, and the lens all lie on a straight line. Technically,
a third image with zero flux is located at θ = 0; this image acquires a finite flux
if the divergent density at the center of the lens is replaced by a core region with
a finite density.

The magnifications of the two images follow from equation (8.30):

µ± = θ±
β

= 1 ± θE

β
=

(
1 ∓ θE

θ±

)−1

. (8.50)

If the source lies outside the Einstein ring (i.e., if β > θE), there is only one
image at θ = θ+ = β+θE. Searches for highly magnified images of faint galaxies
at high redshifts are being conducted near the Einstein radius of clusters of
galaxies, where the magnification factor peaks.
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Chapter Nine

The Reionization of Intergalactic Hydrogen

The CMB indicates that hydrogen atoms formed 400,000 years after the Big
Bang, as soon as the cosmological expansion cooled the gas below 3,000 K.
However, observations of the CMB as well as the spectra of early galaxies,
quasars, and gamma-ray bursts indicate that less than a billion years later the
same gas underwent a wrenching transition from its atomic state back to its
constituent protons and electrons in a process known as reionization. More
specifically, the z ∼ 6 Lyman-α forest shows that the IGM was highly ionized
at that time (see §4.7), though there are possible hints from other methods that
some large neutral hydrogen regions persisted until near that time. Thus, we
may not need to go to much higher redshifts to begin to see the epoch of reion-
ization. Moreover, CMB polarization studies require that the universe could not
have fully reionized earlier than an age of 300 million years (see §13.1.1). It is
intriguing that the inferred reionization epoch coincided with the appearance
of the first galaxies, which inevitably produced ionizing radiation. How was the
primordial gas transformed to an ionized state by the first galaxies within merely
hundreds of million of years?

We begin this chapter by addressing this question using our tools for de-
scribing the formation and evolution of galaxies during the cosmic dawn. The
course of reionization can be determined by counting photons from all galaxies
as a function of time. Both stars and black holes contribute ionizing photons,
but the early Universe was dominated by small galaxies that, in the local Uni-
verse, had disproportionately small central black holes. In fact, bright quasars
are known to be extremely rare at z > 6, so we will generally focus on stellar
models as a fiducial case.

Because stellar ionizing photons are only slightly more energetic than the
13.6 eV ionization threshold of hydrogen, they are absorbed efficiently once
they reach a region with substantial neutral hydrogen. Consequently, during
reionization, the IGM was nearly a two-phase medium, characterized by highly
ionized zones separated from the neutral sea of gas by sharp ionization fronts.
While the redshift at which reionization ended constrains only the overall
cosmic efficiency for producing ionizing photons, a detailed picture of these
ionized bubbles as they formed and grew will teach us a great deal about the
population of the first galaxies that produced this cosmic phase transition.

9.1 Propagation of Ionization Fronts

The simplest reionization problem to consider is how a single, isolated galaxy
ionizes its surroundings. The formation of H II regions, or ionized bubbles,
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around galaxies is the fundamental process that drives reionization, although
in practice these galaxies are isolated only in the very earliest phases of reion-
ization. Our first goal is to model this problem of an isolated, expanding H II
region.

Let us consider, for simplicity, a spherical ionized volume V , separated from
the surrounding neutral gas by a sharp ionization front. In the absence of re-
combinations, each hydrogen atom in the IGM will have to be ionized only
once, and the ionized proper volume Vp will simply be determined by

n̄HVp = Qi, (9.1)

where n̄H is the mean number density of hydrogen, and Qi is the total number
of ionizing photons produced by the source.

The size of the resulting H II region depends on the halo that produces it.
Let us consider a halo of total massMh and baryon fraction�b/�m. To derive a
rough estimate, we assume that baryons are incorporated into stars with an ef-
ficiency f� and that the escape fraction for the resulting ionizing radiation is fesc.
This is the fraction of hydrogen ionizing photons that escape their host galaxy
without absorption and so are available to ionize intergalactic gas. We also let
Nion be the number of ionizing photons per baryon inside stars; this is ∼ 4,000
for Population II stars with a “present-day” IMF (see §8.8). We finally introduce
a parameter AHe = 4/(4 − 3Yp) = 1.22, where Yp is the mass fraction of he-
lium, as a correction factor to convert the number of ionizing photons to the
number of ionized hydrogen atoms (assuming that helium is singly ionized as
well). This is necessary because the first ionization potential of He I is 24.4 eV,
which is sufficiently close to the 13.6 eV required for H I so that typical stellar
populations ionize both species together.

At least in our simple model, so far as the IGM is concerned all these para-
meters are completely degenerate and together determine the overall ionizing
efficiency, which we call ζ ,

ζ = AHef�fescNion. (9.2)

If we neglect recombinations, then we obtain the maximum comoving radius
of the region that the halo of mass Mh can ionize,

rmax =
(

3

4π

Qi

n̄0
H

)1/3

=
(

3

4π

ζ

n̄0
H

�b

�m

Mh

mp

)1/3

= 680
(
ζ

40

Mh

108M�

)1/3

kpc, (9.3)

where n̄0
H is the number density of hydrogen. Here we have taken Population

II stars with fesc = 8% and f� = 10% for a fiducial estimate.
We may make a similar estimate for the size of the H II region around a

quasar. For the typical quasar spectrum, ∼104 ionizing photons are produced
per baryon incorporated into the black hole, assuming a radiative efficiency of
∼6% (see §7.2). The overall efficiency of incorporating baryons into the central
black hole is low (<0.1% in the local Universe; see §7.5.1), but fesc is likely to
be close to unity for powerful quasars. Thus, quasars typically have ζ > 10.
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This zeroth-order approximation provides a rough guide to the relevant scales.
However, the elevated density of the IGM at high redshift implies that recom-
binations cannot be ignored, so this simplest method must be improved. Just
before World War II, the Danish astronomer Bengt Strömgren analyzed the
same problem for hot stars embedded in the ISM.1 In the case of a steady
ionizing source (and neglecting the cosmological expansion), he found that a
steady-state volume (now termed a Strömgren sphere) is reached, inside which
recombinations balance ionizations:

αBn̄
2
HVp = Q̇i, (9.4)

where the recombination rate depends on the square of the density and on the
recombination coefficient; here we use the case-B value on the assumption that
ionizing photons resulting from recombinations to the ground state contribute
to the growth of the Strömgren sphere itself (see §4.3).

To model the detailed evolution of an expanding H II region, including a
nonsteady ionizing source, recombinations, and cosmological expansion, we
write

n̄HuI = Q̇i
4πr2

p

, (9.5)

where uI is the peculiar velocity of the ionization front (assumed here to be
much smaller than the speed of light), and Q̇i is the total number of ionizing
photons per second that reach the front; it differs from the production rate of
ionizing photons, Q̇i , because some of those photons are lost counteracting re-
combinations within the region. Noting that 4πr2

puI is the rate at which proper
volume is added to the H II region, which itself also expands with the Hubble
flow, we can write2

n̄H

(
dVp

dt
− 3HVp

)
= Q̇i − αB 〈nHne〉Vp. (9.6)

In this equation, the mean density n̄H ∝ a−3(t), and the angular brackets de-
note a volume average. Note that the recombination rate scales as the square
of the density. Therefore, if the IGM is not uniform but contains high-density
clumps separated by modestly underdense voids, then the average recombina-
tion time will be shorter than in a uniform medium. This difference is often
accounted for by introducing a volume-averaged clumping factor C (which is,
in general, time dependent), defined byi

C = 〈
n2
e

〉
/n̄2

e . (9.7)

Unfortunately, as we will see in §9.2.1, the clumping factor is rather difficult to
estimate robustly.

If the ionized volume is large compared with the typical scale of clumping,
so that many clumps are averaged over, then equation (9.6) can be solved by

iThe recombination rate depends on the number density of electrons and hydrogen nuclei; in
using equation (9.7) we are neglecting the small contribution made by partially or fully ionized
helium.
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specifying C. For the comoving volume V , the resulting equation is

dV

dt
= 1

n̄0
H

Q̇i − αB
C

a3
n̄0

HV. (9.8)

The solution for the total number of ionized atoms, Ni , contained in the H II
region around a source that turns on at t = ti can be obtained through an
integrating factor,

Ni (t) =
∫ t

ti

Q̇i(t
′) eF(t

′,t) dt ′, (9.9)

where

F(t ′, t) = −αBn̄0
H

∫ t

t ′

C(t ′′)
a3(t ′′)

dt ′′ . (9.10)

We can simplify this equation in the high-redshift limit (z � 1), where the scale
factor varies as a ∝ t2/3, if we make the additional assumption of a constant C.
Then, defining f (t) = a(t)−3/2, we obtain

F(t ′, t) = −2

3

αBn̄
0
H√

�mH0
C

[
f (t ′)− f (t)

] = −0.26
(
C

10

) [
f (t ′)− f (t)

]
. (9.11)

We have written equation (9.9) in terms of the number of ionized atoms
rather than the volume to emphasize the limits of this approach. One can eas-
ily define an effective comoving volume V = Ni/n̄0

H. However, one must be
careful in applying equation (9.9), because this effective volume V is the vol-
ume that would be filled by the ionized gas if held at the mean density and fully
ionized. The formalism implicitly confines recombinations to the edge of the
“ionized volume,” rather than allowing for the gas inside the zone to recom-
bine uniformly. This simple model is nevertheless useful for many purposes,
especially for steady sources where recombinations are relatively unimportant.
We present a more rigorous model for the ionization fronts, and partial ioniza-
tion inside the H II region, in §9.8.2.

Figure 9.1 shows some examples of the ionized volume evolution for a par-
ticular model of an isolated galaxy; the results are scaled to the maximum IGM
mass ionized by the galaxy. The models take ζ = 40, which makes rmax ∼ 20rvir.
They also take three possible clumping factors (from top to bottom, C = 0, 1,
and 10; see §9.2.1) at z = 10 and 15 (solid and dashed curves, respectively). For
this source, the ionization rate is assumed to be constant for ts = 3 × 106 yr,
the characteristic lifetime of the massive stars that produce ionizing photons,
before declining ∝ t−4.5 as these stars die; this is a reasonable approximation to
an instantaneous burst of star formation with a “normal” IMF.

Without recombinations, the ionized bubble reaches its maximal size shortly
after this characteristic time and remains there at later times; the result here
is independent of redshift. If recombinations are allowed, the ionized volume
never quite reaches its maximal value, and the shortfall increases with redshift
and clumping factor. Moreover, once recombinations are included, the ionized
mass shrinks rapidly once the source dims, as recombinations destroy the ion-
ized gas. (We remind the reader again that this does not mean that the front
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Figure 9.1 Evolution of the effective ionized volume for a stellar ionizing source, scaled
to the maximum possible value Vmax = 4πn̄Hr

3
max/3 (see eq. 9.3). The solid

and dashed curves assume that the sources begin shining at z = 10 and 15,
respectively. Within each set, they take C = 0, 1, and 10, from top to bottom.
The source has ζ = 40 and is assumed to fade with time ∝ t−4.5 after a period
ts = 3 × 106 yr, characteristic of the massive star lifetime. Reprinted from
Phys. Rep. 349, 125, Barkana, R., & Loeb, A., “In the beginning: The first
sources of light and the reionization of the universe,” 125–238, Copyright
2001, with permission from Elsevier.

separating ionized and neutral gas shrinks; rather, the recombinations extend
throughout the ionized volume, and the front stays more or less in place in this
simple model.) Recombinations slow down only at late times as the effective
recombination time exceeds the Hubble time.

One additional correction is sometimes necessary for equation (9.6): in the
limit of an extremely bright source, characterized by an arbitrarily high produc-
tion rate of ionizing photons, equation (9.6) would imply that the H II region
expands faster than the speed of light. At early times, the ionization front can
indeed expand at nearly the speed of light c, but only if the H II region is suffi-
ciently small that the production rate of ionizing photons by the central source
exceeds their consumption rate within the current volume. It is straightforward
to take the light propagation delay into account. The general equation for the
relativistic expansion of the comoving radius R of an H II region in an IGM with
neutral fraction xH I is3

dR

dt
= c(1 + z)

[
Q̇i − αBCxH I

(
n̄0

H

)2
(1 + z)3

(
(4π/3)R3

)
Q̇i + 4πR2 (1 + z) cxH In̄

0
H

]
, (9.12)

where here Q̇i is the rate of ionizing photons crossing a shell of the H II region
at radius R and time t (and so corresponds to the luminosity of the source at a
time in the past). Indeed, for Q̇i → ∞ the propagation speed of the proper
radius of the H II region, rp = R/(1 + z), approaches the speed of light,
(drp/dt) → c.
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9.2 Global Ionization History

The next level of sophistication in understanding reionization is to compute
the evolution of the average neutral fraction across the entire Universe. We
can obtain a first estimate for the requirements of reionization by demanding
one stellar ionizing photon for each hydrogen atom in the Universe. To zeroth
order the accounting is relatively simple: the efficiency parameter ζ is simply
the number of ionizing photons impacting the IGM produced per baryon inside
galaxies; thus, the neutral fraction (ignoring recombinations) is

QH II = ζfcoll, (9.13)

where QH II denotes the average filling factor of ionized bubbles (i.e., the frac-
tion of the volume of the Universe inside H II regions), and the collapse fraction
fcoll is the fraction of matter incorporated in galaxies (typically above some min-
imum mass threshold determined by cooling and/or feedback; see §3.4 and es-
pecially Figure 3.12). This equation assumes instantaneous production of pho-
tons, that is, that the timescale for the formation and evolution of the massive
stars in a galaxy is relatively short compared with the Hubble time at the for-
mation redshift of the galaxy. The primary inputs to such a model are the net
ionizing efficiency ζ and fcoll, which (given a halo mass function) depends on
the threshold halo mass that allows star formation. Assuming that only atomic
cooling is effective during the redshift range of reionization, the minimum
mass corresponds roughly to a halo of virial temperature Tvir = 104 K, which
can be converted to a mass using equation (3.32).

Again, we can improve this simple prescription by accounting for recombi-
nations. To do so, we treat each ionizing source as producing an isolated bubble
and assume that the bubble volumes add to give the total filling factor; although,
in fact, overlap is very important, this is not a bad approximation because—
neglecting internal absorption—any photons that pass into another ionized
bubble propagate to its edge and help grow it. Starting with equation (9.8), if
we assume a common clumping factor C for all H II regions, we can sum each
term of the equation over all bubbles in a given large volume of the Universe
and then divide by this volume. Then, we can replace V by the filling factor
and Q̇i by the ionizing photon production rate at time t per unit volume. The
latter quantity is simply ζ n̄ dfcoll/dt , which provides the emissivity of ionizing
photons. Under these assumptions we convert equation (9.8), which describes
individual H II regions, to an equation that statistically describes the transition
from a neutral Universe to a fully ionized one:ii

dQH II

dt
= ζ

dfcoll

dt
− α(T )

C

a3
n̄0

HQH II, (9.14)

iiThis equation actually suffers from the same small conceptual inconsistency we encountered in
Figure 9.1: recombinations do not necessarily decrease the size of the bubbles (and hence QH II)

but are instead spread throughout the ionized gas. We take a more careful approach toQH II in the
following sections of this chapter.
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which admits of the solution (in analogy with equation 9.9),

QH II(t) =
∫ t

0
ζ
dfcoll

dt ′
eF(t

′,t) dt ′, (9.15)

where F(t ′, t) is determined by equation (9.11).
Although this equation appears simple, even at this low level of sophistica-

tion it hides a number of uncertain parameters. Not only do the elements of ζ
each have large uncertainties, but they may also evolve in time; similarly, the
clumping factor C depends on the pattern of ionization in the IGM. We next
discuss each of these factors in turn.

9.2.1 Recombinations and the Clumping Factor

Before considering ζ , we first discuss some subtleties of the sink term in
equation (9.14). First, the recombination coefficient is somewhat uncertain
through both the gas temperature (which depends on nonequilibrium processes
during reionization; see §4.3.1) and an environmental factor that determines
whether case-A or case-B recombination is more appropriate (see §4.3). How-
ever, consider the case in which ionizations (and hence recombinations) are dis-
tributed uniformly throughout the IGM. Then, case B is appropriate, because
each regenerated photon will soon encounter another IGM atom to ionize. But
in the highly ionized low-redshift Universe, most recombinations actually take
place inside dense, partially neutral Lyman-limit systems (LLSs) because high-
energy photons can penetrate inside these high–column density systems (see
§4.4.1). However, the ionizing photons produced after recombinations to the
ground state usually lie near the Lyman limit (where the mean free path is
small), so they are consumed inside the systems. Thus, these photons do not
help ionize the IGM, and case A is more appropriate. Which of these regimes
is more relevant depends on the details of small-scale clumping and radiative
transfer.

Even more problematic is the clumping factor C(z). It may seem at first that
this volume-averaged factor can be computed through numerical simulations.
But that requires overcoming several difficult problems: (i) tracing the gas dis-
tribution with sufficient precision to resolve density fluctuations on the smallest
scales; (ii) correctly tracing the topology of ionized and neutral gas—because
the average must be calculated over only the ionized gas; and (iii) correctly mod-
eling the evolution of gas clumps during the reionization process itself.

The first problem is obvious: even leaving aside the ISM of each galaxy, as
well as the overdense environment surrounding each halo (which is implicitly
included in fesc in equation 9.2), the Jeans mass in the cold IGM is <105 M�.
This allows the formation of a well-defined cosmic web, as well as “minihalos,”
dense gas clouds that virialize but cannot cool or form stars. But, as we shall see,
simulations of reionization must span ∼100 Mpc boxes to adequately sample
the large H II regions, requiring an enormous dynamic range. Thus, even in
simulations, clumping is usually accounted for through a “subgrid” model built
from semianalytic techniques or bootstrapped from smaller simulations.
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The second problem is perhaps more subtle: how do the sources and ab-
sorbers relate to each other, and how does ionization affect the small-scale
clumping? For example, if low-density gas is ionized first, C < 1 throughout
most of reionization, because all the dense gas will remain locked up in neu-
tral, self-shielded systems (which cannot, by definition, recombine). However,
on large scales the ionizing sources lie inside overdense regions (sheets and
filaments), where the recombination rate is higher than average. The relative
importance of these two pools of gas changes as reionization progresses, which
makes simplified prescriptions for clumping particularly difficult to develop.

Finally, as the gas is ionized, the thermal pressure increases and the clumps
evaporate and fade into the IGM. Studying this problem requires simulations
of coupled-gas dynamics and radiative transfer, which (although now possible)
is difficult and highly dependent on the particular model of reionization (see
§9.9 for a detailed discussion). As an additional difficulty, the prereionization
gas temperature is uncertain by a factor of 100 or so, making even the initial
clumpiness hard to determine.

Thus, while the introduction of the clumping factor is an essential approxi-
mation for many analytic models, its evaluation is rather difficult; we describe
more physically motivated approaches in §9.5. Nevertheless, a reasonable and
concrete estimate is often useful. A recent fit from simulations that ignores the
second and third problems but does resolve the proper scales is4

C(z) = 27.466 exp(−0.114z + 0.001328z2). (9.16)

As expected, numerical simulations with radiative transfer and heating find a
significantly lower effective value of C(z).5

9.2.2 The Ionizing Efficiency

We now move on to the source term in equation (9.14), which has two parts:
dfcoll/dt and the ionizing efficiency ζ . The collapse fraction for a given cosmol-
ogy depends only on Mmin, the mass threshold for galaxy formation. The most
common choice for Mmin corresponds to a virial temperature Tvir = 104 K, the
threshold at which hydrogen line cooling becomes efficient for primordial gas
(see Fig. 5.1). Above this mass, cooling and fragmentation into stars is rela-
tively straightforward. Other choices are, however, physically plausible in cer-
tain regimes. For example, we have seen that H2 cooling can allow Population
III star formation in much smaller halos, while internal feedback within galax-
ies (like supernova winds) can strongly suppress star formation in halos near
the cooling threshold, effectively raising Mmin.

The factor ζ is even more difficult to pin down. A star formation efficiency
f� ∼ 10% is reasonable for the local Universe, but so little gas has collapsed by
z = 6 that these local observations do not directly constrain the high-redshift
value. Appropriate choices for Population III stars are even more uncertain. To
the extent that each halo can form only a single very massive (m� ∼ 102 M�)
star that enriches the entire halo (>106M�), f� ∼ (�m/�b)m�/Mh < 10−3,
though larger values are permissible, especially if metal dispersal is inefficient.
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The UV escape fraction is small in both nearby galaxies and those at mod-
erate redshifts, with many upper limits fesc < 5% and only a few positive
detections.6 Interestingly, fesc shows large variance among galaxies; most likely,
ionizing photons are able to escape only along clear channels in the galactic
ISM, which appear to be quite rare in the objects we can study. However, it
could be considerably larger inside small, high-redshift galaxies, whose inter-
stellar media can easily be shredded by radiation pressure, winds, and super-
novae, clearing out large escape paths.
Nion depends on the stellar initial mass function and metallicity. Convenient

approximations are Nion ≈ 4,000 for Z = 0.05 Z� Population II stars with a
present-day initial mass function, and Nion < 105 for very massive Population
III stars (see §5.4 and 8.8), but these are uncertain by at least a factor of two.
In particular, the latter estimate hinges more on the high masses of these stars
than on their primordial composition; metal-free stars with a normal Salpeter
IMF are only ∼1.6 times more efficient than their Population II counterparts.

Finally, accreting black holes may provide an additional source of ionizing
photons that increases the total efficiency of each halo. These sources are likely
to have hard spectra and so produce a substantial number of high-energy ion-
izing photons; thus, they pose particular challenges to understanding reioniza-
tion, to which we return in §9.8.

Of course, we expect all these factors to evolve throughout reionization due to
the feedback processes discussed elsewhere. Thus, a robust model for the filling
factor QH II requires a sophisticated understanding of galaxy evolution during
the cosmic dawn. This lies well beyond our powers at present, but we can make
some progress by generalizing the ionizing efficiency to be a function of both
time and halo massmh, ζ ≡ ζ(mh, t). The mass dependence is meant to capture
internal feedback mechanisms that affect each galaxy in a deterministic fashion,
like the effects of starburst winds. With this prescription, we must replace the
source term in equation (9.14) with the integral

d

dt

∫
dmh

mh

ρ̄
ζ(mh, t)n(mh, t), (9.17)

where n(mh, t) is the halo mass function (see §3.4). Unfortunately, external
feedback mechanisms—which depend on the halo’s large-scale environment—
require additional physics inputs and machinery in the model.

9.3 The Phases of Hydrogen Reionization

The process of hydrogen reionization involves several distinct stages (concep-
tually illustrated in Figure 9.2). The initial “preoverlap” phase consists of indi-
vidual ionizing sources turning on and ionizing their surroundings. The first
galaxies form in the most massive halos at high redshift, which are preferen-
tially located in the highest-density regions. Thus, the ionizing photons that
escape from the galaxy itself must then make their way through the surround-
ing high-density regions, which are characterized by a high recombination rate.
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(a) Preoverlap (b) Overlap (c) Postoverlap

Figure 9.2 Diagram of the three phases of reionization. (a) In the preoverlap phase,
galaxies are uncommon, and their H II regions grow in relative isolation.
In practice, galaxies are highly clustered, so even in this stage some of those
H II regions meet each other. Nevertheless, the average ionizing background
grows fairly slowly during this epoch. (b) Once galaxies become sufficiently
common, the overlap phase, in which ionized bubbles rapidly intersect, be-
gins. During this phase, the ionizing background can increase relatively
rapidly as sources are quickly added to each discrete H II region. (c) Once
nearly all the IGM is ionized, the postoverlap phase begins, in which ionizing
photons are absorbed by dense clouds of optically thick gas, or Lyman-limit
systems. The finite mean free path of ionizing photons, even in a “reionized”
universe, is represented here by the dashed circles surrounding a few of the
sources.

Once they emerge, the ionization fronts propagate more easily through the low-
density voids, leaving behind pockets of neutral, high-density gas. During this
period, the IGM is nearly a two-phase medium characterized by highly ionized
regions separated from neutral regions by ionization fronts. Furthermore, the
ionizing intensity is very inhomogeneous even within the ionized regions.

Because these first sources are highly clustered, this early phase quickly en-
ters the central, relatively rapid “overlap” phase of reionization when neighbor-
ing H II regions begin to overlap. Whenever two ionized bubbles join, each
point inside their common boundary becomes exposed to ionizing photons
from both sources. Therefore, the ionizing intensity inside H II regions rises
rapidly during overlap, allowing those regions to expand into high-density gas
that had previously recombined fast enough to remain neutral when the ioniz-
ing intensity was low. By the end of this stage, most regions in the IGM are able
to “see” many individual sources, making the ionizing intensity both larger and
more homogeneous than before as the bubbles grow.

During this central phase, most ionizing photons stream through the IGM
without absorption, because the gas is highly ionized. However, the protocos-
mic web makes this gas inhomogeneous, and in dense pockets of the IGM the
recombination rate is much larger. These neutral regions—the high-redshift
analogs of LLSs (see §4.4.1)—absorb any ionizing photons that strike them,
preventing the H II regions from continuing to grow. Eventually, the ionized
bubbles become so large that most photons strike one of these LLSs before
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reaching the edge of a bubble. This final “postoverlap” phase thus has slower
evolution in the ionizing background (at least in the simplest models), modu-
lated by the evaporation of these LLSs, and that background becomes increas-
ingly more uniform.

Of course, this reionization process develops at different rates in different
regions of the Universe; naturally, areas with an overabundance of sources un-
dergo more rapid reionization, while those with relatively few sources require
input of ionizing photons from external sources. Because the galaxy population
traces the underlying density field, these correspond to overdense and under-
dense regions, respectively. But because the galaxies are highly biased relative
to the dark matter, even a modestly overdense region can undergo reioniza-
tion much earlier. (In fact, if galaxies were unbiased, reionization would not
occur any faster in dense regions, because the increased galaxy counts would
be exactly canceled by the increased gas density!) Note that this inhomogeneity
in the reionization process also means that the three phases identified previ-
ously are not clearly distinct from one another: overdense environments rapidly
reach the overlap (and even postoverlap) stages while void regions are still in the
preoverlap phase.

This general march of reionization from high to low density is referred to
as inside-out reionization. While most reionization models follow this behavior
when averaged over large scales, on sufficiently small scales the process is actu-
ally outside-in, proceeding from low to high densities, since dense blobs remain
partially neutral for a more extended period of time.

Figure 9.3 illustrates this patchiness (or “Swiss cheese topology” as it is often
termed). The top left, top center, top right, and bottom left panels show the den-
sity of ionized hydrogen (in units of the mean) when QH II = 25%, 50%, 75%,
and ≈ 100%. The bottom right panel shows the redshift zreion at which each
cell in the simulation was ionized. Note the wide distribution of ionized bubble
sizes, with the largest bubbles centered around the largest clusters of galaxies
in the simulation, and the tight correlation with zreion.

9.4 The Morphology of Reionization

Clearly, the patchiness of the ionization field—or its morphology—depends sen-
sitively on where galaxies formed at high redshifts. This morphology is there-
fore of much interest from both theoretical and observational perspectives, and
we next describe its theoretical modeling.

Given the complex physics of the sources and sinks of ionizing photons and
their interaction in the IGM, it may seem that the problem must be tackled with
detailed numerical simulations, and, indeed, much of the early work, beyond
the preoverlap stage, followed that approach. However, at its heart, reionization
is actually surprisingly straightforward: until the postoverlap stage, it simply
requires us to count photons. Thus, a great deal of progress can be made with
simple analytic models.
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Figure 9.3 Snapshots from a numerical simulation illustrating the spatial structure of
cosmic reionization in a slice of 140 Mpc on a side. The simulation describes
the dynamics of the dark matter and gas as well as the radiative transfer of
ionizing radiation from galaxies. The first four panels (reading across from
top left to bottom left) show the evolution of the ionized hydrogen density
ρH II normalized by the mean proton density in the IGM 〈ρH〉 when the sim-
ulation volume is 25%, 50%, 75%, and 100% ionized, respectively. Large-
scale overdense regions form large concentrations of galaxies whose ionizing
photons produce joint ionized bubbles. At the same time, galaxies are rare
within large-scale voids in which the IGM is mostly neutral at early times.
The bottom middle panel shows the temperature at the end of reionization,
while the bottom right panel shows the redshift at which different gas ele-
ments are reionized. Higher-density regions tracing the large-scale structure
are generally reionized earlier than lower-density regions far from sources.
At the end of reionization, regions that were last to get ionized and heated
are still typically hotter because they have not yet had time to cool through
the cosmic expansion. Trac, H., & Loeb, A. (2010).

Let us consider the simplest possible exercise, shown in the first two panels
of Figure 9.4: we count the number of ionizing photons produced by galaxies
inside some specified volume of radius R and fractional overdensity δR and
compare the sum with the number of hydrogen atoms. The region can be ion-
ized only if the former exceeds the latter, or if

ζfcoll(z, δR, R) > 1. (9.18)



chapter9 August 31, 2012

THE REIONIZATION OF INTERGALACTIC HYDROGEN 295

(a) (b) (c)

Figure 9.4 Diagram of the excursion set model for generating the ionization morphol-
ogy. (a) In the initial stages, where galaxies are nearly isolated, it is straight-
forward to compute the ionized volume (white circles) around each source
(stars), given only its ionizing efficiency. However, if two such volumes over-
lap, the overlap region must be distributed over the remaining volume so that
ionizing photons are conserved. (b) This problem becomes especially acute
once a substantial fraction of the IGM is ionized: in that case, redistributing
the overlap volume can link up previously separate ionizing bubbles and cre-
ate a cascading effect. (c) The solution is to work from the outside in, rather
than trying to begin with each individual galaxy. Here, we compare the num-
ber of atoms contained inside the large circle with the number of ionizing
photons generated by all the galaxies inside that region. If the latter is larger,
the region is ionized; if not, we ask the same question for smaller regions
(shown by the dashed circles), until the two quantities balance.

Here fcoll(z, δR, R) is the collapse fraction within this region (see equation 3.38
and §3.4.2),

fcoll(z, δR, R) = erfc


 δcrit(z)− δR/D(z)√

2[σ 2
min − σ 2(R)]


 , (9.19)

where δcrit is the threshold for halo collapse,iii the factor D(z) linearly extrapo-
lates the real fractional overdensity δR to the present day for comparison with
the collapse threshold, and σ 2

min is the variance of the density field on the scale
corresponding to the minimum mass for galaxy formation, Mmin. The propor-
tionality constant ζ is the ionizing efficiency per baryon in stars (equation 9.2);
here we have assumed that it is identical in every galaxy, though that is straight-
forward to modify, as in equation (9.17).

There are two flaws to this approach. The first is that some fraction of the
gas may recombine before the region is completely ionized, so more than one
photon per atom is required. If such recombinations were uniform, we could
account for them simply by replacing ζ → ζ/(1 + Nrec), where Nrec is the
mean number of recombinations per baryon. In practice, this is not a very good

iiiHere we have used the constant Press-Schechter criterion for simplicity, but one of the more
accurate choices described in §3.4.3 can easily be used.
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approximation, so we defer a detailed description of the effects of inhomoge-
neous recombinations until later.

The second problem is the propagation of photons over large scales. Equa-
tion (9.18) is local, in that it compares atoms in a region only with photons
generated in the same region. In fact, a particular patch of space may be entirely
ionized by sources from outside the patch. In an extreme example, consider a
spherical shell in the IGM that surrounds a galaxy. The galaxy sits inside the
shell, but if the shell is sufficiently close to the galaxy, it will nevertheless be
ionized.

Thus, to apply equation (9.18), we require some way to adjust the scale R as
needed to account for nearby sources. Fortunately, we have already studied just
such a technique: the excursion set model for dark matter halos solves this very
problem (§3.4.1). In that case, the problem was that a small-scale density fluctu-
ation may lie inside a larger-scale feature that itself may have collapsed to form
a halo; in the present case a small region may lie inside a larger ionized bubble.
Either way, the solution is to compare the threshold (for spherical collapse or
ionization) on all scales, working from large to small so as to include neighbors
automatically, by phrasing it as a diffusion problem. Figure 9.4(c) illustrates the
procedure.

We therefore consider here the trajectory of δR as we move from large
to small scales. We compare this smoothed overdensity to the criterion in
equation (9.18), which we can rewrite as

δR > δB(M, z) ≡ δcrit − √
2K(ζ)[σ 2

min − σ 2(M, z)]1/2, (9.20)

where K(ζ) = erf−1
(1 − ζ−1), and erf(x) ≡ 1 − erfc(x). The barrier in

equation (9.20) is well approximated by a linear function of σ 2, δB ≈ B(M) =
B0 +B1σ

2(M), where B0 and B1 are fitting constants. Conveniently, for this lin-
ear approximation there is an analytic solution to the diffusion problem (which
we derive in detail in §9.4.1), which we can transform into the mass function of
ionized bubbles7

nb(M) =
√

2

π

ρ̄

M2

∣∣∣∣ d ln σ

d lnM

∣∣∣∣ B0

σ(M)
exp

[
− B2(M)

2σ 2(M)

]
. (9.21)

This function nb(M) provides the comoving number density of ionized bubbles
with IGM mass in the range between M and M + dM .

The solid curves in Figure 9.5 show the resulting size distributions for a
range of QH II at z = 15; the ordinate is the fraction of the ionized volume
filled by bubbles of a given size. The most important result of these models is
that bubbles grow large during the middle stages of reionization, with charac-
teristic sizes Rc ∼ 1, 4, 10, and 30 Mpc when QH II = 0.2, 0.4, 0.6, and 0.8.
Comparing this result with equation (9.3) shows clearly that by the midpoint of
reionization a typical ionized bubble already contains thousands of sources—
overlap is indeed extremely important in determining the morphology of ion-
ized bubbles.

A second important point is the very different shape of these bubble mass
functions compared with the halo mass function, which increases toward zero
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Figure 9.5 H II region size distributions at z = 15 in the analytic model of equa-
tion (9.21). The solid and dashed curves assume ζ ∝ m0

h and m2/3
h , respec-

tively. From left to right within each set, we take QH II = 0.05, 0.2, 0.4, 0.6,
and 0.8. Recombinations are assumed to be uniform throughout the IGM.
Furlanetto, S. R., McQuinn, M., & Hernquist, L., Mon. Not. R. Astron. Soc.
365, 529 (2006). Copyright 2006 by the Royal Astronomical Society.

mass at all redshifts. The barrier of equation (9.20) increases relatively rapidly
toward small M , choking off the formation of small bubbles. This imprints a
characteristic size Rc on the ionized bubbles. To understand this size, note that
Rc is the scale at which a “typical” density fluctuation is able to ionize itself,
without the input of external sources; mathematically, it is where σ(Rc) ≈ B.
In the large bubble limit (B ≈ B0), our original ionization criterion becomes

ζfcoll(δ = B0, σ
2 = 0) = 1. (9.22)

Expanding equation (9.19) to linear order, we can write

σ(Rc) ≈ B0 ≈ Q−1
H II − 1

D(z)beff
, (9.23)

where beff is the average galaxy bias. Intuitively, a more biased galaxy population
provides a larger “boost” to the underlying dark matter fluctuations, allowing
larger regions to ionize themselves. The dashed curves in Figure 9.5 illustrate
this effect: they show the bubble size distribution if ζ ∝ m

2/3
h , where mh is the

halo mass. This prescription emphasizes the massive, more biased galaxies and
so increases beff. Thus, by measuring the H II region sizes, one can constrain
the characteristics of the galaxies driving reionization.

Several properties of equation (9.21) deserve emphasis. First, at a givenQH II,
nb(M) depends only weakly on redshift. This is because the shape of fcoll(δ, R)

evolves only slowly with redshift; quantitatively, D(z)beff is roughly constant
for high-redshift galaxies, assuming that Mmin is determined by a virial tem-
perature threshold. Second, the width of nb(m) is ultimately determined by the
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shape of the underlying matter power spectrum, which steepens toward larger
radii with a shape that is only weakly dependent on astrophysical uncertainties.

Thus, at least in this simple model, the bubble sizes depend essentially on
only two parameters: the overall filling fraction of the ionized gas, QH II, and
the average bias of the ionizing sources, beff. Varying the overall efficiency of
reionization (and hence its timing) has only a small effect on the morphology
of reionization. This robustness makes the morphology an extremely useful
tool for measuring the reionization process.

Finally, the similarity to the Press-Schechter halo mass function also means
that most of the machinery used for halo mass functions (for clustering, con-
ditional mass functions, etc.) can be carried over to describe these ionized bub-
bles. For example, the linear bias of H II regions, defined so that nb(m|δ) =
nb(m) [1 + bH II(m) δ] in a large region of mean overdensity δ, isiv

bH II(m) ≈ 1 + B(m)/σ 2(m)− 1/B0

D(z)
. (9.24)

Note that in this model each bubble must correspond to a region with above-
average density (although it can, of course, contain smaller underdense voids).
This is obvious from equation (9.18): once the average fcoll(δ = 0) = 1/ζ , the
entire Universe must already be ionized.

However, the bias bH II can become negative for sufficiently small bubbles.
Physically, this occurs because overdense regions are further along in the reion-
ization process, so most small bubbles have already merged with larger H II
regions. During the late stages of reionization, only the deepest voids contain
galaxies isolated enough to create small bubbles. Nevertheless, the average bias
of ionized gas,

b̄H II ≡ Q−1
H II

∫
dmnb(m)V (m)bH II(m), (9.25)

where V (m) is the volume corresponding to a massm, is quite large throughout
the early stages of reionization, attaining values ∼ 3–10.

As another example, each H II region of mass m must have its overdensity
equal to the barrier value at σ 2(m). One can then generate density trajectories
with the initial conditions fixed at these bubblewide values and apply the usual
spherical (or ellipsoidal) collapse criterion to generate the conditional halo mass
functions within each bubble (cf. eq. 3.43); thus one can predict the galaxy pop-
ulations that ionize each region of space. We explore this possibility further in
§11.7.1.

Finally, we end this section by noting that the observed distribution of bubble
sizes differs from this “intrinsic” one. The theoretical distribution is evaluated
at a single instant in cosmic time; however, real observations observe different

ivThere is one subtlety in this calculation compared with the usual halo bias. With the linear barrier
fit to equation (9.20), the fractional bubble overdensity has a term B1σ

2
R/B0, where σ 2

R is the mass
variance on the large scale on which the bias estimate is made. This term does not scale with the
dark matter density and so it spoils a linear bias estimate. Fortunately, it is large only if σ 2

R is large
(i.e., on small scales) or very close to the end of reionization, when B1 � B0.
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times because of the finite speed of light.8 This “light-cone effect” imposes a
maximum observable bubble size at the end of reionization, which can be esti-
mated via similar arguments to those we have used here. Let us take the slightly
simpler case of including only those photons generated within a given region of
radiusR. Then, the ionization state of that region depends only on the collapsed
fraction inside it. Again, reionization should be completed when this fraction
exceeds a certain critical value, corresponding to a threshold number of ioniz-
ing photons emitted per baryon. There is an offset δz between the redshift at
which a region of mean overdensity δR achieves this critical collapsed fraction
and the redshift z̄ at which the Universe achieves the same collapsed fraction
on average.

This offset may be computed by expanding equation (9.19) assuming small
deviations (an excellent approximation on the large scales and early times rele-
vant here), which gives9

δz

(1 + z̄)
= δR

δcrit(z̄)
−

[
1 −

√
1 − σ 2

R

σ 2
min

]
, (9.26)

where, again, σ 2
min is evaluated at the minimum galaxy mass Mmin. Obviously,

the offset in the ionization redshift of a region depends on its linear overden-
sity δR . Note also that equation (9.26) is independent of the critical value of the
collapsed fraction required for reionization: the only redshift dependence is in
Mmin and is rather mild. Therefore, as with the bubble size distribution, the
ionization redshift relative to its average value is nearly independent of the tim-
ing of reionization. The bottom right panel of Figure 9.3 shows the distribution
of reionization redshift in a numerical simulation of the reionization process,
illustrating the large dispersion of reionization times.

Because the overdensity distribution narrows as R increases, the typical de-
viation δz decreases with R; however, the light-crossing time increases with R.
Thus, there is a critical size above which photons from the far edge of a bubble
reach the observer only after the near edge of the bubble has been fully ion-
ized. This critical size then determines the maximum observable size. With the
presently favored cosmological parameters, this value ≈ 10 comoving Mpc and
is nearly independent of the time at which redshift occurred.10

9.4.1 The Formal Solution of the Linear Barrier Problem

Before turning to more sophisticated models of reionization, we pause briefly
here to derive the mass function of equation (9.21), which will illustrate explic-
itly how the excursion set formalism allows us to approach these problems.
Recall from §3.4.1 that we treat the problem as diffusion in density space, as-
sociating a given trajectory with a “halo” (here, an ionized bubble) of mass mb
if the trajectory crosses an absorbing barrier (here specified by δB ) for the first
time at mass scale mb. To solve the diffusion problem, we imagine smoothing
the density field around a given point on progressively smaller scales, “zoom-
ing in” on that point. If we perform the smoothing such that each stage adds
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additional Fourier modes of progressively smaller amplitude, we can replace
our mass variable mb with

σ 2
k (mb) =

∫ K

0

k2 dk

2π2
Plin(k), (9.27)

where the cutoff wavenumber amplitude K = K(mb). This is a sharp k-space
filter; it is convenient because each step in the “zooming in” corresponds to
simply adding in more and more k-modes. As each is independent (at least
during linear evolution and in the standard cosmological paradigm of Gaussian
initial perturbations), each step in our random walk, from m1 to m2 < m1, is
uncorrelated with previous steps, with standard deviation 	σ 2

k = σ 2
k (m2) −

σ 2
k (m1).
Unfortunately, a sharp k-space filter has unappealing properties in real space,

where these halos or bubbles reside (and where we try to observe them): the cor-
responding real-space window function has oscillatory contributions from large
distances and is not confined to a limited spatial region. From this standpoint,
sharp filtering in real space is much more appealing, because it describes the
well-localized halos or bubbles we desire, and that is what the usual variance
of the density field, σ 2(m), describes. The fundamental sleight of hand of the
excursion set approach is to ignore this distinction by using σ 2(m) in place of
σ 2
k —a stratagem that is ultimately justified by its utility in matching the results

of more detailed numerical simulations. In the remainder of this section, we let
S = σ 2(m) for notational convenience.

To describe the evolution of fractional overdensity δ with S, we note that the
probability of a transition from δ1 to δ2 = δ1 +	δ between S1 and S2 is

p(δ2, S2) dδ2 = 
(	δ,	S) d(	δ), (9.28)

where


(	δ,	S) d(	δ) = 1√
2π	S

exp
(

− (	δ)2

2(	S)

)
d(	δ), (9.29)

and 	S is the difference in the variance of the density field between these two
scales.

The probability distribution of δ after taking such a step is therefore

p(δ, S +	S) =
∫
d(	δ)
(	δ,	S)p(δ −	δ, S), (9.30)

where p(δ−	δ, S) is the probability distribution of the density before taking the
step, and 
 is the probability of taking the proper step to reach the final δ. As-
suming small step sizes, we can expand both sides in a Taylor series to second
order in 	δ (which is first order in 	S). The left-hand side is straightforward;
the right-hand side gives
∫
d(	δ)
(	δ,	S)

(
p(δ, S)− ∂p

∂δ
	δ + 1

2

∂2p

∂δ2
(	δ)2

)
= p(δ, S)+ 	S

2

∂2p

∂δ2

(9.31)
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And thus the “evolution” equation for the fractional overdensity becomes

∂p

∂S
= 1

2

∂2p

∂δ2
, (9.32)

which takes the form of a diffusion equation.
The boundary conditions are straightforward to describe. First, we know

δ = 0 when S = 0, by definition, or in other words, p(δ|S = 0) = δD(δ),
a Dirac delta function. Second, we need to identify trajectories that strike our
barrier δB with bubbles of the corresponding mass. This is an absorbing barrier
in a diffusion problem, as it completely removes any trajectory that reaches this
threshold from continuing its random walk. Therefore, p(δB, S) = 0.

There are a variety of methods for solving this problem, including Laplace
transforms,11 path integrals,12 and the method we illustrate here, simple sepa-
ration of variables. Let us focus on a linear barrier,B = B0+B1S, and transform
it to a variable y = B1(δ − B1S), such that equation (9.32) becomes

∂p

∂S
= B2

1

2

(
∂2Q

∂y2
+ 2

∂Q

∂y

)
, (9.33)

and our absorbing barrier boundary condition becomes p(B1B0, S) = 0. We
then seek solutions of the form p(y, S) = g(y)f (S). Equation (9.33) does in-
deed separate, and if we write the separation constant as λ, it is easy to show
that the solutions are f (S) = exp(λS) and g(y) = exp[(−1 ± iX)y], where
X = −i(1 + 2λ/B2

1 )
1/2. The absorbing barrier boundary condition demands

that the solution vanish at y = B1B0, which fixes the oscillatory component
of g. Thus,

p(y, S) =
∫ ∞

0
dX h(X) sin[X(y − B0B1)] exp

[
−y − B2

1

2
(1 +X2)S

]
, (9.34)

where h(X) represents the amplitude of each mode. This function can be fixed
by comparison with the other boundary condition: it is customary to recast
this as

p(δ|S = 0) = lim
S→0

1√
2πS

exp
[
− δ2

2S

]
. (9.35)

If we replace δ with y, it is easy to see that h(X) = (B1/π) sin(XB0B1), which
allows us to integrate equation (9.34) and so obtain an explicit expression for
the probability distribution,

p(δ, S) = 1√
2πS

{
exp

(
− δ2

2S

)
− exp

[
−|2(B0 + i

√
B0B1S)− δ|2
2S

]}
. (9.36)

Although the “image” approach described in §3.4.1 does not work here, this
equation shows that the final distribution has an analogous form, as the first
part is simply the distribution without the absorbing barrier, and the second is
the trajectories that have been removed by the absorbing barrier.
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The probability that a trajectory crosses the barrier in the interval (S, S+ dS)
is the rate at which these trajectories disappear from the unabsorbed set, or

pcross(S) =− d

dS

∫ B0B1

−∞
dy

B1
p(δ, S) = −B1

2

∂p

∂y

∣∣∣∣
B0B1

−∞
= B0√

2πS3
exp

[
−B(k)

2

2S

]
,

(9.37)

where in the second part we have used the diffusion equation (9.33) and the ab-
sorbing boundary condition. Finally, the number density of bubbles in
equation (9.21) is simply

nb(m) = ρ̄

m
pcross(S)

∣∣∣∣ dSdm
∣∣∣∣ . (9.38)

The technique described here can also be used to solve the halo mass func-
tion problem (where B is independent of mass or S), as well as many other
interesting problems within the excursion set formalism.

9.5 Recombinations inside ionized Regions

Incorporating inhomogeneous recombinations into the excursion set model for
ionized bubbles is relatively straightforward. Each H II region obviously con-
tains density fluctuations. Because the recombination rate increases as (1 +
δnl)

2, where δnl is the fully nonlinear fractional overdensity, dense clumps will
remain neutral—and optically thick—longer than voids will.

We begin with the simple ansatz that within each ionized bubble there ex-
ists a threshold overdensity δi below which gas is ionized and above which it is
neutral. Any ionizing photons striking these dense blobs—which correspond to
LLSs in the postreionization Universe (see §4.4.1)—will be lost to recombina-
tions in the neutral gas and hence are useless for increasing the filling factor of
the ionized bubbles. In other words, for an H II region to continue growing, the
average separation of these dense blobs must exceed the radius of the bubble.
Given a model for the volume-averaged IGM density distribution, p(δnl), we
can estimate δi by requiring the mean free path between such regions to equal
the bubble radius. Clearly, this threshold must increase as the bubbles grow,
so that progressively denser gas is ionized with time. Figure 9.6 illustrates this
process.

However, ionizing more deeply into the dense gas will also increase the re-
combination rate per proton, which is

Arec =α(T )n̄e(1 + δ)

∫ δi

−1
dδnl p(δnl) (1 + δnl)

2 (9.39)

≡α(T )n̄eC(δ, Rb),
where C(δ,Rb) is the local clumping factor within a bubble of radius Rb and
mean overdensity δ, and where we assume that the bubbles are large enough
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(a) (b)

Figure 9.6 Illustration of the role of optically thick regions (or LLSs) in reionization.
These always exist due to the clumpiness of the IGM, but they become im-
portant only in the late phases of the process. (a) Early in reionization, when
the ionized regions are small, most lines of sight intersect the edge of the ion-
ized bubble rather than an LLS. Most ionizing photons therefore contribute
to increasing the filling factor of ionized gas, and LLSs play only a minor role
in slowing the process during its early phases. (b) However, once the bubble
size grows larger than the mean separation of LLSs, most ionizing photons
are absorbed by these objects rather than growing the ionized bubble. The
embedded sources therefore no longer contribute to reionization—and so
far as they are concerned, the process is over locally, even if other regions
remain largely neutral.

for linear theory to suffice in this average.v The bubble can grow only if ionizing
photons are produced more rapidly than recombinations consume them, or in
other words, if

ζ
dfcoll(z, δR, R)

dt
> α(T )n̄e C(δ, R). (9.40)

The crucial point is that C depends on both the mean density of the bub-
ble (recall that bubbles correspond to large-scale overdensities) and on its size
(through δi). Thus, as expected from §9.2.1, inhomogeneous reionization af-
fects the clumping factor. Moreover, the complete model is both “inside-out”
on large scales and “outside-in” on small scales. Recombinations become in-
creasingly important as bubbles grow; eventually, they balance ionizations, and
the bubble growth saturates in true recombination-limited cosmological Ström-
gren spheres.

Equation (9.40), which places a constraint on the instantaneous emissivity
of ionizing photons, complements our original ionization condition, equation
(9.18), which requires that the cumulative number of ionizing photons exceed
the total number of hydrogen atoms. In reality both conditions must be fulfilled,
but in practice one of the two generally dominates. This is essentially because
recombinations take over only when δi approaches the characteristic density of

vIn detail, we actually require the density distribution p as a function of large-scale overdensity.
Fortunately, in practice, most large ionized bubbles (where recombinations are relevant) are very
close to the mean density.
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virialized objects, or in other words, when LLSs set the mean free path, as in
the lower-redshift Universe (see §4.4.1).

As a consequence, it is possible to combine the two conditions in the excur-
sion set formalism and compute the “bubble” sizes including recombinations.
However, this approach requires one conceptual shift: rather than being the ac-
tual size of discrete H II regions, the radius R now corresponds roughly to the
mean free path of ionizing photons. When recombinations are unimportant,
this radius equals the size of bubbles. But once the bubbles “saturate” as Ström-
gren spheres, neighboring H II regions can touch—only their ionizing photons
do not influence one another. This is, in actuality, the same configuration that
is present in the postreionization Universe, where ionizing photons are limited
by LLSs. The model therefore describes how the “bubble-dominated” topology
characteristic of reionization transitions smoothly into the “web-dominated”
topology of the postreionization Lyman-α forest, albeit in an inhomogeneous
manner across the Universe.

The key input parameter is obviously p(δnl), which parameterizes the IGM
clumpiness (see also §4.7). In detail, the nonlinear evolution requires cosmolog-
ical simulations that include coupled dark matter dynamics, gas dynamics, and
radiative transfer (to account for the effects of photoheating before and during
reionization). This difficult problem has not yet been solved in detail, and so ap-
proximate models are generally used. These typically either take the postreion-
ization limit (where the gas is smoothed on the Jeans scale corresponding to
a temperature of ∼104 K) or appeal to a simple model for structures present
before reionization (such as virialized minihalos unable to cool and form stars).

In practice, including recombinations in this manner has a very simple effect:
it imposes a maximum size on the “ionized regions” that corresponds to the
mean free path of an ionizing photon through the inhomogeneous IGM, given
the local ionizing background. Bubbles substantially smaller than this limit are
almost unaffected by the LLSs, because so few of their ionizing photons strike
them.

This picture has important implications for our understanding of the end of
reionization. Consider, for example, the evolution of the mean specific intensity
of the radiation background, J ≈ ελ/(4π), where ε is the emissivity and λ is the
mean free path (see equation 4.44). If we ignored neutral gas inside the ionized
bubbles, the mean free path would simply equal the size of the local ionized
bubbble, Rb, which, of course, reaches infinity at the end of reionization.

Now, consider how the radiation background grows at a fixed point in the
IGM, including inhomogeneous recombinations. When the point is first ion-
ized, J increases rapidly. As the sources inside the bubble ionize their
surroundings—gradually adding more sources within the visible “horizon” pro-
vided by the bubble edge—J increases slowly, in proportion to Rb. Occasion-
ally, however, the sources ionize a thin wall separating the local bubble from
a neighboring H II region. Suddenly, many more sources become visible, and
J , along with the local bubble size, instantaneously increases by a large factor.
The solid curves in Figure 9.7 illustrate this series of discontinuous jumps in
the ionizing background at a few different points in the IGM.
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Figure 9.7 Bubble histories for several randomly generated trajectories. The vertical axis
shows the bubble radius surrounding a fixed IGM point as a function of the
filling factor of bubbles and z; here we arbitrarily fix ζ so that reionization is
complete at z = 6. Each thin solid line corresponds to a different IGM point.
All include the effect of inhomogeneous recombinations, while the dashed
lines ignore them. These differences matter only when the bubbles grow
larger than the mean free path of ionizing photons (near the end of reion-
ization), so these are distinguishable only when QH II > 0.9. The heavy dark
and light lines show the average bubble size Rc and the mean free path λ,
respectively, in this model. Furlanetto, S. R., & Oh, S. P., Mon. Not. R. Astron.
Soc. 363, 1031 (2005). Copyright 2005 by the Royal Astronomical Society.

However, this series of discontinuous jumps cannot continue indefinitely:
eventually, the bubble grows large enough that most ionizing photons intercept
dense LLSs rather than reaching the edge of the bubbles. From that point, the
ionizing background is regulated by the abundance of these systems rather than
the global ionized fraction: in effect, the point has reached the “post-overlap”
stage even if some of the IGM (at large distances from our point) remains
neutral. In Figure 9.7, this situation is illustrated by the range of redshifts (or
bubble-filling factors) for which the random trajectories reach λ, whereR nearly
stops increasing according to this model.

This transformation from an ionizing background regulated by the sizes of
H II regions to one regulated by LLSs poses an interesting challenge for studies
of reionization. In particular, in the final stages of the process, the mean ampli-
tude of the ionizing background is completely insensitive to the morphology of
reionization—and so tells us nothing about that process. Rapid evolution would
be indicative not of “overlap” but, rather, of rapid evolution in the absorber
population.
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9.5.1 The Mean Free Path at High Redshifts

Obviously, the mean free path of ionizing photons plays an extremely important
role in regulating the end of reionization. Can we place any constraints on it?

This is a difficult proposition at best. Extrapolating observations at z < 6
(equation 4.49) implies that λ ∼ 7 (1) proper Mpc at z ∼ 6 (10); simple theoret-
ical models predict values in this range as well. However, as the Universe be-
comes denser and as the ionizing background declines, the densities required
to host an optically thick system approach the mean cosmic density. It is there-
fore not at all clear that such an extrapolation is justified.

For example, equation (4.51) tells us the density of an LLS in terms of the
ionizing background. We can make a simple estimate of this background for a
stellar population in the context of our simple reionization model. The proper
emissivity (in erg cm−3 s−1) is

ε ∼ ζ
hmH Iρ̄b

mp

dfcoll

dt
, (9.41)

where mH I is at the ionization edge of H I. This yields an ionization rate

� ∼ ε
λσH I

hmH I
∼ 2.5 × 10−14

(
λ

pMpc

)(
ζ

∣∣∣∣dfcoll

dz

∣∣∣∣
)

s−1, (9.42)

where λ is in proper megaparsecs. In equation (4.51), these fiducial values im-
ply that with λ ∼ 1 proper Mpc at z ∼ 10, δLLS ∼ 1. Thus, LLSs would consist
of gas very near the mean density—presumably with physical properties much
different from those of the dense LLSs in the moderate-redshift Universe. In
fact, more detailed models that attempt to self-consistently match mean free
paths of this order with IGM patches find that absorbers must lie inside weakly
overdense regions.13

A second concern is that the ionizing background—and hence the location
of LLSs—fluctuates across the Universe, even discounting the contrast between
predominantly ionized and neutral regions. Within bubbles smaller than this
mean free path, � ∝ Rb because the volume available for ionizing sources
scales as R3

b , while the flux from each scales as R−2
b . Thus the wide variation

in bubble sizes shown in Figure 9.5 will translates into an equally wide vari-
ation in �. However, as we have argued previously, the increased number of
LLSs in small bubbles does not substantially affect the morphology of reion-
ization. Moreover, even within ionized bubbles, � has substantial (and system-
atic) fluctuations as these bubbles expand into low-density regions devoid of
sources—although, of course, such regions also have fewer dense blobs capa-
ble of becoming LLSs. In practice, once the ionizing background declines to
near the cosmic mean, the � fluctuations are more important than those in the
matter density, so the optically thick systems cluster near the edges of ionized
bubbles, where � is small.

Figure 9.8 shows some examples of this phenomenon for a series of bubble-
filling factors in a numerical simulation. The upper panel shows the inhomo-
geneous ionizing flux background, which varies by about an order of magni-
tude within the ionized bubbles, while the lower panel shows the locations



chapter9 August 31, 2012

THE REIONIZATION OF INTERGALACTIC HYDROGEN 307

<0.3 >2.0

xH  I = 0.72 xH I = 0.45

fN

xH  I = 0.18 xH I = 0.00

Figure 9.8 IGM absorbers in a “seminumerical” simulation of reionization (see Color
Plate 17 for a color version of this figure). In each panel, we set (by hand) the
mean free path of ionizing photons to 10 comoving Mpc; the four columns
show different H II fractions at a fixed redshift z = 10. The upper panels
show the ionizing flux (arbitrary normalization) inside ionized zones accord-
ing to the color scale. The lower panels show the locations of halos (dark
points inside the white regions) and absorbers (lighter points). Crociani, D.,
et al., Mon. Not. R. Astron. Soc. 411, 289 (2011). Copyright 2011 by the Royal
Astronomical Society.

of ionizing sources (dark points) and absorbers (gray points) within the white
ionized regions. Note that the absorbers tend to cluster near the edges of the
ionized bubbles, even though the underlying density is presumably relatively
small there. This is because the ionizing background is weaker in these regions,
which are far from the luminous sources.

A final concern is the uncertain amount of small-scale structure in the high-
redshift IGM, which depends sensitively on the Jeans mass of this gas and
hence the IGM temperature evolution. If, for example, the IGM is not signif-
icantly heated before it is ionized, the gas will be much clumpier than in the
postreionization Universe, which will render extrapolation from observations
useless. We discuss these issues further in §9.9.

9.5.2 Maintaining Reionization

A related question (and one that existing observations can begin to answer)
is whether a particular set of ionizing sources can keep the IGM ionized at a
sufficiently high level. On a global scale, this requires balancing the recombina-
tion rate per unit volume with the emissivity (by number) of ionizing photons,
ṅion:14

α(T )Cn̄Hn̄e = ṅion. (9.43)
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Unfortunately, this equation has the same ambiguities we have already empha-
sized. The recombination coefficient depends on the nature of the absorbers
(whether case A or case B) as well as the underlying gas temperature (this in-
troduces factor of 2 uncertainties). Moreover, the effective clumping factor C
depends on the degree to which dense regions are ionized and is somewhat
degenerate with the number of ionizing photons they consume; in detail, it
actually depends on the emissivity itself, which sets the self-shielding thresh-
old. An additional difficulty is the implicit assumption that ionizing photons
are absorbed instantaneously (or, equivalently, that the elapsed period between
emission and absorption is much smaller than both the Hubble time and the
characteristic source evolution timescale).

Nevertheless, this equation provides a simple qualitative guide for gauging
whether a source population may be able to maintain the observed ionization
rate in the Universe. The canonical relation for the required comoving star for-
mation density in galaxies is

ρ̇� ∼ 0.003f −1
esc

(
C

3

) (
1 + z

7

)3

M� yr−1 Mpc−3. (9.44)

However, converting the critical rate of ionizing photon production ṅion to a star
formation rate introduces a new set of uncertainties. One substantial difficulty
is the escape fraction fesc, which is uncertain to at least an order of magni-
tude. Others are the initial mass function (IMF) of stars, because only the most
massive stars produce ionizing photons, and stellar parameters like the metal-
licity and binarity (see §8.8); the relation here assumes a Salpeter IMF and
solar metallicity, both of which are likely conservative and so overestimate the
required ρ̇�. Thus, without additional observational constraints on the source
populations, equation (9.44) provides only a rough guide.

To ionize most of the IGM in the first place, the cumulative population of
stars needs to produce at least one ionizing photon per hydrogen atom in the
Universe. Under the same assumptions about the IMF and metallicity as used
previously, this condition implies a minimum comoving density of stars after
reionization of

ρ� ∼ 1.6 × 106f −1
esc M� Mpc−3. (9.45)

Note that this constraint does not involve the clumping factor, since both the
number of sources and number of atoms scale the same way with volume.

9.6 Simulations of Reionization

So far we have discussed simplified analytic models of the reionization process.
Such models ignore a large number of physical effects, including (i) the com-
plexities of radiative transfer, such as shadowing of radiation by a dense ab-
sorber; (ii) the detailed geometry of the “cosmic web” and source distribution,
which is poorly approximated by spherical averaging; (iii) the (possible) pres-
ence of high-energy photons that can propagate large distances through neutral
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gas; (iv) the feedback of photoionization and photoheating on the sources of
reionization and on the IGM; and (v) the nature and clustering of the dense
absorbers. It is therefore important to develop more sophisticated numerical
approaches to reionization.

In this section we focus on the application of numerical simulations to reion-
ization, with some more specific comments on the numerical implementa-
tion of radiative transfer. We refer the reader to §3.7 for more information on
the algorithms used in the gravitational and hydrodynamic components of the
calculations.

9.6.1 Radiative Transfer Simulations

One option is a full cosmological simulation that attempts to incorporate all the
relevant physics, including gravitational dynamics, hydrodynamics, and radia-
tive transfer. This approach is crucial for understanding many of the preceding
issues—particularly those involving feedback of reionization itself on the gas
distribution. However, including all these effects imposes daunting require-
ments on the simulations. Most important, we have seen that the relevant scales
during reionization easily reach tens of megaparsecs, so simulating a character-
istic volume requires a box that spans > 100 Mpc. Additionally, the source ha-
los (even discounting molecular hydrogen cooling) have massesMh ∼ 108 M�.
Spanning both these scales—with at least 100 particles per galaxy—requires a
dynamic range of ∼1011 (in mass), which is very difficult to achieve at present.

As a result, simulations with hydrodynamics—the most difficult of these
three physics components to resolve over large dynamic ranges—typically focus
on details of reionization that appear on small physical scales, such as feedback
on small IGM clumps and the escape of ionizing photons from the local envi-
ronment of their sources. These sorts of simulations have shown that ionization
around galaxies is often highly anisotropic, owing to the dense filaments along
which galaxies sit, that photoheating feedback efficiently destroys the small-
est gravitationally bound clumps of baryons (or minihalos), and that this same
feedback moderates the clumping factor throughout the IGM.15 Simulations
like these cannot, however, describe global quantities like the average evolution
of the ionized fraction or radiation background, simply because the simulated
volumes are too small to include more than one growing ionized bubble.

However, pure gravitational simulations with this dynamic range are rela-
tively straightforward, and radiative transfer optimized for reionization by stel-
lar sources (in which simply following the fate of mono-energetic ionizing pho-
tons is not a bad approximation) is relatively simple. Thus, most work to date
has focused on dark matter simulations that assume a simple relation between
the baryons and dark matter and apply radiative transfer to the resulting baryon
field. These simulations very effectively address the detailed geometry of the
sources and cosmic web and can at least approximately address the complexi-
ties of radiative transfer and the propagation of high-energy photons, but they
cannot determine how reionization feedback affects the sources or the IGM
(since these are, by definition, hydrodynamic effects).
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Figure 9.9 Comparison of radiative transfer and seminumerical models of reionization.
The three columns show three different times during reionization, with
the filling factor of ionized bubbles of 0.25, 0.51, and 0.72. The top two
rows show two different radiative transfer schemes (both based on adap-
tive ray tracing). The bottom two rows use seminumerical schemes: the
one labeled “FFRT” uses the analytic excursion set model to predict the
halo abundance, while the one labeled “FFRT-S” uses the simulated halo
field itself. All four rows use exactly the same simulation volume; note the
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A variety of radiative transfer algorithms appear in the literature, and fortu-
nately they seem to converge reasonably well in most circumstances.16 The gen-
eral problem is very difficult, as computing the specific intensity Im(t, x, n, m)
requires solving a seven-dimensional problem: time t , position x, frequency
m, and direction of propagation n. Furthermore, simulations can contain hun-
dreds of thousands of sources, even excluding the diffuse light generated by
IGM recombinations. Thus the complete problem is prohibitively expensive to
simulate, and approximate schemes are necessary.

Because each of the many sources illuminates its surroundings over 4π stera-
dians, the number of photon rays that must be included in a calculation is much
larger than the number of sources. Codes typically take one of three approaches:
(i) a Monte Carlo algorithm, in which a large number of photon packets are
cast from the sources; (ii) adaptive ray tracing, in which a small number of rays
are initially cast from each source, spawning new ones as necessary to main-
tain the desired angular resolution, or (iii) a field-based approach, in which
photon propagation is abstracted into a continuous field. The first approach is
straightforward but faces the most serious convergence challenges. The second
most clearly reflects the physics of the problem but is the most challenging
technically. Field-based approaches are the fastest but can suffer from unusual
artifacts when detailed radiative transfer effects (such as shadowing) become
important; they are subject to unphysical diffusion effects in such cases. Nev-
ertheless, the different codes agree rather well. The upper panels of Figure 9.9
compare two different reionization codes (both using the adaptive ray tracing
technique) executed within an identical dark matter simulation. The results are
clearly very similar.

A second question is how much to specialize the code to the particular prob-
lem of reionization. For example, the algorithm can either explicitly incorporate
multifrequency sources or focus only on counting ionizing photons. The latter
is clearly significantly faster, but the former allows for nonstellar sources and
is necessary to trace photoheating accurately. Similarly, in many astrophysical
contexts (including LLSs) the ionizing photons emitted during recombinations
are important sources, but during reionization such photons are typically ab-
sorbed again almost immediately and so get neglected.

Still, even with this sophisticated machinery, numerical simulations are ulti-
mately limited by the same uncertainties that plague analytic models: namely,
the physics inside high-redshift galaxies is so poorly known that the models are
descriptive but not predictive, in the sense that they can accurately predict the
statistical properties of reionization given a source model but cannot from first
principles generate such a source model.

Figure 9.9 (Continued.) excellent agreement between the radiative transfer schemes
and the close match with the seminumerical schemes on moderate and large
physical scales. The maps are 143 Mpc/h across and 0.6 Mpc deep. Zahn, O.,
et al., Mon. Not. R. Astron. Soc. 414, 727 (2011). Copyright 2011 by the Royal
Astronomical Society.



chapter9 August 31, 2012

312 CHAPTER 9

A second problem is that these simulations cannot accurately reproduce the
properties of photon sinks such as IGM clumping and LLSs, because those de-
pend on the hydrodynamics in and around galaxies as well as on feedback from
photoionization. The most sophisticated models prescribe IGM clumping from
higher-resolution simulations (together with some assumptions about the dis-
tribution of ionized and neutral gas and the relevant level of Jeans smoothing)
and/or prescribe the distribution of LLSs based on a semianalytic model.

The most important question is how these numerical approaches compare
with the analytic models described earlier. Given all the complexities, the
answer—that the analytic models fare extremely well—may be a surprise. Most
important, the simulations show large ionized structures, with sizes compara-
ble to those predicted, throughout most of reionization. They confirm that the
filling factor of the ionized bubbles, QH II, is by far the most important factor
in determining the morphology and that the redshift is mostly unimportant.
They also show that the clustering of the ionizing sources is the second most
important factor and that inhomogeneous recombinations have relatively little
effect on the bubble sizes until a threshold H II region size is reached.17

9.6.2 Seminumerical Simulations

The general agreement between these disparate approaches has inspired a set
of hybrid “seminumerical” algorithms that allow a compromise between the
simplicity of the analytic models and the power of a specific realization of
reionization.18 All these approaches follow the same general procedure:

• First, generate the initial conditions for a cosmological simulation box
(usually in a large region of size > 100 Mpc).

• Second, linearly evolve the density field to the desired redshift. As we have
seen, doing this is trivial, for the amplitude of density fluctuations simply
increases as D(z), independent of scale. Optionally, low-order nonlinear
corrections can be applied, such as the Zel’dovich approximation (§4.1).

• Third, identify the source (or dark matter halo) distribution. This is typi-
cally done by applying the excursion set approach to the specific density
realization of the simulation in one of two ways. One option is to use large
cells and compute the expected halo abundance in each one with the ana-
lytic excursion set model (using the linear density of each cell as the basis
for the conditional mass function of equations 3.43 or 9.19). This is useful
for particularly large volumes (>1 Gpc) and/or quick-and-dirty estimates.
A second option, useful for more detailed work and/or higher-resolution
simulations, is to step through each cell in the simulation volume and
smooth the density field on progressively smaller scales, identifying it as
a halo whenever it crosses the spherical collapse threshold density (or
an improvement on that criterion). This mimics the random walk diffu-
sion process used to generate the halo mass function (see §3.4.1) but ap-
plies it point by point to account for real fluctuations in that density field.
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The resulting halo field does not match those of numerical simulations
exactly but provides an excellent statistical correlation.

• Finally, generate the morphology of the ionized regions. Again, the den-
sity field is smoothed on progressively smaller scales around each pixel,
and regions are tagged as ionized if this smoothed field exceeds the ex-
cursion set ionization criterion of equation (9.20), that is, if the number
of ionizing photons generated within the region (according to some im-
posed source prescription) exceeds the number of hydrogen atoms.

• Optionally, include a criterion for inhomogeneous recombinations by im-
posing a maximum bubble size or by weighting the cells according to
some estimate of the subgrid clumping and/or self-shielding.

These seminumerical approaches thus represent a fairly direct implementa-
tion of the analytic model in specific realizations of the density field. Figure 9.9
shows that the results closely match radiative transfer simulations, at least on
large scales. Clearly the broad-brush features are very similar, with ionized bub-
bles appearing in the same regions and growing to approximately the same
sizes in each model. Of course, the detailed shapes of the features are harder
to reproduce, especially when two ionized bubbles are near or have just over-
lapped each other.

Figure 9.10 compares four models in a more quantitative fashion through
the power spectrum of the ionized fraction Pxx(k), evaluated over the simulated
volumes; this is important for many of the observables we will discuss later. At
very small scales (k > 8hMpc−1), the models disagree, largely owing to shot
noise in the various prescriptions. On moderate to large scales, the two radia-
tive transfer prescriptions agree extremely well, while the seminumerical pre-
scriptions differ by ∼30% late in reionization. These and other statistics show
that the hybrid approaches are adequate when accuracy of this order suffices.
Most important, the excellent agreement between this implementation of ana-
lytic reionization models and the numerical simulations suggests that existing
models for the reionization process are quite robust, given a model for the sources
and sinks (which are themselves almost completely unconstrained by existing
observations).

The hybrid approach provides many of the advantages of large-scale simula-
tions (especially the detailed source distribution and cosmic web topology) and
with computational costs orders of magnitude smaller. However, it certainly
has drawbacks as well. One difficulty is that there is no a priori way to set the
excursion set parameters, filtering schemes, and other details of the approach;
comparison with simulations has identified the best practical schemes, but the
details of the algorithms matter at the ∼10% level.19 Another is that these pre-
scriptions still invoke spherical filtering to paint on the ionization morphol-
ogy; while the resulting configurations are certainly not themselves spherically
symmetric, they do not account for complex radiative transfer effects. Third,
the “photon-counting” methods we have studied so far work only for specific
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Figure 9.10 Comparison of the power spectrum of the ionization field in the radiative
transfer and seminumerical models of reionization. The three panels cor-
respond to the columns of Figure 9.9, and the curves correspond to the
four models shown there as well. Note the close match in the predictions
of all four models on scales of k < 8hMpc−1, although the seminumerical
schemes do overpredict the power on very large scales in the late stages of
reionization. The differences at k > 8hMpc−1 are due to shot noise, which
differs between the schemes. Zahn, O. et al., Mon. Not. R. Astron. Soc. 414,
727 (2011). Copyright 2011 by the Royal Astronomical Society.
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classes of sources in which ionizing photons are absorbed shortly after collid-
ing with neutral gas. These schemes have not yet been extended to sources with
harder spectra (such as quasars, which we discuss in §9.8).

Perhaps most important, the seminumerical approach cannot be used to fol-
low the progress of reionization through time, because it does not conserve
photons. Instead, the global evolution of QH II(z) must be prescribed exter-
nally; once that is known, a series of maps can easily be generated, but they
cannot then be used to infer anything about the feedback of reionization on the
source population, for example. Although QH II(z) in radiative transfer simu-
lations is ultimately determined by imposed source prescriptions as well, they
at least allow a self-consistent interaction of the reionization morphology with
those sources.

9.7 Statistical Properties of the Ionization Field

Figure 9.10 uses the power spectrum of the ionization fraction to compare the
various simulations. The power spectrum offers a convenient way to quantify
the statistical properties of a reionization model, and it can be understood intu-
itively based on the excursion set model of reionization. One relatively rigorous
approach to computing the power spectrum on a scale k is to follow two random
walks, correlated on all scales k′ < k, and determine the probability distribution
of their fates inside ionized bubbles. This approach provides a reasonably good
match to the numerical simulations.20

However, we take a simpler, approximate approach here that is informed by
the simulation results. We begin by noting that the ionized fraction is not a
typical cosmological field, because it is strictly bounded to lie between zero and
unity. Thus, we expect the joint probability distribution of the ionized fraction
at two different points to take the form

〈xi(r1)xi(r2)〉 = Q2
H II + (1 −QH II)f (r/Rc), (9.46)

where r = |r1 − r2|, and Rc is the characteristic bubble size. Here f is an un-
known function containing the physics of the problem, with the limits f → 0
for r � Rc and f → QH II as r → 0. This equation has a simple physical
interpretation: if two points are separated by a distance much smaller than the
size of a typical H II region, they will either both be ionized by the same bub-
ble, with probability QH II, or both be neutral. But if r � Rc, they must reside
in distinct H II regions, so the probability approaches Q2

H II, with a small en-
hancement due to the clustering of the bubbles. The correlation function is
ξxx = 〈xi(rm1)xi(rm2)〉 − Q2

H II (and the power spectrum is its Fourier trans-
form).

A second restriction on the nature of the correlations arises because of the
finite range of the ionized fraction: if QH II = 1, every point must be ionized
(or xi = 1 everywhere); in that case the correlations must vanish. Thus we need
ξxx = 0 when either QH II = 0 or 1.
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The challenge lies in constructing the function f , which expresses how bub-
bles encompass two different points separated by a fixed distance. The corre-
lated random walk approach described earlier implicitly computes this factor
without treating the ionized patches as discrete objects. We instead use the
bubble mass function nb(m), which necessitates some assumption about their
structure. The simplest is, of course, spherical symmetry; unfortunately, this
assumption leads to an unphysical suppression in the ionized fraction near Rc.
Because the excursion set formalism determines the maximum bubble size for
which any point is a part, it does not allow for any further overlap of the bub-
bles. If they are all spherical, it then becomes difficult to pack them in such a
way that they ionize all space—this is simplest to see in the limit in which every
bubble has the same size, and reionization is then similar to packing a crate
with oranges. The gaps between the oranges are impossible to remove in this
situation. In reality, of course, the bubbles deform into nonspherical shapes to
fill the gap, but that is difficult to model analytically.

We therefore sacrifice rigor to build a simple model that approximates the
numerical results.21 To do so, we split the problem into two regimes. When
QH II < 0.5, the neutral gaps are large and so are reasonably well modeled
by the spherical approximation. Then, taking inspiration from the halo model
(§3.6.1), we can explicitly build the joint probability distribution by considering
separately (i) the probability P1 that a single bubble ionizes both points and (ii)
the probability P2 that the two points are ionized by separate bubbles. In the
latter case, we must include the correlations between distinct bubbles. We then
have

P1(r)=
∫
dmnb(m)V1(m, r) (9.47)

P2(r)=
∫
dm1 nb(m1)

∫
d3r1

∫
dm2 nb(m2)

∫
d3r2[1 + ξbb(r|m1,m2)],

(9.48)

where V1(m, r) is the volume in which the center of a sphere of mass m can lie
while simultaneously ionizing two points separated by r , and ξbb(r|m1,m2) ≈
bH II(m1)bH II(m2)ξ(r) is the bubble correlation function.

Late in reionization, when QH II > 0.5, we set f = P1 in equation (9.46).
While this does not include large-scale correlations, by this point the bubbles
are so large that the excess correlation on scales beyond the bubble size is negli-
gible. By doing this, we ignore the “two-bubble” term entirely. Thus our expres-
sion does not asymptotically approach a form proportional to the dark matter
correlation function at late times, ξxx ≈ b̄2

H IIξ . However, at these late times this
limit is reached only at extremely large scales, well beyond the sizes accessible
to either observations or simulations. At more moderate scales, the Poisson
fluctuations of the discrete bubbles dominate.

Combining these models, we have

〈xixi〉 (r) =
{
P1(r)+ P2(r) QH II < 0.5,
(1 −QH II)P1(r)+Q2

H II QH II > 0.5.
(9.49)
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Figure 9.11 Comparison of the autocorrelation function of the ionized fraction (solid
curves) and the cross-correlation function of the ionized fraction and den-
sity (dashed lines). In each case, the thick lines show our analytic approxi-
mations of equations (9.49) and (9.52), while the thin curves show results
for a seminumerical simulation in a 100h−1 Mpc box. The two methods
are in quite good agreement at a wide range of ionized fractions. Mc-
Quinn, M., et al., Astrophys. J. 630, 643 (2005). Reproduced by permission of
the AAS.

The solid curves in Figure 9.11 compare this simple expression with the corre-
lation function found in a seminumerical simulation (including only the linear
theory evolution in a 100h−1 Mpc box) at three different bubble filling fractions.
Note the very good agreement at small and moderate scales, which suggests
that this simple approach provides good intuition about the properties of the
ionization field.

Also of interest is the cross-correlation between the ionized fraction and the
underlying density, 〈xi(r1)δ(r2)〉. Again, it is relatively straightforward to con-
struct a reasonable analytic approximation for this because the excursion set
formalism is used for both the halo distribution (which via the halo model de-
scribes the density field) and the ionized bubbles. To evaluate it in detail, we
can again use some simplifying manipulations. First, suppose that r2 lies in-
side the bubble that ionizes r1 (again, if r1 is neutral, the product vanishes
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automatically). Then, we already know the mean density of the bubble mate-
rial (equal to the excursion set barrier δB in equation 9.20). We can therefore
approximate this part of the correlation as

Pin(r) =
∫
dmnb(m)V1(m, r)[1 + δB(m)], (9.50)

because the xi field is unity only inside bubbles, where the mean density is δB .
If, however, the point is outside the bubble, we take inspiration from the

halo model and assign point r1 to a halo. We can then approximate the cross-
correlation between the bubble and halo as ξbh(r) ≈ b(mh)bH II(m)ξ(r), us-
ing the linear theory expression because the distance is large. The contribution
from these pairs is

Pout(r) = QH II−
∫
dmnb(m)V1(m, r)+

∫
dmb nb(m)

∫
d3rb bH IIξ(r), (9.51)

where we have used the fact that the mean halo bias is always unity to evaluate
the integral over mh (see equation 3.75). Here the first two terms essentially fix
the space available to bubbles to ionize point r2 without also ionizing r1; note
that the second term in Pout cancels the first term in Pin. The third term con-
tains the correlations. As before, this term is not accurate when QH II is large,
because bH II encounters difficulty there; however, at these times the bubble ra-
dius is so large anyway that the entire correlation term can be ignored. Thus,
we have the net approximation

〈xi(r1)δ(r2)〉 =
{
Pin(r)+ Pout(r)−QH II QH II < 0.5,
Pin(r)− P1(r) QH II > 0.5.

(9.52)

In other words, when QH II is small, we must include correlations from both
the bubble at r1 and from its neighboring bubbles (and, in particular, the excess
correlation from their clustering). When QH II is large, we need include only
the former effect. Subtracting the P1 and QH II terms in each case isolates the
excess correlations.

Figure 9.11 compares this approximate treatment of the cross-correlation
with a seminumerical calculation (thick and thin dashed curves, respectively).
Again, the simple model does a rather good job over a range of ionized frac-
tions, though it tends to underestimate the small-scale correlations, because it
averages over each bubble.

The important point of this simple model is that the excursion set model re-
produces not only the gross properties of the bubble population but also their
spatial distribution with respect to the density field. The special nature of the
ionization field simplifies many of these calculations, which helps in developing
intuitive models that explain the simulation results. Moreover, the correlations
can mostly be understood in terms of the average properties of the bubble pop-
ulation, because the individual H II regions are so large that nonlinear effects
tend to be washed out.
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9.8 Reionization by Quasars and Other Exotic Sources

To this point we have focused on stellar sources of reionization, largely be-
cause galaxies seem to dominate the ionizing photon budget at z ∼ 6. How-
ever, quasars present an interesting alternative reionization source, because
they have much harder (nonthermal) ionizing spectra than even the hottest
stars. Thus, some of their photons can travel much larger distances through
the IGM, and the morphology of the ionized and neutral gas is much smoother
than the sharply defined H II regions that we have discussed so far.

9.8.1 How Important Are Quasars to Reionization?

There are, unfortunately, very few constraints on the abundance of high-z
quasars. The census of very luminous z ∼ 6 quasars is now fairly well de-
termined, and their abundance seems to decline exponentially at z > 4 (see
Figure 7.1).22 Although constraints on the shape of the luminosity function are
quite weak, the total ionizing photon emissivity arising from this population
of quasars appears to fall a factor of 10–50 short of that required to maintain
reionization at that time when we use C = 3 and the arguments in §9.5.2.

Nevertheless, it is relatively easy to imagine that much smaller black holes—
in particular those characteristic of the small galaxies common at high
redshifts—could play an important role in at least partially ionizing the IGM.
As discussed in §7.5, at lower redshifts it is now clear that black holes are both
ubiquitous and closely related to their host galaxies. For the purposes of a sim-
ple estimate we simply scale MBH to the total halo mass Mh, so that the mass
density in black holes is ρBH = fBHfcollρ̄b. As a fiducial value, we scale fBH

to its local value in massive galaxies, ∼10−4, but as discussed in §7.5.1, this
value may evolve at high redshifts (and appears to be an underestimate for the
brightest z ∼ 6 quasars).

Now, let us consider how large fBH must be to significantly ionize the IGM.
These ionizations come from two sources: primary photoionizations from the
quasar photons themselves, and secondary ionizations from the energetic sec-
ondary electrons produced after the initial photoionization. For a hard nonther-
mal spectrumLm ∝ m−1, the latter dominate and deposit (very crudely) a fraction
of the energy fi ∼ xH I/3 in ionizations. If the black holes have a radiative ef-
ficiency (relative to their rest mass) ε and emit a fraction fUV of their energy
above the ionization threshold with a fraction fesc,q of that energy escaping the
host galaxy, the expected number of ionizations per hydrogen atom is

NX ∼ 0.5fesc,q

( ε

0.1

) (
fUV

0.2

)(
fcoll

0.01

) (
fBH

10−4

)(
fi

1/3

)
. (9.53)

Thus, the local black hole–halo relation makes a plausible argument for a sub-
stantial contribution of quasars to reionization. Note, however, that the sec-
ondary ionizations become less and less common as xH I decreases, so lower-
energy photons (either from quasars or stars) are still necessary to complete
reionization (as discussed in the next section).
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Unlike for stars, the escape fraction fesc,q is likely to be quite high for quasars.
Because all the quasar ionizing radiation emerges from a single source, it is
much more likely to carve transparent channels in the ISM of the galaxy. More-
over, much of the ionizing energy comes from relatively high energy photons
that have an easier time traversing their host galaxy without interacting.

The unresolved X-ray background offers a constraint on this scenario, be-
cause such a high-redshift quasar population would have produced hard X-rays
(≥10 keV) that are still free streaming, with some redshifting into the well-
observed soft X-ray band. Approximately 93 ± 3% of the soft X-ray background
has been resolved; the best estimate for the unresolved component is JX∼0.3–1
× 10−12 erg s−1 cm−2 deg−2 in the 0.5–2 keV band.23

Suppose that black holes produced the high-redshift X-ray background at a
median redshift z and emitted a fraction fHXR of their energy in the [0.5–2](1+
z) keV range. The flux received at Earth would then be J = (c/4π)ρHXR/(1+z),
where ρHXR is the comoving energy density in hard X-rays produced by this
early generation of black holes. Thus

JX ≈ 10−13f −1
esc,q

(
fHXR/fUV

0.2

) (
1/3

fi

) (
NX

0.5

) (
10

1 + z

)
erg s−1 cm−2 deg−2,

(9.54)
where the fiducial choices for fHXR/fUV and 〈E〉 are appropriate for a spectrum
with Lm ∝ m−1 ranging from 13.6 eV to 10 keV.

Interestingly, this value is comparable to the presently observed unresolved
component. Thus, the X-ray background required if quasars alone reionized the
Universe probably violates observed limits,24 but they could still have made
a substantial contribution to the ionization budget; thus it is certainly use-
ful to consider scenarios in which quasars drove or affected the reionization
process. Stellar-mass X-ray binaries could also have contributed to the X-ray
background,25 as we discuss in §12.3.2.

Moreover, it is relatively easy to imagine scenarios in which black hole accre-
tion played a much larger role. One possible way to evade these constraints is
with a population of “miniquasars” built from smaller black holes that may have
formed through different channels than the very bright observable quasars.
In such miniquasars, most of the UV photons may come from an accretion
disk, while hard X-rays instead come from synchrotron/inverse-Compton emis-
sion. The relative contribution of the two components is extremely uncertain,
and if the nonthermal tail is relatively insignificant, the empirical X-ray back-
ground constraint will tell us little about the total contribution of black holes to
reionization.

9.8.2 Ionized Bubbles around Quasars

The primary difference between quasars, which typically have nonthermal spec-
tra in the UV and X-ray regimes, and stars (which are nearly thermal and so
have very few high-energy photons) is that one cannot simply assume that all
the ionizing photons are absorbed in a narrow region around the ionization
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front; instead, the higher-energy photons can propagate large distances through
the intergalactic medium. The comoving mean free path of an X-ray photon
with energy E is

λX ≈ 11 x̄1/3
H I

(
1 + z

10

)−2 (
E

300 eV

)3

Mpc; (9.55)

thus, photons with E > 1.5[(1 + z)/15]1/2x̄
1/3
H I keV propagate an entire Hubble

length before interacting with the IGM. Many of the soft X-rays therefore es-
cape the ionized bubble but deposit their energy (as ionization and heat) in the
surrounding gas, “preionizing” and “preheating” it before the ionization front
itself reaches the gas.

In this case where photons leak past the “ionization front” marking the
boundary between the mostly ionized and mostly neutral gas, the photon-
counting arguments implicit to §9.1 are not sufficient: the assumption of a
two-phase medium (highly ionized and completely neutral) breaks down. In-
stead we must more carefully examine the radiative transfer of ionizing photons
through these regions. For simplicity, we consider a model universe composed
entirely of hydrogen; including helium complicates the equations but adds no
essential new physics. As a photon travels away from its source, it encounters
absorption that depends on the local ionized fraction as well as the photon en-
ergy. The total optical depth experienced by a photon with frequency m that has
traveled from a source to a radius r is

τ(m, r, t) =
∫ r

0
σH I(m)nH I(r, t) dr

′, (9.56)

where nH I is the local H I density (which may evolve either through the cos-
mological expansion or the neutral fraction) and where we have explicitly noted
the time dependence, since the ionized region will grow as more and more
photons are pumped into it. We have also assumed that r � c/H(z), so that we
can ignore the cosmological redshift of the photon. The ionization rate at this
position is then

�(r, t) =
∫ ∞

mHI

dm

hm

Lme
−τ(m,r,t)

4πr2
σH I(m)

[
1 +

(
E − EH I

EH I

)
fi(E − EH I)

]
, (9.57)

where Lm = (dL/dm) is the monochromatic luminosity (per unit frequency) of
the source, EH I = 13.6 eV is the ionization potential of H I, E − EH I is the
energy of the photoelectron, and fi(E −EH I) is the fraction of this energy that
goes into secondary ionizations as this electron scatters through the ambient
medium. This last factor describes the fate of the high-energy electrons; it is
small for photons near the ionization threshold and (very roughly) approaches
fi ∼ xH I/3 at high energies. A comparable fraction of the energy goes into
collisional excitation of line transitions; the remainder goes into heating (see
further). These fractions have been computed much more precisely using basic
atomic physics.26
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The ionization rate at each position is then governed by

dnH I

dt
= �nH I − αB(T )nenH II, (9.58)

where (again ignoring helium) ne = nH II = nH − nH I. We assume case-B re-
combination (i.e., local absorption of the recombination photons) for simplic-
ity; otherwise, the radiative transfer equation must include a source function
for recombination photons as well. This “on-the-spot” approximation is usually
a good one because the recombination photons are emitted near the ioniza-
tion threshold and so have short mean free paths. Note that we have left the
clumping factor C off equation (9.58), because integrating the ionization front
evolution over space allows us to include the detailed density profile. However,
it can easily be incorporated into the last term to account for clumping below
the resolution of the calculation grid.

Because the recombination rate depends on temperature T (and often be-
cause the temperature is of intrinsic interest), we must also trace its evolution
with (see also §4.3.1)

dT

dt
= −2HT + 2T

3

d ln(1 + δ)

dt
− T

d ln(2 − xH I)

dt
+ 2

3kBntot
(H−�), (9.59)

where H is the total radiative heating rate, � is the total radiative cooling rate,
and ntot is the total particle number density. From left to right, these terms
describe adiabatic cooling due to the Hubble expansion, adiabatic heating or
cooling due to local density inhomogeneities, the change in the total particle
density due to ionizations and recombinations, and radiative processes.

At high redshifts, radiative heating and cooling are typically dominated by
photoheating and inverse-Compton cooling, respectively. The former is

Hph =
∫ ∞

mH I

dm
Lme

−τ(m,r,t)

4πr2
σH I(m) (E − EH I) fh(E − EH I), (9.60)

where fh(E − EH I) is the fraction of the photoelectron energy that goes into
heating. It is large for photons near the ionization threshold and (very roughly)
approaches fh ∼ 1 − 2xH I/3 at high energies.27 The Compton cooling rate
�comp is given by (see equation 2.38)

2

3

�comp

kBntot
= 1 − xH I

2 − xH I

(TCMB − T )

tc
, (9.61)

where tc ≡ (3mec)/(8σT uCMB) is the Compton cooling time (see also §2.2),
σT is the Thomson cross section, and uCMB ∝ T 4

CMB is the CMB energy density.
The first factor on the right-hand side accounts for energy sharing by all free
particles. The other important process is line cooling, which dominates in some
particular temperature ranges §11.6.3).

Figure 9.12 show some example ionization and temperature profiles around
a relatively bright quasar at z = 10 with LB = 109 L�. The source is as-
sumed to emit steadily after it turns on, and the different curves take t =
106, 106.5, 107, 107.5, and 108 yr after ignition. The calculation assumes an ini-
tial IGM temperature of T = 10 K and a uniform IGM at the mean density. As
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Figure 9.12 Example ionization and temperature profiles around a relatively bright
quasar at z = 10, with LB = 109L�. The source is assumed to emit steadily
after it turns on, and the different curves take t = 106, 106.5, 107, 107.5, and
108 yr after ignition, from bottom to top. The calculation assumes an initial
IGM temperature of T = 10 K and a uniform IGM at the mean density (in-
cluding helium); note that distances are measured in proper (not comoving)
units.

expected, the ionization front sweeps outward over time. Behind it, the gas lies
in ionization equilibrium, with xH I ∝ r2. The ionization front itself—which we
define to be the distance 0.1 < xH I < 0.9—is narrow, but residual ionization
(and heating, which can be substantial) extends several megaparsecs from the
front itself. The gas leading the front is not in ionization equilibrium, as the
ionization front continues to sweep outward if the source remains luminous,
and the gas outside steadily increases in both temperature and ionized fraction
until it reaches the highly ionized limit.

In particular, because the recombination time in this outer region is so long
(at least while the ionized fraction itself is small), the relatively low level of
heating and ionization contributed by each quasar is cumulative. After many
generations of AGN, the gas that remains outside H II regions gradually be-
comes increasingly ionized, potentially until the ionized fraction saturates at
∼0.5, when secondary ionizations become inefficient.

This gradual ionization and heating of the otherwise untouched gas provides
one of the key differences between stellar and quasar reionization. Others are
primarily driven by differences in the source luminosities and abundances: to
the extent that quasars are rarer and more luminous than star-forming galaxies,
they will produce larger, rarer H II regions in the IGM, in which the ionized
fraction and density field are less correlated. We discuss some of the observa-
tional signatures of these differences in later chapters.

9.8.3 Helium Reionization

So far we have focused purely on the reionization of intergalactic hydrogen.
The first ionization potential of helium, 24.4 eV, is sufficiently close to that of
hydrogen that helium is almost definitely singly ionized at the same time as
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hydrogen. However, stripping the second electron requires 54.4 eV, which is
well beyond the blackbody peak of typical hot stars (although very massive
metal-free stars can at least partially ionize helium; see §5.4). We therefore ex-
pect a significantly different ionization history for He II.

Nevertheless, many of the same tools we have already developed can be used
to follow the creation of He III. Helium can easily be incorporated into the for-
malism of §9.8.2 by adding a multispecies network that traces the evolution of
He II and He III. In practice, most high-energy photons are absorbed by He II,
but (because helium is relatively rare) the secondary electrons still deposit most
of their energy as heat or in ionizing and exciting H I. The ionization and heat-
ing profiles (as in Figure 9.12, which does include helium) do not qualitatively
change.

Similar calculations for stellar sources show that only very massive metal-
free stars can produce He III, although even in optimistic models the He III
fraction rarely rises to unity.28 Moreover, once these stars fade away, the He
III rapidly recombines into He II because its recombination time is much
shorter than that for H II (see §4.5) and therefore shorter than the age of the
Universe tH ,

tBrec,He

tH
≈ 0.2

(
8

1 + z

)3/2

. (9.62)

Thus, there may have been a brief phase of ionized helium during the cosmic
dawn, but it likely ended with the death of these primordial stars.

However, radiation from quasars could provide a more sustained source of
high-energy photons. We have already seen that these sources can plausibly
ionize hydrogen; can they do the same for He II? The primary difference from
our earlier calculation is that fast secondary electrons produced in the ionization
process do not efficiently ionize He II, because its collisional ionization cross
section is more than an order of magnitude smaller than that of H I (and when
hydrogen is fully ionized, the energy loss rate to other electrons is also much
more rapid). Without secondary ionizations, the crucial parameter is the mean
photon energy per ionization 〈Ei〉. If Lm ∝ m−1 from 54.4 eV to 2 keV (beyond
which the IGM is optically thin), this energy is ∼200 eV. Assuming that all
the high-energy photons ionize He II rather than H I (e.g., if stellar sources
ionize the latter first), we find that the number of ionizations per helium atom
could be

Nion,He ∼ 0.6fesc,q

( ε

0.1

) (
fUV,He

0.1

) (
fcoll

0.01

)(
fBH

10−4

) (
200 eV
〈Ei〉

)
. (9.63)

Here fUV,He is the fraction of the quasar’s luminosity emitted above 54.4 eV. Of
course, given the rapid recombination time, these early quasars are unlikely to
have maintained more than a low level of He III in the IGM.

Despite this estimate, just as for H I, the observed high-z quasar popula-
tion produces far fewer He II–ionizing photons. In fact, estimates based on
the measured quasar luminosity function (appealing to both photon-counting
arguments and the required emissivity to maintain reionization) predict that
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He II reionization must not have begun until z ∼ 3, near the peak of the quasar
era.29 Indeed, a number of lines of evidence indicate that the event occurred at
roughly that time, though none are as yet definitive. We list these efforts here
because they make an interesting comparison to the constraints on H I reion-
ization that we discuss later:

• The mean optical depth of the He II Lyman-α forest appears to increase
rapidly beyond z ∼ 2.8.30 In §4.7 we argued that an apparently simi-
lar increase in the H I forest optical depth at z ∼ 6 could not robustly
be interpreted as evidence for reionization. The case for helium is more
persuasive: because the atomic number density of helium is smaller and
its recombination rate is faster, its Gunn-Peterson optical depth is only
τ ∼ 14�−1

He II,−14(1 + z/4)9/2, where �He II,−14 is the He II ionization rate
in units of 10−14 s−1 (roughly the measured value). Thus, He II becomes
transparent in the late stages of reionization; moreover, it does not have
an opaque damping wing that can conceal highly ionized regions (see
§11.4). Additionally, He II reionization is accomplished by rare, bright
sources whose illumination can create large (many megaparsec) ionized
bubbles even before the process is completed. Together, these factors im-
ply that the He II Lyman-α forest is a much cleaner probe of reionization
than for H I.

• Moreover, the He II forest shows substantial fluctuations at z > 2.8, from
being nearly opaque to very transparent.31 Such regions are difficult to
arrange if the IGM is highly ionized, because they require a dearth of
quasars over several hundred megaparsecs, which is very unlikely. Un-
fortunately, the enormous optical depth of the H I forest at z ∼ 6 masks
the analogous fluctuations, and so this test is much more difficult to re-
peat with hydrogen.

• A number of measurements of the H I forest show a peak in the IGM
temperature at z ∼ 3.32 The most natural interpretation is photoheating
from helium reionization (see §9.9).

• There is some evidence for a hardening in the metagalactic ionizing back-
ground at z ∼ 3, as measured by the ratios of some metal lines. For ex-
ample, C IV has an ionization potential just above that of He II, while
that of Si IV is far above that point. Once He II is ionized and the IGM
becomes transparent to photons above 54.4 eV, we expect the abundance
of C IV to decrease relative to Si IV as well (see §4.6). Some (but not all)
measurements show such an decrease.33 At z ∼ 6, the analogous process
at the H I edge should show an increase in higher ionization states (e.g.,
C IV) relative to low ionization states (e.g., O I) (see §4.6). Tentative evi-
dence for such evolution does exist, but the scarcity of metal-line systems
at z > 5 and their likely positions inside highly overdense systems com-
plicate their interpretation in this case.
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Clearly, He II reionization is at best an imperfect analog to hydrogen reion-
ization, but it does allow us to test a number of the same ideas—especially
those relating to the ionizing background and its interaction with the IGM. In
particular, it has the key advantage of occurring at z ∼ 3, where measurements
of the H I Lyman-α forest offer a much clearer picture of the IGM. Helium
reionization may therefore offer a useful test bed for understanding the tail
end of hydrogen reionization, when LLSs dominate the absorption of ionizing
photons, and IGM structure is crucial.

9.8.4 Exotic Reionization Scenarios

It is also possible that much more exotic processes—such as dark matter decay
or annihilation, or primordial black hole evaporation—helped (or even com-
pleted) the reionization of the IGM. Any such exotic process that produces pho-
tons with E > 13.6 eV to which the IGM is opaque could have contributed to
ionizing (and possibly heating) the IGM. For example, dark matter decay—even
with a timescale many times the present age of the Universe—could in princi-
ple have reionized the entire IGM, so long as > 10−8 of the total rest energy of
the dark matter particles went into ionization.34

Although such models are quite speculative, they would produce very dif-
ferent patterns of reionization and so are interesting from a phenomenological
perspective. For example, dark matter is fairly uniformly distributed at high red-
shifts, so decay would cause a nearly uniform ionizing background and hence
a nearly uniform ionized fraction (moderated only by inhomogeneous recom-
binations and possible escape of the decay products from the source region).
Annihilation would provide a clumpier source distribution but would still cause
much smoother reionization than stars or quasars.

9.9 Feedback from Reionization: Photoheating

As described in §4.3.1 and §9.8.2, after photoionization (some of) the excess
energy deposited in the photoelectron is transformed to heat through scatter-
ing. This heating can be substantial: for a spectrum typical of a star-forming
galaxy, 	T ∼ 12,500–30,000 K (see §4.3.1), while for quasar sources, it might
be	T ∼105 K. Owing to X-ray heating, the IGM temperature was rather uncer-
tain before reionization (as we discuss in §12.3.2), but this photoheating almost
certainly increased it by nearly an order of magnitude, which has a number of
important consequences.

9.9.1 Photoheating and the IGM

If reionization were uniform, this dramatic heating would have left the IGM
essentially isothermal. However, we have seen that in fact the process was
driven by large-scale density fluctuations, with overdense regions (full of galax-
ies) reionized first and underdense regions (devoid of galaxies) reionized last
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Figure 9.13 IGM temperature–density relation following H I reionization. All curves
assume z = 6 and take a postreionization temperature of TH = 20,000 K.
The solid, long-dashed, short-dashed, dot-dashed, and dotted curves set the
reionization redshift at zr = 6, 7, 8, 9, and 10, respectively. Furlanetto,
S. R., & Oh, S. P., Astrophys. J. 701, 94 (2009). Reproduced by permission of
the AAS.

(see the bottom right panel of Figure 9.3), which translates into systematic
IGM temperature fluctuations. Once reionization ended, the rapid photoheat-
ing ceased (constrained by the recombination rate within the IGM gas). Thus
the overdense regions began cooling earlier and had systematically cooler tem-
peratures at the tail end of reionization (see the bottom center panel of
Figure 9.3).

Figure 9.13 shows this process quantitatively via the IGM temperature-
density relation. We show this relation at z = 6 computed from the excursion
set reionization model of §9.4 for a variety of scenarios in which reionization
ends between zr = 6 and 10 (thus the different curves do not represent a time
sequence from one model but, rather, a sequence of different reionization mod-
els, with the time of observation held constant). Immediately following reion-
ization (solid curve), the low-density voids are systematically hotter than gas
near the mean density, simply because the former were the last to be ionized
and so still lie near the postreionization temperature. (Note that overdense gas
is hot as well, due to the adiabatic heating from ongoing structure formation.)

This kind of inverted temperature–density relation is strongly characteristic
of “inside-out” reionization, in which large-scale overdensities are ionized first
and underdense voids last. Inside-out models are generic to stellar reionization,
because its morphology closely traces the underlying cosmic web. (Note, how-
ever, that this does not mean that small-scale overdensities are ionized last—in
fact these LLSs typically maintain relatively large neutral fractions until the very
late stages.) If, however, rare, luminous sources (such as quasars) drove reion-
ization, the ionized bubbles correlate less strongly with the density field, and
the associated temperature inversion weakens (or even disappears—as is likely
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to be the case with helium reionization at z ∼ 3). Thus, the IGM temperature–
density relation provides a good test of the morphology of reionization.

The expansion of the Universe causes gas at all densities to cool adiabati-
cally. However, because underdense voids expand more rapidly than average,
this cooling occurs fastest at low densities, gradually erasing the initial (in-
verted) temperature–density relation. Because adiabatic cooling occurs over an
expansion time, the characteristic cooling timescale is the Hubble time (see the
first two terms on the right-hand side of equation 9.59). Thus, the interesting
observational signature of inside-out reionization fades after a relatively short
time, and the temperature–density relation approaches the universal asymp-
tote in which photoheating following recombinations balances the adiabatic
cooling.

Of course, reionization was also stochastic, with regions of a given density
having many different reionization histories (driven by the nearby halo popula-
tion). Thus, the temperature-density relation is imperfect, with scatter of ∼30%
at a given density. This scatter (and its dependence on density) also depends on
the reionization model; rarer sources induce more scatter.

Photoheating from reionization not only increased the IGM temperature but
also affected its structure: the accompanying thermal pressure increased the ef-
fective Jeans mass (MJ ∝ T 3/2; see equation 3.15), evaporating existing small-
scale structures and preventing accretion onto small dark matter clumps. In
the diffuse IGM, this effect is usually interpreted as a decrease in the clumping
factor C. When MJ was small, before reionization, very small dark matter ha-
los could retain their baryons, producing a great deal of small-scale structure,
while after reionization, these structures evaporated and C decreased. Fortu-
nately, this smoothing was relatively insensitive to the precise postreionization
temperature, because (in most models) any reasonable amount of photoheating
had already increased the temperature by a very large factor.

However, following this evolution in detail requires quite sophisticated nu-
merical simulations that (a) resolve the small-scale IGM structure and (b) in-
clude coupled radiative transfer and hydrodynamics. To date this has been pos-
sible only in relatively small-volume simulations that do not fully account for
the large-scale morphology of reionization; fortunately, the insensitivity of the
resulting clumping evolution to the details of the reionization process suggests
that these results—in which the clumping factor can decrease by nearly a factor
of 2 owing to photoheating—are robust.

Directly observing photoheating is a challenge, especially at very high red-
shifts, in which the Lyman-α forest is nearly saturated in absorption. In addi-
tion to the Jeans smoothing itself (which affects small-scale power in the forest),
heating also increases thermal broadening in the line profiles. These manifest
themselves in both statistical measures of the forest (like the power spectrum,
where small-scale structure is erased) and in the lines (where spectral broad-
ening leaves less curvature in the spectrum). Although these techniques have
not yet been feasible at high redshifts, they are easier at moderate redshifts
(z ∼ 3) around the time of He II reionization and have been extensively applied
there. Both methods have provided measurements of the evolution of the mean
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temperature with redshift and show heating at z ∼ 3, of roughly the magnitude
expected if quasars were responsible for the event (see §9.8.3).

However, these methods have not yet offered strong constraints on the
temperature–density relation, primarily because the forest is mostly sensitive
to only a narrow range of densities at any one redshift. One interesting way to
avoid this problem and extend it to high redshift is by comparing constraints
from multiple Lyman lines. With their weaker oscillator strengths, Lyman-β
and Lyman-γ sample different parts of the density field (see Figure 4.16); com-
paring their different optical depths as a function of redshift may therefore re-
veal how the temperature evolved following reionization.

9.9.2 Photoheating and Virialized Objects

Photoheating affects not only diffuse IGM gas but also gas inside virialized ob-
jects. If such a halo has Tvir < 104 K, photoionization will heat the gas above
the escape velocity of the halo, allowing the baryons to evaporate. Moreover,
once IGM gas is heated, it will ignore small dark matter potential wells, pre-
venting the accretion of gas onto existing galaxies and suppressing subsequent
star formation.

The Jeans mass (or, more properly, the filter mass) in the IGM is MJ ∼
105M� if the gas simply cools adiabatically after decoupling from the CMB
(see §3.2). This is far below the atomic cooling threshold (Tvir ∼ 104 K corre-
sponds to ∼107 M�; see §3.3), so although these dark matter clumps can accrete
baryons, they cannot go on to form stars. Instead, they remain as dense clumps
sprinkled through the IGM. Moreover, because the mass function is so steep at
high redshifts, this population can contain a great deal of the collapsed mass—
from ∼10% at z ∼ 15 to ∼30% at z ∼ 8. Such objects are known as minihalos,
and their large overdensities may have made them an important photon sink
through the early stages of reionization.

However, these objects have shallow potential wells. As an ionization front
reaches the halo, it heats the gas to > 104 K > Tvir. Because the thermal pres-
sure then exceeds the gravitational binding force, the minihalo gas escapes
into the IGM through a strong evaporative wind. The high central densities of
the minihalo gas transform the ionization front (which is R-type in the diffuse
IGM) into a D-type front, generating a shock wave that expels the gas from the
minihalo (see the discussion in §6.3).35 This hydrodynamic process therefore
occurs on roughly the sound-crossing time, ∼ csrvir ∼ 30(Mh/107 M�)1/3 Myr
at z ∼ 10, which is much shorter than the age of the Universe at that redshift.

One way to parameterize the effects of these minihalos on reionization is
to supplement the IGM clumping factor with an average Cmh = 〈

n2
e

〉
/ 〈ne〉2

over the minihalo density profiles. However, the rapid time evolution during
evaporation makes application of this enhanced clumping factor difficult, be-
cause one must include each minihalo for only a finite time. A simpler pa-
rameterization is to use the total number of ionizing photons consumed (per
minihalo atom) during the entire evaporation process. Detailed numerical sim-
ulations show that this process typically consumes ∼3–5 ionizing photons per



chapter9 August 31, 2012

330 CHAPTER 9

minihalo atom, as the high internal densities of the halos cause relatively rapid
recombinations: trec ∼ 2 Myr (using the case-B rate) for a virialized object at
z ∼ 10.36 Given the fraction of collapsed mass in these minihalos, this in-
creases the number of photons per hydrogen atom required to complete reion-
ization by about one, potentially making minihalos as important a photon sink
as the clumped IGM itself. Fortunately, although these minihalos are clustered
and so induce inhomogeneous recombinations, numerical simulations show
that treating them as approximately uniform does not introduce any significant
errors.37

Once a region is ionized, later formation of minihalos is strongly suppressed
—even if the gas cools and recombines, because photoionization (or indeed
any other substantial heating event, such as an X-ray background) dramatically
increases the entropy of the IGM. In this context, the quantity

K = T

n2/3
= 760

(
T

104 K

)
(1 + δ)−2/3

(
1 + z

10

)−2

eV cm2 (9.64)

is usually referred to as “entropy,” although the thermodynamic entropy is actu-
ally S ∝ lnK . Conveniently,K is conserved for any adiabatic process, including
Hubble expansion or slow accretion; only strong shocks or radiative processes
modify it. Clearly, the heating that occurs during reionization dramatically in-
creases the entropy. Typical values are Kreion > 100 eV cm2 at z ∼ 10, even
after a substantial period of cooling and entropy release via recombination line
cooling.

If this entropy is much larger than that generated by gravitational accretion
onto a dark matter halo, the finite entropy “floor” prevents gas from collapsing
to high densities—essentially preventing accretion onto the halo. It is conve-
nient to parameterize this process in terms of the entropy generated by the
accretion shock at the virial radius, which provides Khalo ≈ Tvir/[n(rvir)]2/3. In-
terestingly, Kreion/Khalo ∼ 10(Tvir/104 K)−1 for an NFW profile; thus, the pho-
toheating from reionization significantly suppresses accretion onto halos even
somewhat above the usual atomic cooling threshold: numerical calculations of
gas profiles (assuming hydrostatic equilibrium within the virial shock) show
that only ∼50% of the gas is able to accrete when Kreion/Khalo ∼ 1, and de-
creases rapidly for less massive halos.38

Photoheating suppresses accretion so efficiently because this process typi-
cally affects the gas while it has a low density and so efficiently imparts a large
entropy to the gas. In fact, any other photoheating—even from a modest X-
ray background generated by rare quasars—can substantially affect the IGM
entropy, preventing the formation of minihalos even before they are ionized.
We can use the estimate of equation (9.53) to examine this possibility as well:
if a fraction fh of the energy goes into heating (rather than ionization), we
have

Tqso ∼ 20,000fesc,q

( ε

0.1

)(
fUV

0.2

) (
fcoll

0.01

) (
fBH

10−4

)(
fh

1/3

)
K, (9.65)
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Figure 9.14 Effects of the IGM “entropy floor” on gas clumping from virialized miniha-
los (top panel) and the collapse fraction of gas onto dark matter halos (bottom
panel). In each panel, the uppermost solid curve shows the model calcu-
lation with no entropy injection. The lower solid curve, labeled KIGM(z),
shows the effect of a numerical calculation of entropy injection via pho-
toionization and subsequent recombination (which decreases K through
radiative cooling). The two dashed curves show estimates for entropy injec-
tion at fixed levels (perhaps by an X-ray background). Oh, S. P., & Haiman,
Z., Mon. Not. R. Astron. Soc. 346, 456 (2005). Copyright 2005 by the Royal
Astronomical Society.

so substantial heating is clearly plausible. Even if Tqso ∼ 1,000 K—with a very
modest accompanying ionized fraction—the arguments show that minihalo
formation is almost completely suppressed.

Figure 9.14 shows some of these effects quantitatively. The bottom panel il-
lustrates how the entropy suppresses the collapse of gas onto dark matter halos.
The uppermost solid curve shows fcoll in this model if no excess entropy is in-
troduced, and only minihalos with Tvir < 104 K are included in the calculation.
The dashed curves add K = 1 and 10 eV cm2 (upper and lower, respectively).
Even these modest levels reduce fcoll by a substantial amount. The lower solid
curve, labeled KIGM(z) shows a minimal suppression due to reionization, in
which the gas is allowed to recombine for roughly a Hubble time (dramatically
decreasing its entropy at high redshifts through recombination cooling). Even
this conservative estimate essentially eliminates minihalo formation.
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The top panel shows an estimate of the effective clumping factor, C = 〈n2
e〉/

〈ne〉2, when only gas inside minihalos is included in the same scenarios as de-
scribed previously. (Thus, it underestimates the total clumping factor, which
must include gas outside virialized objects, but it more clearly shows the effect
on these objects.) Again, even a relatively modest entropy injection dramatically
reduces the role of these objects as photon sinks during reionization.

The suppression of accretion onto halos above the atomic cooling threshold is
important for understanding high-redshift star formation. In detail this thresh-
old depends on (i) self-shielding of gas within the potential well (which in turn
depends on its internal structure); (ii) collisional recombination and cooling in-
side the halo; (iii) the amplitude of the ionizing background that impinges on
each halo; and (iv) the relative timing of gas accretion onto the halo and the first
appearance of the ionizing background.

Fortunately, simple arguments provide an estimate for the range of halos in
which accretion is eventually suppressed. Halos larger than the Jeans mass in
the heated medium are essentially unaffected; this is usually parameterized by
a halo circular velocity threshold, VJ (see equation 3.31), with

VJ = 81
(

TIGM

15,000 K

)1/2

km s−1. (9.66)

However, the dark matter halo itself actually has an average density ∼200 times
the cosmic mean, so inside it the gravitational force gradient is larger than in
the mean-density IGM (and hence better able to overcome thermal pressure).
The Jeans mass evaluated with this larger density then determines the smallest
halo that can accrete any gas, parameterized by the limiting circular velocity

Vlim = 34
(

TIGM

15,000 K

)1/2

km s−1. (9.67)

Halos in the range from Vlim to VJ are able to accrete some, but not their en-
tire complement of, gas. The point at which halos are able to accrete half the
expected mass is roughly the filtering mass, or time-averaged Jeans mass (see
§3.2). This is somewhat smaller than the Jeans mass itself because the thermal
pressure is lower before reionization, which allows the early phases of assembly
to proceed rapidly (and so to build up a halo near Vlim).

The filter mass is a very useful approach for addressing this question, be-
cause (as a time integral) it illustrates how the feedback takes time to set in.
Gas already close to accreting is still able to do so, because at the higher density
characteristic of gas near halos, entropy injection is less efficient. This means
that photoionization feedback manifests gradually over a timescale comparable
to the collapse time of dark matter halos—essentially the Hubble time. Indeed,
detailed simulations show that just after a given region is ionized, the suppres-
sion affects only halos with circular velocities vc < 10 km s−1.39

Because VJ typically lies above the atomic cooling threshold for star forma-
tion, reionization will suppress the formation of stars inside small galaxies. In
principle, a search for such suppression provides another test of reionization
models, although as described previously, suppression occurs gradually over a
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timescale comparable to the Hubble time, so it will be difficult to separate from
the many other factors that affect the cosmic star formation rate. If, however,
reionization was highly inhomogeneous and extended over time, the differing
reionization histories in different regions of the Universe may have induced
variations in stellar populations whose observable effects persist to the present
day. It may also have implications for understanding the wide range in stellar
populations of Milky Way satellites with V < VJ, if some of those dark matter
halos accreted gas (and formed their stars) before reionization, and some did
so afterward. (see §13.4.2).
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Chapter Ten

Surveys of High-Redshift Galaxies

The study of the first galaxies has so far been mostly theoretical, but it is soon
to become an observational frontier. How the primordial cosmic gas was reion-
ized is one of the most exciting questions in cosmology today. As discussed in
the previous chapter, most theorists associate reionization with the first gener-
ations of stars, whose UV radiation streamed into intergalactic space and broke
hydrogen atoms apart in H II bubbles that grew in size and eventually over-
lapped. Others conjecture that accretion of gas onto low-mass black holes gave
off sufficient X-ray radiation to ionize the bulk of the IGM nearly simultane-
ously. New observational data are required to test which of these scenarios
describes reality better. The timing of reionization depends on astrophysical
parameters such as the efficiency of making stars or black holes in galaxies.
The exploration of the reionization epoch promises to be one of the most ac-
tive frontiers in cosmology over the coming decade. We are now in a position
to understand the first pillar of these efforts: direct observations of galaxy
populations.

What makes the study of the first galaxies so exciting is that it is a work in
progress. Scientific knowledge often advances like a burning front, in which
the flame is more exciting than the ashes. It will obviously be rewarding if our
current theoretical ideas are confirmed by future observations, but it may be
even more exciting if new observations demand that these ideas be modified.

10.1 Telescopes for Observing High-Redshift Galaxies

10.1.1 The Hubble Deep Field and Its Follow-Ups

In 1995, Bob Williams, then director of the Space Telescope Science Institute,
invited leading astronomers to advise him where to point the Hubble Space
Telescope (HST) during the discretionary time he received as a director, which
amounted to a total of up to 10% of HST’s observing time.1 Each of the in-
vited experts presented a detailed plan for using HST’s time in sensible, but
complex, observing programs addressing their personal research interests. Af-
ter much of the day had passed, it became obvious that no consensus would be
reached. “What shall we do?” asked one of the participants. Out of desperation,
another participant suggested, “Why don’t we point the telescope toward a fixed
nonspecial direction and burn a hole in the sky as deep as we can go?”—much
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Figure 10.1 A portion of the first Hubble Deep Field (HDF) image taken in 1995 (see
Color Plate 18 for a color version of this image). The HDF covers an area
2.5 arcmin across and contains a few thousand galaxies (with a few candi-
dates up to z ∼ 6). The image was taken in four broadband filters centered
on wavelengths of 3000, 4500, 6060, and 8140 Å, with an average exposure
time of ∼1.27 × 105 s per filter.

like testing how fast a new car can go. This simple compromise won the day, as
there was no real basis for choosing among the more specialized suggestions.
As it turned out, this “hole burning” choice was one of the most influential uses
of HST; it produced the deepest image we have so far of the cosmos.

The Hubble Deep Field (HDF) covered an area of 5.3 arcmin2 and was ob-
served over 10 days (see Figure 10.1). One of its pioneering findings was the dis-
covery of large numbers of high-redshift galaxies at a time when only a small
number of galaxies at z > 1 were known: the HDF contained numerous red
galaxies, with some reaching z > 6. The wealth of galaxies discovered at differ-
ent stages of their evolutionary histories allowed astronomers to estimate the
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variation in the global rate of star formation per volume over the lifetime of
the universe.

Subsequent incarnations of this successful approach included the HDF-
South (a near-replica of the original HDF in the southern sky) and the Great Ob-
servatories Origins Deep Survey (GOODS), which was a somewhat shallower
survey covering a much larger area. Both of these extensions were designed to
increase the original sample of galaxies in HDF, to make their statistics quan-
titatively reliable and to avoid spurious effects of clustering (see the detailed
discussion in §10.4). A section of GOODS, occupying a tenth of the diameter of
the full moon (equivalent to 11 arcmin2), was then observed for a total exposure
time of a million seconds to create the Hubble Ultra Deep Field (HUDF), the
most sensitive (deepest) field image in visible light to date. Red galaxies have
been identified in the HUDF image up to a redshift of z ∼ 8, and possibly even
higher, showing that the typical UV luminosity of galaxies declines with red-
shift at z > 4 (see §10.3). Most of the data we discuss in this chapter ultimately
come from the HDF and HUDF.

10.1.2 Future Telescopes

The first stars emitted their radiation primarily in the UV band, but because of
intergalactic absorption and their exceedingly high cosmological redshift, their
detectable radiation is mostly observed in the IR (see §10.2.2). The successor
to the Hubble Space Telescope, the James Webb Space Telescope (JWST), will
include an aperture 6.5 m in diameter, made of gold-coated beryllium and de-
signed to operate in the IR wavelength range of 0.6–28 µm (see Figure 10.2).
JWST will be positioned at the Lagrange L2 point, where any free-floating test
object stays on the side of Earth away from the Sun but in a direct line with
the Sun. JWST’s large aperture and position outside Earth’s atmosphere makes
it particularly well suited to detecting the faint, compact galaxies we expect to
have existed during the cosmic dawn and possibly to discover “smoking gun”
signatures of Population III stars, such as strong UV sources with no metal
lines or strong He II recombination lines (see §5.4).

Several initiatives to construct large IR telescopes on the ground are also un-
derway. The next generation of ground-based telescopes will have effective di-
ameters of 24–42 m, roughly three times wider than the largest existing optical/
near-IR telescopes. Examples of these upcoming facilities include the European
Extremely Large Telescope (EELT),2 the Giant Magellan Telescope (GMT),3 and
the Thirty Meter Telescope (TMT),4 which are illustrated in Figure 10.3. Along
with JWST, they will be able to image and survey a large sample of early galax-
ies, and their large collecting areas will be especially useful in studying individ-
ual galaxies and their spectra in detail.

Additional emission at submillimeter wavelengths from molecules (such as
CO), ions (such as C II), atoms (such as O I), and dust within the first galax-
ies will potentially be detectable with the future Atacama Large Millimeter/
Submillimeter Array (ALMA).5 This array will contain sixty-six 7- to 12-m anten-
nas positioned at very high altitudes in Chile, to see past the strong atmospheric
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Figure 10.2 A full-scale model of the James Webb Space Telescope (JWST), the succes-
sor to the Hubble Space Telescope (http://www.jwst.nasa.gov/; see Color
Plate 19 for a color version of this image). JWST includes a primary
mirror 6.5 m in diameter and offers instrument sensitivity across the IR
wavelength range of 0.6 to 28µm, which will allow detection of the first
generations of galaxies. The size of the Sun shield (the large flat screen in
the image) is 22 m × 10 m (72 ft × 29 ft). The telescope will orbit 1.5 million
km from Earth at the Lagrange L2 point. Courtesy of NASA/EPO.

absorption at millimeter and submillimeter wavelengths. It is perfectly posi-
tioned to observe emission from dust and heavy elements in the early Universe,
as we discussed in §8.9.

Many other instruments are under development, to complement the direct
views of the galaxies obtainable with these telescopes. For example, given that
these galaxies also created ionized bubbles during reionization, their locations
should be correlated with the existence of cavities in the distribution of neu-
tral hydrogen. Within the next decade it may become feasible to explore the
environmental influence of galaxies by using IR telescopes in concert with
radio observatories that will map diffuse hydrogen at the same redshifts
(see §12 and §13.3).

10.2 Methods for Identifying High-Redshift Galaxies

Much of the baryonic mass in the Universe assembled into star-forming galax-
ies after the first billion years in cosmic history. Consequently, the highest-
redshift galaxies are a rarity among all faint galaxies on the sky. A method
for isolating candidate high-redshift galaxies from the foreground population
of feeble lower-redshift galaxies is required to identify targets for follow-up
studies.
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Figure 10.3 Artist’s conception of the designs for three future giant ground-based
telescopes that will be able to probe the first generation of galaxies (see
Color Plate 20 for a color version of this image): the European Extremely
Large Telescope (EELT, top), the Giant Magellan Telescope (GMT, middle),
and the Thirty Meter Telescope (TMT, bottom). Courtesy of the European
Southern Observatory (ESO), the GMT Partnership, and the TMT Observa-
tory Corporation.
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10.2.1 Lyman-α Emitters

One technique makes use of narrow-band imaging to identify galaxies whose
highly redshifted line emission falls within the selected band. An object that
is bright in the narrow band but faint (or, for these applications, usually in-
visible) in nearby broadband measurements can be identified as a line emit-
ter. Provided one can identify the line that is observed, this technique has
the advantage of identifying both the redshift and location of the galaxy. This
method is typically applied to the Lyman-α line, which is often very strong be-
cause most ionizing photons absorbed by the galaxy’s ISM are reprocessed
into Lyman-α line photons through recombinations (see chapter 11). How-
ever, it is also highly sensitive to the gas geometry and kinematics and can
be extinguished by dust. The galaxies detected by this technique are termed
Lyman-α emitters (LAEs). The following are the primary challenges with this
approach:

• The infrared night sky: Terrestrial telescopes suffer from substantial atmo-
spheric absorption and strong night-sky lines in the IR bands (primarily
from OH and water vapor). Figure 10.4 shows the night sky in the rel-
evant spectral range, including both atmospheric absorption and night-
sky emission lines. The vertical shaded columns show “windows” where
the emission lines are below one-third of the average. The dark and the
light regions take moderate- and high-resolution bands, respectively (with
R = λ/�λ = 300 and 1,000). These open bands cover only 16% and 27% of
the available spectrum, respectively, indicating that this technique can be
used only in particular redshift ranges. So far, the most commonly utilized
are at z ∼ 6.6, 7, 7.7, and 8.5.

• Contamination from lower-z line emitters: Galaxies have many other emis-
sion lines, of course, some of which can be very strong. Of particular con-
cern are Hα, [O III], Hβ, and [O II] lines. With only a single line detection,
a firm identification that distinguishes among these possibilities cannot be
made. Such contaminants must be ruled out by detecting other emission
lines from the source (unlikely to be visible for a true LAE but very plau-
sible for the lower-redshift interlopers) or by measuring the continuum
emission (obviously very difficult for a faint source). If only a single line is
visible, the shape can help determine whether the object is truly an LAE:
as shown in Figure 10.5, observed Lyman-α lines in galaxies nearly always
have asymmetric profiles, with a sharp cutoff on the blue side (due to IGM
absorption) and a long tail to the red side (due to radiative transfer effects).
Metal lines, in contrast, are generally very symmetric. Unfortunately, while
very suggestive, these types of line shape diagnostics are not perfect. A ro-
bust identification always relies on multiple lines. The next best option is
deep follow-up of the source to observe the continuum break described in
the next section.

• Interpretation and follow-up: Finally, although this method efficiently finds
galaxies at high redshifts, it provides little direct physical information—
only a single-line luminosity that, as we will see in chapter 11, is
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heavily dependent on dust, the ISM clumpiness and dynamics, and the
IGM ionization state. Even deep follow-up observations typically detect lit-
tle or no stellar continuum emission.

To date, LAE surveys have detected many high-z sources, but their interpre-
tation is still debated. We return to the Lyman-α line as an important cosmo-
logical probe in chapter 11.

10.2.2 Lyman-Break Galaxies

The second observational technique adopts several broad photometric bands
to estimate the redshifts of galaxies based on the strong spectral break arising
from absorption by intergalactic (or galactic) neutral hydrogen along the line
of sight to the source. As we saw in chapter 4, the IGM is optically thick to
Lyman-α photons at high redshifts. Thus, little or no flux should be detectable
shortward of 1216 (1 + z) Å (irrespective of the history of reionization). For
example, to identify a galaxy at z = 6 one needs two filters: one above and the
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other below the Lyman-α break at 7 × 1216 = 8512 Å. The relevant bands are i ′
(centered at ∼ 9000 Å) and z′ (centered at ∼ 8000 Å) of HST, as illustrated
in Figure 10.6. This method was first used at lower redshifts, z ∼ 3–4, where
the intergalactic H I column density is smaller, and so the related Lyman-limit
break at 912 Å was instead adopted to photometrically identify galaxies. The
912 Å break is not observable at source redshifts z > 6, because it is washed
out by the strong Lyman-α absorption at lower redshifts. The sources detected
by this technique are termed Lyman-break galaxies (LBGs).

The key challenge for observers is to obtain a sufficiently high signal-to-noise
ratio that LBGs can be safely identified through the detection of a single redder
band. Figure 10.6 illustrates how a color cut of (i ′ − z′)AB > 2.3 (see equa-
tion 1.16 for a definition of the AB magnitude system) is effective at selecting
sources at redshifts z > 6. The reliability of this dropout technique in reject-
ing low-redshift interlopers can be tested only through spectroscopic observa-
tions. The i ′-drop spectra typically show a single emission line at the Lyman-α
wavelength, with no significant continuum; as in Figure 10.5, the lines are typ-
ically asymmetric and can clearly indicate the source redshift. However, only
a fraction of galaxies have Lyman-α lines, and spectroscopic follow-up is often
difficult.

The NIRSpec spectrograph on JWST covers observed wavelengths in the
range 0.8–5µm and is ideally suited for the task of identifying the redshifts
of distant galaxies. This instrument has the sensitivity to detect the rest-frame
UV and optical continuum emission over the full range of emission lines from
Lyman-α to Hα (6563 Å rest wavelength) for galaxies at z ∼ 6. Analogous
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studies of galaxies at z ∼ 3 with HST have produced a detailed understand-
ing of the internal properties of these galaxies.

10.2.3 Using Massive Gravitational Lenses as Natural Telescopes

A massive gravitational lens, such as a cluster of galaxies, can be used to probe
deeper into the early Universe and detect faint sources that are otherwise be-
low the sensitivity of human-made telescopes (see §8.10 for an overview of the
physics of this process). Foreground X-ray clusters can provide a magnification
boost of 5–30 in flux (for unresolved sources) or in size (for resolved sources).
The gain in reaching a fainter flux threshold is partly offset by a reduction in
the sky area being surveyed behind the lens, which produces an overall change
in the number of bright sources that depends on the slope of the luminosity
function (see equation 10.10).

The inverse of the 2 × 2 magnification matrix, defined asM−1 ≡ ∂β/∂θ , is
real and symmetric and can therefore be diagonalized and expressed along its
principal axis as

M−1 =
(

1 − κ − γ 0

0 1 − κ + γ

)
. (10.1)

The so-called convergence coefficient κ is associated with an isotropic focusing
of light rays (and is given by the surface density of the lens scaled by �crit),
while the shear coefficient γ (defined by the trace-free component of the matrix
and derived from the lens equation) introduces anisotropy. A circular source
of unit radius is distorted to an elliptical image with major and minor axes of
(1 − κ − γ )−1 and (1 − κ + γ )−1, respectively. Since lensing conserves surface
brightness, the magnification µ is the ratio between the image area and the area
of the source or, equivalently, the determinant of the magnification matrix,

µ = detM = 1

det(M−1)
= 1

(1 − κ)2 − γ 2
. (10.2)

For a point source, the magnification diverges at the so-called critical lines in
the image plane of the lensing cluster (or the equivalent “caustics” in the source
plane). The magnification is infinite if one of the principal values ofM−1 equals
zero. In the image plane, this condition defines two closed lines that do not
intersect. Finite-size sources, like galaxies, are magnified only by a finite factor,
because most of their observed light rays cannot get closer to a caustic than
the source size. For simple mass distributions, there are two critical lines: the
external critical line where the source is deformed in the tangential direction,
and the internal critical line where the deformation is radial.

For a circularly symmetric surface-density profile (as in the case of a spheri-
cally symmetric lens), the critical lines are circles. The tangential critical line in
this case is located at the Einstein radius, interior to which the average surface
density equals the critical value � = �crit = 0.35 g cm−2(D/1 Gpc)−1. This
provides a simple method for measuring the total projected mass of the lens
out to that radius if the source and lens redshifts are known. The location of the



chapter10 August 31, 2012

SURVEYS OF HIGH-REDSHIFT GALAXIES 347

5.2

5.1

1
2

2
4

4

3

3

Figure 10.7 Image of the core of the cluster Abell 383, including known multiply im-
aged sources (marked 1 to 5) and the noncircular critical lines for sources
at zs = 6 (see Color Plate 21 for a color version of this image). The two im-
ages of a galaxy with zs = 6.027 are marked by circles. The long slit used
for spectroscopic follow-up is shown in white. Richard, J., et al., Mon. Not.
R. Astron. Soc. 414, L31 (2011). Copyright 2011 by the Royal Astronomical
Society.

radial critical line depends on the inner gradient of the mass distribution. De-
viations from circular symmetry complicate the critical line geometry, which in
the general case needs to be solved numerically. Clearly, the location and shape
of the critical lines depend on the source redshift.

Figure 10.7 shows an example for lensing of a galaxy at a redshift zs = 6.027
by the cluster Abell 383 at zd = 0.187. The inner and outer critical lines have
a noncircular geometry owing to the ellipticity and substructure in the clus-
ter mass distribution. The two images of the background galaxy, labeled 5.1
and 5.2, are marked by circles. The lens model implies magnification factors of
µ1 = 11.4 ± 1.9 and µ2 = 7.3 ± 1.2 for images 5.1 and 5.2, respectively. These
factors give an unlensed AB magnitude of 27.2 ± 0.05 for the source galaxy
in the H band. At z = 6, 1" on the sky corresponds to a projected distance of
5.7 kpc.

Recent estimates of the faint-end slope of the luminosity function of
star-forming galaxies at z > 6 suggest that the bulk of the integrated star
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formation at high redshift may originate in low-luminosity galaxies, as expected
theoretically. To clarify whether low-luminosity systems are abundant at early
times requires observations probing well below the sensitivity limits obtain-
able with current facilities using conventional methods. Strong gravitational
lensing by foreground clusters is the only means to advance this quest before
the next generation of telescopes is available. Given the finite size of back-
ground galaxies, a typical lensing cluster can magnify faint galaxies at z > 7
by more than a factor of ∼15 on the critical lines. Spectroscopy and detailed
studies become feasible at otherwise impossible unlensed limits. This tech-
nique enables the determination of stellar UV continuum slopes, Lyman-α
emission line profiles, and star formation rates for sources whose intrinsic flux
is close to the faintest limits reached with direct imaging (AB magnitude ∼30 in
the I -band).

Surveys for gravitationally lensed high-redshift galaxies have been conducted
using two techniques. The first technique makes use of long-slit spectrographs
on 8- to 10-m ground-based telescopes to “scan” the cluster critical line to search
for high-redshift strongly lensed Lyman-α emitting galaxies. By focusing on
the areas of highest magnification, this technique is sensitive to the lowest-
luminosity galaxies at high redshifts. The critical-line mapping technique was
extended into the near-IR to search for lensed Lyman-α emitters in the redshift
interval 8.5 < z < 10.2, where candidate sources were discovered.6

The second technique makes use of sensitive multiwavelength imaging of
galaxy clusters to select galaxies using the standard Lyman-break technique.
This method generally covers a much larger area than the critical-line survey,
albeit with significantly lower average magnifications. Early studies of lensed
dropouts with HST have demonstrated the potential of this method for
locating z > 6 galaxies. Deep near-IR imaging identified a large-volume
density of faint dropouts likely to lie at z > 6.7 As with the critical-line sur-
veys, these results hinted at a large ionizing contribution from low-luminosity
galaxies.

Lensing surveys will improve as more efficient instrumentation is installed
on existing facilities. One of the most exciting developments has been the in-
stallation of the Wide Field Camera 3 (WFC3) onboard HST, which is providing
deeper IR imaging over a larger area than previously available. WFC3 imaging
of the clusters Abell 1703 and Abell 383 have yielded a number of promising
z > 6 galaxies, as illustrated in Figure 10.7. The magnification provided by
gravitational lensing enables detection of galaxies with a high signal-to-noise
ratio and results in more secure measurements of the UV continuum slope
and stellar mass. Moreover, the magnified galaxies are ideal for spectroscopic
follow-up. Follow-up observations of one of the lensed galaxies in Abell 1703
produced the first robust spectroscopic confirmation of a z > 7 Lyman-break
galaxy using a near-IR spectrograph.8 The prevalence of Lyman-α emission in
these galaxies is being used to set constraints on when reionization occurred.
Deeper follow-up spectroscopy of these galaxies will provide strong constraints
on the strength of He II λ1640 emission and offer the potential to identify the
telltale UV signatures of hot Population III stars.
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10.2.4 Finding Faint Galaxies with the First Gamma-Ray Bursts

Traditional methods of finding galaxies, including both the LAE and LBG tech-
niques, select galaxies above a given luminosity threshold and so are biased
toward identifying the brightest galaxies. However, as we have seen, much of
the activity at high redshifts likely occurs in faint galaxies far below the lumi-
nosity threshold of even extremely deep observations like the HUDF. Is there
any way to find more typical galaxies?

Remarkably, the best way may be to search for individual “stars” rather than
the collective emission of entire galaxies. Explosions of individual massive stars
(such as supernovae) can outshine their host galaxies for brief periods of time.
The brightest among these explosions are gamma-ray bursts (GRBs), observed
as short flashes of high-energy photons followed by afterglows at lower photon
energies (as discussed in §5.6). These afterglows can be used to study the first
stars directly. To date, GRBs have been discovered by the Swift satellite out to
z = 9.4, merely 540 million years after the Big Bang, and significantly earlier
than the farthest known quasar (z = 7.1).9 It is already evident that GRB obser-
vations hold the promise of opening a new window into the infant Universe.

As discussed in §5.6, long-duration GRBs are believed to originate from the
collapse of massive stars at the end of their life (Figure 5.18). Since the very
first stars were likely massive, they could have produced GRBs. If so, we may
be able to see their host galaxies one star at a time. The discovery of a GRB af-
terglow whose spectroscopy indicates a metal-poor gaseous environment could
potentially signal the first detection of a Population III star. The GRB redshift
can be identified from the Lyman-α break in its otherwise power-law UV spec-
trum. A photometric detection can then be followed up with spectroscopy on a
large telescope. Various space missions are currently proposed to discover GRB
candidates at the highest possible redshifts.

In addition to being valuable in individual source detections, GRBs
are expected to reside in typical small galaxies where massive stars form at
those high redshifts. Once the transient GRB afterglow fades away,
observers may search for the steady but weaker emission from its host galaxy.
High-redshift GRBs may therefore serve as signposts of high-redshift galax-
ies that are otherwise too faint to be identified on their own. Importantly, GRBs
trace the star formation history in a different way than do typical galaxy
surveys, because they can reside in arbitrarily faint galaxies below any realis-
tic survey detection threshold (although other biases, such as metallicity, may
be important).

Although standard lightbulbs appear fainter with increasing redshift, this is
not the case with GRBs, because they are transient events that fade with time.
When studying a burst at a constant observed time delay, we are able to see the
source at an earlier time in its own frame. This is a simple consequence of
time stretching due to the cosmological redshift. Since the bursts are brighter
at earlier times, it turns out that detecting them at high redshifts is almost
as feasible as finding them at low redshifts, when they are closer to us.10 It
is a fortunate coincidence that the brightening associated with seeing the GRB
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Figure 10.8 Detectability of high-redshift GRB afterglows as a function of time since the
GRB explosion as measured by the observer. The GRB afterglow flux (in Jy)
is shown at the redshifted Lyman-α wavelength (solid curves). Also shown
(dotted curves) is a crude estimate for the spectroscopic detection threshold
of the JWST, assuming an exposure time equal to 20% of the time since
the GRB explosion. Each set of curves spans a sequence of redshifts: z =
5, 7, 9, 11, 13, 15, respectively (from top to bottom). Barkana, R., & Loeb, A.,
Astrophys. J. 601, 64 (2004). Reproduced by permission of the AAS.

at an intrinsically earlier time roughly compensates for the dimming
associated with the increase in distance to the higher redshift, as illustrated
by Figure 10.8.

10.3 Luminosity and Mass Functions

The luminosity function (LF) of galaxies, φ(L) dL, describes the number of
galaxies per comoving volume within the luminosity bin between L and
L+ dL. It is the most fundamental observable quantity for galaxy surveys, and
a great deal of effort has gone into measuring it in both the nearby and distant
Universe. Figure 10.9 shows measurements at z = 4–8 of the rest-frame UV
galaxy luminosity function, with the most distant data taken from the HUDF.

A popular fitting form for a wide range of galaxy surveys is provided by the
Schechter function,

φ(L) = φ


(
L

L


)α
exp

(
− L

L


)
, (10.3)
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where the normalization φ
 corresponds to the volume density at the charac-
teristic luminosity L
 and α is the faint-end slope that controls the relative
abundance of faint and bright (L > L
) galaxies. The total number density of
galaxies is given by ngal = ∫ ∞

0 φ(L) dL = φ
�G(α+ 1), and the total luminosity
density is ugal = ∫ ∞

0 φ(L)L dL = φ
L
�G(α + 2), where �G is the Gamma
function. Note that at the faint end, ngal diverges if α < −1, and ugal diverges if
α < −2. (In reality, the integrals converge anyway because there is a minimum
luminosity for galaxies, set by a combination of the minimum halo mass for
gas accretion and the minimum halo mass in which gas can cool.)

The curves in Figure 10.9 show fits of this form to the data; clearly, this
simple empirical structure does an excellent job of matching the observations.
Three points emerge from these fits: (i) the characteristic luminosity L

declines toward higher redshift; (ii) the space density of galaxies at L
 also
decreases; and (iii) the faint-end slope may steepen at z > 7 (though the evi-
dence for this is still tentative). In light of typical models for structure forma-
tion, in which these galaxies are associated with dark matter halos, these results
are hardly surprising: at higher redshifts, fewer halos have formed, and in any
hierarchical model those that have formed are preferentially smaller. The inter-
esting physics involves the mapping from the halo mass function to luminous
baryons, which we discussed in chapter 8.
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The particular physical insight provided by a galaxy survey depends on the
selection technique and wave band used. In general, rest-frame UV measure-
ments (such as those shown in Figure 10.9) depend exclusively on hot stars able
to produce the observed UV photons. Because these high-mass stars are short-
lived, the UV luminosity is tied to the star formation rate (SFR) of the galaxies,
although there is an uncertain correction that depends on the stellar IMF, be-
cause the ratio of high-mass to low-mass stars determines the efficiency with
which baryons produce high-energy photons. In other words, the high-energy
photons provide little direct information about low-mass stars, so the total SFR
requires some extrapolation. In fact, there are several ways to estimate SFRs
from astronomical measurements.i

• The rest-frame UV continuum (1250–1500 Å) provides a direct measure of
the abundance of high-mass>5M� main-sequence stars. Since these stars
are short-lived, with a typical lifetime ∼2 × 108(m
/5 M�)−2.5 yr, they pro-
vide a good measure of the “instantaneous” SFR, with

SFR ≈ 1.4
(

Lm

1028 erg s−1 Hz−1

)
M� yr−1. (10.4)

The primary uncertainty in this determination is extinction via dust,
though that can be estimated from the spectra or from other observations.

• Nebular emission lines, such as Hα and [O II], measure the combined lumi-
nosity of gas clouds that are photoionized by very massive stars (>10 M�).
The total amount of line emission therefore measures the rate at which
ionizing photons are produced and hence the (massive) SFR. Dust extinc-
tion can be evaluated from higher-order Balmer lines, but this estimator is
highly sensitive to the assumed IMF. For the Milky Way IMF,

SFR ≈ 0.8
(

L(Hα)

1041 erg s−1

)
M� yr−1, (10.5)

and

SFR ≈ 1.4
(
L([O II])

1041 erg s−1

)
M� yr−1. (10.6)

• Far-IR emission (10–300µm) measures the total emission from dust heated
by young stars. Again, this heating is due to high-energy radiation from
massive stars, and so the total luminosity measures how rapidly they form:

SFR ≈ 0.45
(

L(FIR)

1043 erg s−1

)
M� yr−1. (10.7)

• Radio emission, for example at a frequency of 1.4 GHz, measures the syn-
chrotron emission from relativistic electrons produced in supernova rem-
nants. The supernova rate is related to the “instantaneous” production rate

iUnless otherwise specified, the following conversions assume a standard Salpeter IMF with solar
metallicity to transform luminosity into stellar mass.
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Figure 10.10 The star formation rate density (left vertical axis) and luminosity density
(right vertical axis) as functions of redshift (lower horizontal axis) and cos-
mic time (upper horizontal axis), for galaxies brighter than an AB mag-
nitude of –17.7 (corresponding to 0.05L
 at z = 3). The conversion from
observed UV luminosity to star formation rate assumed a Salpeter IMF
for the stars. The upper curve includes dust correction based on esti-
mated spectral slopes of the observed UV continuum. Bouwens, R., et al.,
Astrophys. J. 737, 90 (2011). Reproduced by permission of the AAS.

of massive stars (>8M�), because these have a short lifetime, giving on
timescales longer than ∼108 yr,

SFR ≈ 1.1
(

Lm(1.4 GHz)

1028 erg s−1 Hz−1

)
M� yr−1. (10.8)

We emphasize again that all these measures are calibrated locally, and their
extrapolation to high redshifts is at best uncertain.

Integration of the luminosity function of galaxies over a kernel that mea-
sures their SFR rate yields the SFR per comoving volume in the Universe.
Figure 10.10 shows a recent determination of this rate as a function of red-
shift based on measurements of the UV luminosity function of all galaxies
brighter than 0.05L
 at z = 3 (corresponding to an AB magnitude of –17.7).
Most of these measurements are made from UV data, so the correction for
dust extinction is particularly important (the corrected form is shown by the
upper set of measurements here). Also, we note that this is a lower limit to
the true SFR density, because it ignores feeble galaxies below the detection
threshold.

One obvious omission from our list of SFR indicators is the Lyman-α line,
which, as we discussed, is useful in detecting high-redshift galaxies. However,
as we will see in chapter 11, the interpretation of this emission line is fraught
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with uncertainties about the galaxy’s dust content, ISM structure, outflow prop-
erties, and environment. Therefore, the Lyman-α line is not a good SFR in-
dicator. However, one can still construct a luminosity function of emission
in this line; Figure 10.11 shows recent determinations in the redshift range
of z = 3–6.6. In contrast with the luminosity function of photometrically se-
lected LBGs, LAEs do not appear to change in comoving number density in
the range z = 3–5.7, although their density appears to decline rapidly beyond
that. This may be an indication of changes in the galaxy environments—and
possibly reionization—though we will describe many difficulties with such an
interpretation in chapter 11.

Meanwhile, the mass budget of stars at z ∼ 5–6 can be inferred from their
rest-frame optical and near-IR luminosities, which are much closer to measur-
ing the total stellar content than UV light, because even low-mass stars emit in
these bands. In many ways, the total stellar content is more physically interest-
ing than the SFR density, because the cumulative density provides a census of
stars that previously formed inside faint galaxies below the detection threshold
and only later were incorporated into detectable galaxies. Moreover, the cumu-
lative density provides some information on the past history of star formation
(though still subject to uncertainty with the IMF). Figure 10.12 shows some
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Figure 10.12 Stellar mass density (SMD) evolution over redshift in galaxies brighter
thanMAB = −18 at a rest-frame wavelength of 1500 Å (left) and with stellar
mass M
 > 108 M� (right) from several different measurements. All pan-
els assume a Salpeter IMF and Z = 0.2 Z�; the line labeled “Chabrier”
shows the effect of assuming a different IMF. The other line (labeled
“Hα”) shows the effect of systematic contamination from line emission.
Gonzalez, V., et al., Astrophys. J. 735, L34 (2011). Reproduced by permis-
sion of the AAS.

recent measurements of the growth of the total stellar mass density in the Uni-
verse. Note in particular that only a small fraction of the stars present at z < 2
formed at z > 6, though this finding is subject to an unknown correction from
undetected galaxies.

10.3.1 Emission Lines

Because the Lyman-α line can be very bright, and because its UV rest wave-
length redshifts it into the optical or near-IR in distant galaxies, this line gets a
great deal of attention (we discuss it extensively in chapter 11). But other emis-
sion lines can be as or even more useful for certain diagnostics, and we briefly
mention them here. This is of course a very extensive field of research, and
so we refer the interested reader to the literature and other textbooks for more
information (see Further Reading).

1. Other hydrogen lines: The other Lyman-series lines are almost never visi-
ble in high-redshift galaxies; after several scatterings, these photons are
“recycled” via radiative cascades into either Lyman-α photons or a pair
of photons from the forbidden 2s → 1s decay (see §12.2.2). However,
Balmer-series photons (and those beginning at even higher levels) are very
useful diagnostics. They are initially generated through the same process
as Lyman-α—recombinations following ionizations near hot, massive
stars—but because such photons can interact only with atoms already in
the n = 2 state, they are not subject to scattering in the ISM and escape
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galaxies relatively easily (especially since they have relatively long wave-
lengths and so are less subject to dust absorption; e.g., the Hα line lies
at 6563 Å). They therefore offer much more robust measures of star for-
mation rates, subject only to the uncertainty in the IMF and dust (see
equation 10.5).

Unfortunately, although Hα is extremely important for low-redshift
galaxies, its relatively long rest wavelength has so far limited its utility
for high-redshift galaxies.

2. Helium lines: He II has the same electronic structure as H I, but shifted
to four times larger energies. As a result, its ionization potential is well
beyond the cutoff of most stars—only rare Wolf-Rayet stars (i.e., massive
stars undergoing rapid mass loss) and the most massive Population III
stars are hot enough to significantly ionize it. He II Balmer-α photons
(with a rest wavelength of 1640 Å) are therefore the most promising di-
agnostic of such massive stars: they are produced through recombination
cascades following the ionization of He II. See §5.4 for a discussion of this
signature.

3. Metal lines: In nearby galaxies, many metal lines offer diagnostics of ISM
characteristics like the density, metallicity, and temperature of the nebu-
lae surrounding star-forming regions. As instruments improve, these will
no doubt be just as useful for measurements of high-z galaxies, although
(with most of the lines having rest wavelengths in the optical) they are less
accessible for the more distant sources.

10.3.2 Gravitational Lensing and the Luminosity Function

At low and moderate redshifts, the measured luminosity function can gener-
ally be taken as the intrinsic luminosity function, with the interesting physi-
cal interpretation dependent on understanding the mapping from luminosity
(in the waveband of interest) to the constituents of the galaxy, its host dark
matter halo, and its large-scale environment. However, at z > 6, an additional
complication arises: gravitational lensing. The measured luminosity functions
are so steep, and the source distance is so large, that lensing may substantially
affect the observed luminosity function. If so, its interpretation will require an
important extra step. We describe a simple model of this lensing effect here,
making use of the derivations in §8.10.

A SIS lens has the simple property that the deflection angle α̂ is independent
of the impact parameter of the light ray. The condition for multiple imaging
(and hence strong lensing) is then that the source lie inside the Einstein radius.
The probability that a line of sight to a source at a redshift zs passes within the
cross-sectional area associated with the Einstein radius of SIS lenses, πθ2

E , gives
a lensing optical depth

τlens(zs) = 16π3

H0

∫ zs

0
dz

D2(1 + z)2

(�m(1 + z)3 +��)1/2

∫ ∞

0
dσv

dn

dσv
σ 4
v , (10.9)
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where (dn/dσv) dσv is the (redshift-dependent) comoving density of SIS halos
with a one-dimensional velocity dispersion between σv and σv+dσv . This result
is analogous to the halo mass function, but defined with reference to the velocity
dispersion rather than the halo mass. The two can be related given a model for
the structure of galaxies, as described in chapter 3.

In calculating the probability of lensing it is important to allow for various
selection effects. Lenses magnify the observed flux, and lift sources that are in-
trinsically too faint to be observed over the detection threshold. At the same
time, lensing increases the solid angle within which sources are observed, so
that their number density in the sky is reduced. If there is a large reservoir
of faint sources, the increase in source number due to the apparent brighten-
ing outweighs their spatial dilution, and the observed number of sources is
increased due to lensing. This magnification bias can substantially increase the
probability of lensing for source populations whose number-count function is
steep, and thus affect the interpretation of the observed luminosity function.
The magnification bias for sources at redshift zs with luminosities between L
and L+ dL is

B(L) = 1

φ(L)

∫ µmax

µmin

dµ

µ

dP

dµ
φ

(
L

µ

)
, (10.10)

where φ(L) is the luminosity function, and (dP/dµ) dµ is the probability for
magnification between µ and µ + dµ within the range µmin < µ < µmax. For
example, the brighter SIS image has a magnification distribution (dP/dµ) =
2(µ− 1)−3 for 2 < µ < ∞.

A simple model for the redshift evolution of SIS lenses uses the mass func-
tion of dark matter halos that was derived in §3.4 and identifies σv = Vc/

√
2 at

the virial radius. Another simplified approach is to adopt the observed (dn/dσv)
at z = 0 and assume no evolution in the comoving density of lenses. The latter
approach gives the approximate results shown in Figure 10.13.

10.4 The Statistics of Galaxy Surveys

Measurements of the statistical properties of galaxies are challenging, and in
this section we discuss strategies to constrain their properties, including “one-
point functions” like the luminosity or stellar mass functions as well as spa-
tial correlations. The former generally provide insight into the baryonic physics
of galaxy formation—how dark matter halos accrete gas and transform it into
stars—while clustering provides insight into the dark matter halos themselves.

10.4.1 Estimates of Galaxy Clustering

We have already described our primary tool for understanding the spatial dis-
tribution of galaxies, the power spectrum, in §3.6.4, where we developed it
through the halo model. In this representation, it contains two terms: the two-
halo term, which describes the correlations between distinct dark matter halos,
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Figure 10.13 Probability for multiple imaging of high-redshift galaxies by an unevolv-
ing population of SIS lenses. (a) Lensing probability τm for obtaining
multiple images as a function of source redshift. (b) Magnification bias
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and the one-halo term, which describes the distribution of galaxies within an in-
dividual dark matter halo. At high redshifts, where halos are small and probably
host only one “galaxy” (at least as we would define them observationally), the
latter likely disappears in most halos. Thus, in the language of §3.6.4, we adopt
〈N |m〉 = 1 for all halos above a minimum mass set by accretion or feedback,
mmin, and zero otherwise, and we set the variance in that distribution to zero.

The key additional necessary input is some way of mapping the luminosity
(in some photometric band or emission line) or other observable to halo mass.
One framework for doing so is the conditional luminosity function, in which a
function p(L|m) parameterizes the probability distribution of galaxy luminos-
ity as a function of mass. This function can be very complex, of course, but for
now we simply assume that it can be constructed from some theoretical or phe-
nomenological arguments. As a crude example we could suppose that galaxies
are luminous for a fraction fduty of the time and that there exists a one-to-one
relationship between luminosity and mass, L(m), while they are “on.” In that
case,

p(L|m) = (1 − fduty)δ(0)+ fdutyδ(L[m]). (10.11)

Assuming only one galaxy per halo, and given a minimum observable lumi-
nosity Lmin, the predicted galaxy power spectrum will be

P gal(k, z) = Plin(k, z)

[∫
dm

f (>Lmin|m)
n̄obs

n(m, z)beff(k|m, z)
]2

, (10.12)

where

f (>Lmin|m) =
∫ ∞

Lmin

dLp(L|m). (10.13)

Comparison with equation (3.84) shows that we have dropped the halo profile
(under the assumption that each halo contains only one galaxy) and replaced
〈N |m〉 with f (>Lmin|m), which is the probability that a halo of mass m hosts
an observable galaxy—clearly, these are two different ways of expressing the
occupation fraction of dark matter halos. We can then define a mean bias for
this galaxy sample, b̄eff(k), by averaging over all the observable galaxies, so that
Pgal,obs ≈ b̄eff(k)

2Plin(k, z); in the limit of linear fluctuations, this mean bias is
independent of scale and can be predicted using the excursion set formalism
via equation (3.54).

Figure 10.13 (Continued.) as a function of the difference between the characteristic
magnitude of a galaxyM
 (assuming a Schechter luminosity function) and
the limiting survey magnitude Mlim. Three values of the faint-end slope of
the luminosity function (labeled by α here) are shown. (c) Contours of the
fraction of multiply imaged sources as a function of source redshift and
(M
 − Mlim), assuming a faint-end slope for their luminosity function of
−2. Reprinted from Nature 469, 7329, Wyithe, J.S.B., Y. Haojing, R.A.
Windhorst, & S. Mao, “A distortion of very-high-redshift galaxy number
counts by gravitational lensing,” Supp. Figure 2, Copyright 2011, with per-
mission from Nature Publishing Group.
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Because this effective bias depends on the underlying mass of the galaxy
halos—a property of the population that is otherwise nearly impossible to
measure—the galaxy power spectrum is of fundamental observational impor-
tance. We therefore next describe how it can be measured and the errors that
arise when doing so.

Let us suppose that we have a survey over some finite volume V . For now we
assume that the three-dimensional locations of the galaxies are known through
some spectroscopic survey. Let us define the galaxy overdensity for a mode ki
through the Fourier transform of the galaxy density field,

δg(ki ) =
∫
d3x

V
Wg(x)δg(x)eiki ·x, (10.14)

where Wg(x) is the window function, which is nonzero only inside the survey
volume and is normalized so that

∫
d3xWg(x) = V , the total survey volume.ii

We then write the observed power spectrum of the galaxy distribution as〈
δg(ki )δg(kj )

〉 = CSij + CNij , (10.15)

where CS is the signal covariance matrix, and CN is the noise covariance matrix.
Here the angular brackets denote an average over the density modes in the
Universe.

If we substitute equation (10.14) for
〈
δg(ki )δg(kj )

〉
, this average operates on

the galaxy overdensity terms, and, from equation (2.15), becomes the correla-
tion function of the galaxy field:

CSij = 1

V 2

∫
d3x d3x ′ Wg(x)Wg(x′)ξ gal(x − x′)eiki ·xe−ikj ·x

′
. (10.16)

However, the correlation function is simply the Fourier transform of the power
spectrum (see equation 2.19), so we can write

CSij =
∫

d3k

(2π)3
P gal(k)

W̃g(ki − k)W̃ ∗
g (kj − k)

V 2
, (10.17)

where W̃g(k′) is the Fourier transform of the window function. Comparison
with equation (2.31) shows that this result is closely related to the variance in
the fluctuations within the survey volume.

To gain some intuition for this expression, let us consider some concrete
choices for the window function. First, suppose that we observe a spherical
volume of radius R around some central point x0.iii Then,

W̃g(ki − k) =
∫

|x−x0|<R
d3x ei(ki−k)·x. (10.18)

iiIn practice, we can incorporate any other selection function, such as the likelihood of detecting
a galaxy at a particular redshift given some photometric selection criterion, into the window func-
tion. Such practical considerations make the analysis more complex but do not change the basic
methodology.
iiiChoosing the central point to be the observer would correspond to a volume-limited sample of
galaxies around us. However, for high-redshift surveys, the center of the survey would naturally lie
at some distant point.
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In the limit that R → ∞, this integral is proportional to a Dirac delta function,
so we have

CSij ≈ (2π)3P(ki)δD(ki − kj ), (10.19)

which matches our original definition of the power spectrum (equation 2.16).
A finite R broadens the delta function, so that the Fourier transform W̃g has
a nonzero width ∼(2π)/R. This means that the measured signal will be a
weighted average of all modes with |k−ki | < (2π)/R. Modes with wavelengths
larger than the survey volume will be unobservable—they have such small k as
to be washed out; those with k � 1/R will be essentially unaffected.

At least for existing and near-future observatories, a more realistic survey
geometry is a “pencil beam”: a narrow angular region (a few arcminutes across
for HST or JWST) with a large depth in the radial direction, corresponding
perhaps to Lyman-break selection within a particular filter set. In that case, the
volume may reasonably be approximated as a long box with radial depth�z and
transverse widths �x and �y, such that �z � �x, �y. For a rectangular box,
the window function is

W̃ (k) = W̃�x(kx)W̃�y(ky)W̃�z(kz), (10.20)

with (kx, ky, kz) the Cartesian components of the wave vector and

W̃�x(kx) = sin(kx�x/2)

(kx�x)/2
, (10.21)

and similarly for W̃�y and W̃�z . This function also is ∼1 for kx  π/�x and
falls off at kx ∼ π/�x. The anisotropy of the window means that the mode
sampling depends on their orientations. Modes transverse to the line of sight
must have only kx,y  π/�x to be sampled cleanly, but modes along the line
of sight must have only kz  π/�z. Even these modes, however, are subject
to aliasing from short-wavelength transverse modes, much like the Lyman-α
forest power spectrum discussed in §4.3.4, which degrades the ability of such
surveys to measure large-scale power.

The noise term CN arises from the finite number of galaxies. This shot-noise
term is inevitable in any experiment that samples a discrete population of ob-
jects. Let us assume that the number of galaxies within a given volume obeys
Poisson statistics with the mean expected count N̄ determined by the under-
lying density field. The probability of finding N galaxies in a region is then
p(N) = N̄Ne−N/N !, with 〈N〉 = N̄ , and 〈N2〉 = N̄(N̄ + 1). For this dis-
crete shot-noise component, the average in equation (10.15) becomes 〈δiδj 〉 =
N̄−2〈(Ni − N̄)(Nj − N̄)〉 = N̄−1 if i = j and zero otherwise. This expression
replaces the power spectrum in equation (10.17). Finally, we assume that we
can choose regions sufficiently small so that each one is either empty or con-
tains at most one galaxy; in that case N̄ = n̄, the galaxy number density. Fi-
nally, by analogy with equation (10.17), we define the shot-noise power spectrum
as P shot(k) = 1/n̄, or its dimensionless form

�2
shot(k) = k3

2π2n̄
. (10.22)



chapter10 August 31, 2012

362 CHAPTER 10

Shot noise is an inevitable source of error in any galaxy survey; fortunately,
provided one has a good estimate for n̄, it can be accurately removed. Shot noise
therefore poses a significant problem only when n̄ is small, for example, if the
survey targets extremely bright, rare galaxies with L � L
.

The power spectrum is by far the most common measure of clustering, ow-
ing to the relative ease with which it can be observed. However, it measures only
the variance (as a function of scale) of the underlying distribution; higher-order
correlations, like skewness, must be measured in other ways. A particularly
simple approach to test for these is with counts in cells, in which one divides the
survey volume into small cells and examines the distribution of galaxy counts
in the cells.

Another complication arises if the radial locations of the galaxies are not avail-
able, for example, if the galaxies are found through the Lyman-break technique
without precise redshifts. In that case, clustering can still be measured along
the plane of the sky. This angular correlation function (or its counterpart, the
angular power spectrum) was for many years the best measure of clustering,
even at low redshifts. Intuitively, the angular correlation function is simply the
projection of the three-dimensional form onto the plane of the sky. For small
angular separations, this is easy to do; we discuss it in more detail in §13.2.

We also note that whenever redshift is used as a proxy for distance (as in
a spectroscopic galaxy survey), peculiar velocities in the galaxy field distort the
redshift-distance mapping. Fortunately, the velocity effects can be isolated, be-
cause they do not affect positions across the plane of the sky: we therefore expect
a difference in the clustering measured along the line of sight and along the
plane of the sky. Because these peculiar velocities themselves trace the underly-
ing matter distribution, the corresponding redshift–space distortions can provide
unique information about it. We discuss them further in §12.5.1.

10.4.2 Measuring the Luminosity Function

In addition to being of intrinsic interest as a measure of halo mass, clustering
also affects the statistical uncertainty in the number counts of galaxies within
surveys of limited volume, the cosmic variance.iv This is crucial to understand
for estimates of luminosity and stellar mass functions, because it determines
their precision. By analogy with equation (2.31), the fractional variance in an
estimate of the galaxy number counts is the integral of the signal and noise
power spectra over all k-modes, weighted by the survey window function:

σ 2
tot

〈N〉2 =
∫
dk

k

[
�2

gal(k)+�2
noise(k)

] |Wg(k)|2
V 2

. (10.23)

The cosmic (or sample) variance, which is the first term on the right-hand side
of equation (10.23), results because the survey field sometimes lies in a region
of high galaxy density and sometimes lies in an underdense region or a void.

ivFormally, “cosmic variance” refers to the residual errors from the finite volume of our entire Uni-
verse, not simply the observed field (which determines the sample variance). In practice, however,
the two terms are used almost interchangeably.



chapter10 August 31, 2012

SURVEYS OF HIGH-REDSHIFT GALAXIES 363

σ/
<N

>

1

10–1

10–2

σ/
<N

>

θ  (arcmin)
1 10 102

1

10–1

10–2

Figure 10.14 The theoretically predicted contributions to the total variance (equa-
tion 10.23; solid lines) in Lyman-break galaxy dropout surveys as a sum
of cosmic variance (dashed lines) and Poisson shot noise (dotted lines)
contributions. The top and bottom panels show results for surveys extend-
ing over the ranges z = 6–8 and z = 8–10, respectively. The light lines
assume a luminosity threshold of z850,AB = 29, while the dark ones make
a cut at z850,AB=27, where here z850,AB refers to the AB magnitude in the
z850 photometric band. Munoz, J., Trac, H., & Loeb, A. Mon. Not. R.
Astron. Soc. 405, 2001 (2010). Copyright 2010 by the Royal Astronomical
Society.

Figure 10.14 compares the contributions from cosmic variance and shot
noise as calculated by linear theory for a mock survey as a function of its open-
ing angle, θ = rt/dA(z), where rt is the transverse width of the survey. This plot
can be used to estimate the effectiveness of future surveys with large fields of
view. Here we have used a simple model to assign luminosities to dark mat-
ter halos, taking fduty = 0.25 and a star formation efficiency f
 = 0.16. Note
that the shot noise is important only on small scales, even though the fluctua-
tions from gravitational clustering also decrease with the opening angle of the
survey.

According to linear theory, the probability distribution of the count of galaxies
is Gaussian with variance given by the sum of the cosmic and Poisson compo-
nents, so the power spectrum provides a complete representation. However,
nonlinear evolution in the matter field induces non-Gaussian structure; be-
cause bright high-redshift galaxies are so rare, these nonlinearities can have im-
portant effects. Figure 10.15 shows these deviations in the context of a
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Figure 10.15 Upper panel: Predicted relative contributions to the fractional variance in
the number counts of galaxies as a function of UV luminosity at an emis-
sion wavelength of 1500 Å within a Lyman-break dropout survey spanning
the redshift interval z = 6–8 with a 3.4′ × 3.4′ field of view (matching
the HUDF and approximately that of JWST). Solid lines show the total
variance, while long-dashed and dotted lines show the contributions from
cosmic variance and Poisson noise, respectively. The dark curves show the
results from numerical simulations, while the light curves were calculated
analytically based on linear perturbation theory. Vertical lines bracket the
region where the variance is higher than expected due to the skewness of
the full galaxy count probability distribution but is not Poisson dominated.
The middle and top horizontal axes translate the monochromatic luminos-
ity to z-band AB magnitude and host halo mass, respectively. Lower panel:
Skewness of the full galaxy count probability distribution calculated from
a numerical simulation based on equation (10.24). Munoz, J., Trac, H., &
Loeb, A. Mon. Not. R. Astron. Soc., 405, 2001 (2010). Copyright 2010 by the
Royal Astronomical Society.

pencil-beam survey of galaxies (with a 3.4′ ×3.4′ field of view, as for the HUDF)
in the redshift range z = 6–8. When compared with numerical simulations, the
galaxy count statistics are well approximated by the linear-theory expressions at
low luminosity limits.
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However, for brighter galaxies, linear theory begins to fail. The upper solid
curve in the top panel of Figure 10.15 shows the variance calculated from nu-
merical simulations that include nonlinear evolution. These are larger than the
analytic prediction (shown by the lower solid curve) for halo masses Mh >

1010 M�. With the simulations, one can investigate how this happens. The skew-
ness is

s3 =
〈
(N − 〈N〉)3〉

σ 3
. (10.24)

The skewness as a function of minimum luminosity is presented in the bottom
panel of Figure 10.15. It is large at Mh > 1010 M� (the seemingly large ampli-
tude variations in the skewness at low luminosity for z = 6–8 are due to small
numerical fluctuations around the near-zero skewness from numerical simula-
tions, plotted on a log scale). The numerical simulations indicate that the prob-
ability distribution of massive halos (and hence presumably bright galaxies) has
a non-Gaussian shape. Deviations between the analytic and numerical values of
the sample variance grow when the skewness becomes significant. This behav-
ior is a manifestation of nonlinear clustering on the small scales probed by the
narrowness of the survey skewer.

10.4.3 Measuring the Galaxy Power Spectrum

We have now shown how to estimate the galaxy power spectrum and how its
fluctuations affect number counts of galaxies (and hence the luminosity func-
tion). As a final step, let us briefly discuss the errors on a measurement of the
power spectrum itself: How large a survey is necessary to reliably measure the clus-
tering of a galaxy sample?

Given that real galaxy surveys have complex selection functions, the best way
to answer this question is ultimately with detailed simulations of the survey
strategy. The next best way is with the Fisher information matrix, which provides
a robust lower limit to the errors on a given set of parameters in any experi-
ment. We consider this latter approach here. Suppose one wishes to measure
the amplitude of the power spectrum over a range of wavenumbers (k, k+�k)
in a survey of volume V (these are known as band powers). Ignoring boundary
effects from the finite survey volume, the minimal error on the band powers
is11

�P(k)

P (k)
= (2π)

√
2

k2�k�µV

[
1 + n̄P (k)

n̄P (k)

]
. (10.25)

This expression is straightforward to understand. Recall that the power
spectrum quantifies the variance in the density field among a set of modes.
Suppose we have N independent estimates of these mode amplitudes. From
elementary statistics, the mean squared error on an estimate of the variance
from this dataset will be (�P )2 ∼ σ 2

P /N , where σ 2
P is the variance of the mea-

surements: in our case, σP =P+n̄−1. We thus need determine only the number
of independent samples of the density field in a given power spectrum bin.
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First, let us write the Fourier space volume of a binned measurement of the
power spectrum as 2πk2�k�µ, where µ is the cosine of the angle between the
bin’s central wave vector and the line of sight. (As mentioned briefly in §10.4.1
and more extensively in §12.5.1, peculiar velocities induce an anisotropy with
respect to µ. For a crude measurement, however, we can average over all modes
with a single amplitude, so that �µ = 2, and the volume corresponds to a
spherical shell in k-space.)

The final question is how many samples lie within this Fourier space vol-
ume. Recall from §10.4.1 that the finite survey volume mixes all modes closer
together than ∼(2π)3/V . However, the reality of the density field imposes a
constraint on its Fourier transform, relating pairs of modes with k and −k to
each other. Thus, the number of independent samples is N ≈ 2πk2�k�µ ×
[V/(2π)3] × 1/2. The prefactor in equation (10.25) is simply 1/

√
N .

This approach provides a reasonable estimate for the volume required to
measure galaxy bias from a survey. In the regime where shot noise is unim-
portant (i.e., P � n̄−1), a measurement with 10% precision requires a vol-
ume of ∼107(k/0.1 Mpc−1)−3 Mpc3. High-k modes evidently do not require
particularly large volumes, but surveys run into shot-noise limitations unless
they go very deep; even the faintest HUDF galaxies have n̄ ∼ 0.01 Mpc−3 (see
Figure 10.9). Shot noise compromises modes with n̄P < 1. In that regime, it is
generally advantageous to construct a deeper, rather than wider, survey.



chapter11 August 31, 2012

Chapter Eleven

The Lyman-α Line as a Probe of the Early Universe

Early in the book, we explored the physics behind structure formation, which
led to the first sources of light in the Universe. In chapter 10, we began ap-
plying this framework to observable systems: galaxies. We have now arrived at
the point where we can study a number of specific observational probes of the
high-redshift Universe. We begin that endeavor in this chapter by examining
the Lyman-α line, an extraordinarily rich and useful—albeit complex—probe of
both galaxies and the IGM. In the next two chapters, we will describe a variety
of other observables.

11.1 Lyman-α Emission from Galaxies

We saw in §10.2.1 that young star-forming galaxies can produce very bright
Lyman-α emission;1 indeed searching for such line emitters is one of the most
effective ways to find high-z galaxies. Although the radiative transfer of these
photons through their host galaxies is typically very complex, a good starting
point is a simple model in which a fraction of stellar ionizing photons are ab-
sorbed within their source galaxy, forming embedded H II regions. The re-
sulting protons and electrons then recombine, producing Lyman-α photons.
Assuming ionization equilibrium, the rate of these recombinations must equal
the rate at which ionizing photons are produced. However, about one-third of
these recombinations do not cascade through the Lyman-α transition and so do
not contribute to this line.i

Because only hot, massive stars—which live for only several million years—
produce ionizing photons, it is a good approximation to assume that the rate
at which any given galaxy generates these photons is proportional to its instan-
taneous star formation rate Ṁ�. The proportionality constant depends on the
initial mass function (IMF) of stars, because that determines what fraction of
stellar mass enters these massive, hot stars. For example, a galaxy with a con-
stant star formation rate (SFR), a Salpeter IMF, a metallicity Z = 0.05 Z�, and
no binary stars produces Qi = 4.3 × 1053 ionizing photons per second per year
per solar mass of stars formed.2 However, a top-heavy Population III IMF has
an order-of-magnitude larger ionizing efficiency.

iNote also that direct recombinations to the ground state (which also occur approximately one-
third of the time, from the ratio of the case-A and case-B recombination coefficients αA and αB in
equations 4.17 and 4.18) simply regenerate the initial ionizing photon, so they do not contribute
to the net balance. We therefore worry only about those ionizing photons produced directly by the
stars.
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Finally, if we assume, as usual, that a fraction fesc of the ionizing photons
escape their host galaxy, then the intrinsic line luminosity of a galaxy is

Lint
Lyα = 2

3
Qihmα(1 − fesc)Ṁ�. (11.1)

For context, a Salpeter IMF from 1 to 100 M� with Z = 0.05Z� has a prefactor
4.4 × 1042(1 − fesc) erg s−1, if the star formation rate Ṁ� is measured in solar
masses per year.

Unfortunately, inferring physical properties about distant galaxies from the
Lyman-α line is complicated not only by the uncertain factors fesc and Qi but
also by the radiative transfer of these line photons through the interstellar and
circumgalactic medium of each galaxy as well as the more distant IGM. Because
the Lyman-α line is so optically thick in these environment, line photons scatter
many times before they can escape the galaxy, and once they leave it, they can
be scattered away from the line of sight and vanish. This scattering can change
not only the overall brightness of the line but also its frequency structure and
relation to the galaxy’s continuum photons. The observed line luminosity is then

Lobs
Lyα = 2

3
T IGM

Lyα T
ISM

Lyα Qihmα(1 − fesc)Ṁ�, (11.2)

where T ISM
Lyα is the fraction of Lyman-α photons that are transmitted through the

galaxy’s ISM, and T IGM
Lyα is the fraction transmitted through the IGM. We will

see later that the latter factor can inform us about the properties of the IGM
and reionization.

11.1.1 Radiative Transfer of Lyman-α Photons through the Interstellar
Medium

We first consider radiative transfer within a galaxy and its immediate environs;
we defer discussion of IGM scattering until §11.2. The important difference
from continuum transfer is that line photons can scatter many times (chang-
ing both their direction and frequency) as they traverse the ISM. In the case
of Lyman-α photons, scattering cannot destroy them (unless collisions mix the
2s and 2p electron states, which requires extremely high densities) but dust ab-
sorption can. Depending on the geometry of the ISM, the increased path length
can increase or decrease the brightness of the line relative to the continuum.

Some simple toy models of radiative transfer help develop some intuition for
this situation. We generally assume that the absorption cross section follows
the Voigt profile, σα(m) = σ0φV (m), which allows for both thermal effects (which
cause Gaussian broadening in the core of the line) and natural broadening in
the wings (which arise from the finite lifetime of the upper state). The full Voigt
profile may be written as a convolution of these two mechanisms,

φV (m) =
∫ ∞

−∞
pM(v)L[m(1 − v/c)] dv, (11.3)
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where the integral is over the line-of-sight thermal velocities of the particles.
Here pM(v) is the Maxwell-Boltzmann distribution at a temperature T ,

pM(v) dv = 1√
πb2

e−v
2/b2

dv, (11.4)

where b = √
2kBT /mp is the thermal velocity of the atom.ii L is the natural

line profile, which for Lyman-α is given by equation (4.8). This is often approx-
imated by a Lorentzian function,iii

L(m) ≈ 1

π

γ

(m − mα)2 + γ 2
, (11.5)

where γ = A21/(4π) is the decay constant. In this approximation, the Voigt
profile can be written as

φV (x) dx = 1√
π

(mα
m

)
V (x) dx, (11.6)

where x = (m− mα)/mD is the normalized frequency, with a Doppler broadening
mD/mα = b/c, and

V (x) = A(x)

π

∫ ∞

−∞
dy

e−y2

[B(x)− y]2 + A2(x)
. (11.7)

Finally, A(x) = (γ /mD) × (mα/m), and B(x) = (m/mα)x. A low-order approxima-
tion to the Voigt function makes the line structure apparent:

V (x) ≈ e−B
2 + 1√

π

A

A2 + B2
. (11.8)

We are particularly interested in the profile far from the line core (where
B � 1). There, σα ≈ a/(

√
πx2), where a ≡ γ /mD = 4.72 × 10−4T

−1/2
4 , and

T4 ≡ (T /104 K) Figure 11.1 shows the absorption cross section for absorbing
gas with T = 104 K (including the full line broadening); note the Gaussian core
with width ∼10 km s−1 and the much weaker, but broader, damping wings.

With these fundamental parameters established, let us consider how line
photons can escape from several toy models of gas clouds. We describe the
physics quantitatively here and illustrate it in Figures 11.2 and 11.3.

• Homogeneous, static H I slab, moderately optically thick (Figure 11.2a): First,
consider a Lyman-α photon produced inside a homogeneous static
medium of pure H I, with total line-center optical depth τ0 � 1. Because
τ is proportional to distance in the medium, we can (and usually will) use
it as a proxy for physical location within the system. So long as the photon
remains in the Doppler core of the line, it barely diffuses spatially before

iiThe Doppler parameter can include turbulence as well by the addition of the turbulent velocity in
quadrature.
iiiHowever, in many cosmological applications the optical depth can be so high that the asymmetry
of the full profile is visible.
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Figure 11.1 Cross section for Lyman-α absorption, as a function of wavelength offset
from line center (bottom axis) or velocity difference (top axis). The cal-
culation includes thermal and natural broadening generated by gas with
T = 104 K. Santos, M. R., Mon. Not. R. Astron. Soc. 349, 1137 (2004). Copy-
right 2004 by the Royal Astronomical Society.

being scattered by an atom. When a line photon of frequency xin is ab-
sorbed by an atom, it reemits a line photon of the same frequency in its
own rest frame. However, in an observer’s frame, there is a net frequency
shift determined by the Lorentz transformation between the frames. To
linear order, this shift is

xout ≈ xin − va · kin

b
+ va · kout

b
+ g(kin · kout − 1), (11.9)

where va is the velocity vector of the atom, and kin and kout are the propa-
gation directions of the incoming and outgoing photons, respectively. The
g in the last term accounts for recoil; it is unimportant here, but we will
revisit it in §12.2.2. Typically, the scattering atom will have the same veloc-
ity along the photon’s direction of motion as the atom that emitted it, but
it can have a much larger total velocity. In that case, the scattered photon
will be far from the line center, in the damping wings.

If the medium is not too optically thick, so that these damping wings are
themselves optically thin, the resulting photon can escape so long as it is
produced at a frequency where τ(x) < 1; for τ0 = 103, this corresponds
to a value for x ∼ 2.6. We therefore generically expect that the resulting
emission will have a double-peaked profile: photons near line center are
trapped in the cloud; only when they diffuse to large positive or negative
velocity are they able to escape. The Lyman-α surface brightness distribu-
tion will also be compact, because photons escape after a small number of
scattering events.
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Figure 11.2 Schematic illustrations of the radiative transfer of Lyman-α photons
through a dust-free, homogeneous interstellar medium. (a) For a moder-
ately optically thick cloud, a Lyman-α photon undergoes a random walk
until its frequency diffuses into the wings of the line, escaping once the op-
tical depth τm < 1 at the photon frequency m. This produces a double-peaked
emission line and spatially compact emission. (b) For a very optically thick
cloud, the photon may need to diffuse out of the cloud in space rather than
frequency. In that case, the two peaks are substantially broader, and the
emission is spatially extended. (c) If the scattering medium has a velocity
gradient (here we imagine an expanding shell of gas), photons initially di-
rected toward the observer are scattered away by the blueshifted near side
of the shell. However, photons directed toward the far side of the shell that
backscatter toward the observer pass through the near side of the shell far
out of resonance and escape toward the observer. The result is a single emis-
sion line centered on the velocity of the far side of the shell.

• Homogeneous, static H I slab, very optically thick (Figure 11.2b): Thus, in
a moderately optically thick medium, these escaping photons simply re-
sult from rare scatterings off high-velocity atoms. If, however, the damping
wings are themselves optically thick, τ > 103, the problem is more compli-
cated, though the net result is easy to understand: the photons must make
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Figure 11.3 Schematic illustrations of the radiative transfer of photons through an in-
terstellar medium with dust. (a) If the scattering medium is homogeneous,
with dust (black circles) uniformly distributed through it, Lyman-α photons
(solid black arrows) undergo a random walk in space and frequency before
they can escape (see Figure 11.2). Their long path length implies that they
have an increased probability of extinction by dust compared with that of
a continuum photon (dot-dashed arrow). The result is suppression of the
emission line (shown for simplicity as a single line). (b) If the dust is in-
stead confined to discrete, optically thick clouds, the line can instead be en-
hanced. In this case, Lyman-α photons scatter off the outskirts of each cloud
until they escape the system, so they pass through relatively little dust. Con-
tinuum photons, in contrast, pass through the clouds and so suffer more
dust extinction.

it even farther into the wings to escape. In this regime, a photon in the
wings is more likely to scatter off an atom with a small thermal velocity (in
its damping profile) than an atom traveling at a matched velocity,

To escape, the photon must then undergo a random walk of repeated
scatterings, which occasionally takes it far enough from line center to es-
cape. Because scatterings usually occur in the core, each one induces an
rms frequency shift x ∼ 1, with a small bias −1/x toward returning to line
center; a photon thus typically undergoes Ns ∼ x2 scattering events before
returning to line center. Between scatterings, the photon traverses a path
length (in optical depth units) of τφV (x) ∼ 1. Thus, over its entire random
walk, it diffuses a distance τ rms

0 ∼ √
Nsτ ∼ |x|/φV . If this distance exceeds

the physical size of the system (τ0 in these units), the photon can escape.
In the wings of the line, where φV ∼ a/x2, this requires that the photon
have a critical normalized escape frequency

|xesc| ∼ [aτ0]1/3 ≈ 30T −1/3
4 N

1/3
21 , (11.10)
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whereN21 is the column density of the system in units of 1021 cm−2. Thus,
in this highly optically thick case, the photon must scatter far
enough in the wings of the line to physically escape the system before
scattering back to line center. This condition, combined with the power
law form of φV in the wings, also makes the blue and red emission peaks
wider than than in the moderate optical depth case. The surface brightness
of the line will be extended even if the source is compact, because photons
diffuse spatially as well as in frequency before escaping.

• Homogeneous H I slab, with velocity gradient (Figure 11.2c): We next con-
sider a medium with a velocity gradient. Such a gradient can correspond
either to expansion, arising from winds (which we believe to be ubiqui-
tous in the star-forming galaxies likely to host Lyman-α emission lines), or
contraction, from the infall of surrounding material around the galaxy.

First, consider an expanding medium. Then, according to equa-
tion (11.9), scattered photons typically acquire a redshift: va · kin is posi-
tive for photons propagating outward, while (assuming isotropic emission)
〈va · kout〉 = 0, so xout < xin on average. Photons with x < 0 are therefore
moved farther into the line wings, facilitating their escape, while photons
with x > 0 are moved back toward line center. So long as the expansion
velocity is much larger than the thermal velocities, this prevents photons
that experience large positive frequency jumps from escaping. Thus, we
expect only a single emission line on the red side. In contrast, in a con-
tracting medium, photons typically acquire a blueshift, producing a single
emission line on the blue side.

In this case the frequency shift of the surviving line depends on the
velocity and density structure of the medium. The case of most practical
relevance is a wind, in which a large column of H I occurs at ±vwind along
the line of sight, with negligible absorption elsewhere. In this case photons
that begin their escape toward the observer (i.e., through the blueshifted
wind) are absorbed. After their first scattering, photons that begin their
escape toward the far component of the wind lie to the red side of the
line. Those that scatter back toward the observer are then far to the red
of the (blueshifted) line center of the near component of the wind and
can continue to the observer. The observed velocity offset is then vwind and
provides a good diagnostic of the wind velocity.

• Homogeneous H I slab with dust (Figure 11.3a): Now we can add dust to a
(static) medium and see how it can destroy the Lyman-α photons. We let
the total dust interaction cross section, per hydrogen nucleus, be σd ; this in-
cludes both absorption, with a cross section σa = εaσd = (σa,21/10−21 cm2)

per hydrogen atom, and scattering (with cross section σd−σa). For the well-
studied dust in the Milky Way, σa,21 ≈ 1, and εa ≈ 0.5; of course, these
values will depend on the metallicity and dust formation mechanisms in
high-redshift galaxies (see §8.9.2). The average absorption probability per
interaction (with either dust or H I) is therefore

εdust = σa

xH IφV (x)σ0 + σd
≈ β

φV (x)
, (11.11)



chapter11 August 31, 2012

374 CHAPTER 11

where β = σa/(xH Iσ0) = 1.69×10−8T
1/2

4 σa,21/xH I, and we have assumed
that dust interactions are rare compared with H I scattering.

Now, recall that to escape the H I cloud, the photon must first scatter
far into the wings of the line and then remain in the wings as it spatially
diffuses out of the system. During that process, the photon will scatter
Ns times; the probability that it will be absorbed by dust and destroyed is
therefore Pabs ∼ Nsεdust ∼ x4β/a in the damping wing. This probability is
near unity if |x| > xabs, where

xabs ∼ (a/β)1/4 ∼ 12.9
(
xH I

T4σa,21

)1/4

. (11.12)

A typical photon will therefore be unable to escape if xesc > xabs; if the line-
center optical depth exceeds a critical value τc ∼ (aβ3)1/4, the emission line
will be strongly suppressed. This critical value corresponds to a column
density of only N21,c = 0.08T 1/4

4 (xH I/σa,21)
3/4, well below the typical col-

umn densities of galaxies (which are comparable to damped Lyman-α ab-
sorbers [DLAs]). Thus Lyman-α destruction can be very important inside
a dusty ISM. As a rule of thumb, in a uniform medium, line photons are
more affected by dust than continuum photons, because the many scatter-
ings suffered by the former force them to follow a much longer path length
than continuum photons, thus providing a much larger opportunity for de-
struction by dust.

• Multiphase medium with dust (Figure 11.3b): Finally, we consider a medium
in which both the H I and dust are confined to optically thick, discrete
clouds separated by a highly ionized, dust-free “intercloud medium.” Here,
details of the results will clearly depend on the geometry of the system,
but some general considerations do apply. First, note that an inhomoge-
neous medium will allow more transmission than a homogeneous slab
with identical column density of neutral gas, because of the same argu-
ments we discussed for Lyman-α transmission in an inhomogeneous IGM
(see §4.3.2). Moreover, in some cases the line photons can be less affected
by dust than continuum photons, because the line photons scatter off the
surface of the clouds, while the continuum photons plow through them and
can encounter more dust.

Detailed calculations show that the frequency shift necessary for dust
absorption to dominate over resonant scattering in the line wings, xabs, is
similar in magnitude to the homogeneous case.3 However, dust was im-
portant in the uniform example because Lyman-α photons needed to dif-
fuse in frequency to escape the medium.

This is not the case for a multiphase medium.4 In this case, Lyman-α
photons enter each cloud on their surface and suffer relatively few scatter-
ing events inside each cloud before spatially diffusing out.The photons can
then travel a large distance before hitting another cloud, and spatial diffu-
sion through the intercloud medium provides most of the impetus toward
escape. Thus, dust absorption will be relatively weak provided the typical
frequency shift before escape is less than xabs.
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In this case, photons acquire frequency shifts both from the thermal mo-
tions of the scattering atoms and from the velocity dispersion between the
absorbing clouds; if the latter is large (as would be the case if most of the
dust were buried in dense molecular clouds), it dominates the frequency
diffusion, because—just as for a wind— each cloud is so optically thick that
in the observer’s frame the photon leaves each cloud with a velocity offset
corresponding to that cloud’s velocity. If the clouds have a large velocity
dispersion, then dust absorption within each cloud will dominate over res-
onant scattering, because the photons will enter each cloud in the wings of
the line.

Although each of these toy models is obviously much simpler than a real
galaxy, together they illustrate the complexity of the radiative transfer problem
and the many parameters that can dramatically affect the Lyman-α line’s am-
plitude and shape, as well as the surface brightness of a line emitter. In gen-
eral, even discounting uncertainties from IGM transmission, discussed next,
the Lyman-α line is typically very difficult to interpret and is not regarded as,
for example, a very reliable measure of the star formation rate. However, its
extreme brightness in many galaxies makes it such a useful signpost that it is
still the subject of intense study.

11.2 The Gunn-Peterson Trough

We now briefly discuss the fate of continuum photons that begin their lives
blueward of Lyman-α during the reionization era. These photons will redshift
through the IGM; if they should pass through the Lyman-α resonance, they will
experience substantial absorption from that gas. The scattering cross section of
the H I Lyman-α resonance line is given by equation (4.8), and we have already
computed the total optical depth for a photon that redshifts through the Lyman-
α resonance as it travels through the IGM, the so-called Gunn-Peterson optical
depth in equation (4.11). The most important aspect of this calculation is the
enormous overall optical depth in a fully neutral IGM, τα ∼ 6.5 × 105xH I at
z ∼ 9. Thus, we expect that before reionization, photons that redshift across
the Lyman-α transition will be completely extinguished (and, indeed, the same
will be true so far as xH I > 10−3).

However, not all photons will redshift through the resonance during the
reionization era. Suppose that a photon is emitted by a source at a redshift zs
beyond the “redshift of reionization” zreion, which for the purposes of this cal-
culation is simply the last redshift along the particular line of sight of interest
where xH I = 1. (Note that this differs from the conventional definition of the
end of reionization as the moment of “overlap” between the ionized bubbles;
the variations along different lines of sight can themselves contain interesting
astrophysical information.) For simplicity, we further assume that xH I = 1 for
all z > zreion. The corresponding scattering optical depth of a uniform, neutral
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IGM is a function of the observed wavelength λobs,

τα(λobs) =
∫ zs

zreion

dz
c dt

dz
nH,0(1 + z)3σα [mobs(1 + z)] . (11.13)

At wavelengths corresponding to the Lyman-α resonance between the source
redshift and the reionization redshift, (1 + zreion)λα ≤ λobs ≤ (1 + zs)λα ,
the optical depth is given approximately by equation (4.11). Since τα ∼ 105,
the flux from the source is entirely suppressed in this regime. However, pho-
tons blueward of this minimum wavelength do not redshift into resonance un-
til after reionization is over, so we should see a recovery in the Lyman-α for-
est at the blue end of the spectra that in principle informs us about reioniza-
tion. Similarly, the Lyman-β resonance produces another trough at wavelengths
(1 + zreion)λβ ≤ λobs ≤ (1 + zs)λβ , where λβ = (27/32)λα = 1026 Å, and the
same applies to the higher Lyman-series lines. If (1 + zs) ≥ 1.18(1 + zreion)

then the Lyman-α and the Lyman-β resonances overlap, and no flux is trans-
mitted between the two troughs. The same holds for the higher Lyman-series
resonances down to the Lyman-limit wavelength λH I = 912 Å.

At wavelengths shorter than λH I, the photons may be absorbed when they
photoionize atoms of hydrogen or helium, even if they do not redshift into
the Lyman-series lines. The bound-free absorption cross section of hydrogen
is given by equation (4.14); the appropriate parameters for He II are given in
§4.5 as well. A reasonable approximation to the total cross section for a mixture
of hydrogen and helium with cosmic abundances in the range of 4hmH I =
54.4 eV < hm < 103 eV is σbf ≈ σ0(m/mH I)

−3, where σ0 ≈ 6 × 10−17 cm2. The
frequency factor in the cross section then cancels exactly the redshift evolution
of the gas density, and the resulting optical depth depends only on the elapsed
cosmic time, t (zreion)− t (zs). At high redshifts this optical depth is

τbf (λobs)=
∫ zs

zreion

dz
c dt

dz
n0(1 + z)3σbf [mobs(1 + z)]

≈ 1.5 × 102

(
λobs

100 Å

)3 [
1

(1 + zreion)3/2
− 1

(1 + zs)3/2

]
. (11.14)

The bound-free optical depth approaches unity only in the extreme UV to soft
X-rays, around hm ∼ 0.1 keV, a regime that is unfortunately difficult to observe
owing to absorption by the Milky Way galaxy.

Together, these effects imply very strong absorption of nearly all photons that
begin blueward of λα(1+zr), except for a recovery at very short wavelengths and
at the gaps between the Lyman-series troughs (though these will be blanketed
by the Lyman-α and other forests just below zreion, so even they will be extremely
optically thick).

11.3 IGM Scattering in the Blue Wing of the Lyman-α Line

We now return to the fate of photons emitted within (or near) the Lyman-α line
of a galaxy or quasar. In this case, the relative velocity and broadening of the
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line from bulk, thermal, or turbulent motions is very significant, because it
determines whether the photons pass through the Lyman-α resonance—and
so experience the full Gunn-Peterson absorption—or remain redward of line
center, experiencing much less absorption. We also must consider the environ-
ment of the source: whether it is embedded in completely neutral gas or in an
ionized bubble, and the surrounding velocity field. In this section we focus on
photons emitted blueward of, but still near, line center.

11.3.1 Resonant Scattering inside Ionized Bubbles

Photons that begin slightly blueward of line center redshift into the Lyman-
α resonance near their source. In most models, this nearby region will already
have been ionized, either by the source itself or by its neighbors (if it is part of a
much larger ionized bubble). Thus it may seem that these photons will survive
their journey through the IGM.

However, if we recall that τα > 105xH I at these redshifts, it is immediately
apparent that even in highly ionized media the absorption can be substantial.
In practice, the short mean free paths at high redshifts will most likely prevent
the gas from becoming extremely ionized. We can estimate the residual ionized
fraction inside an H II region in which the comoving mean free path is λ (which
can be restricted either by the ionized bubble walls or by LLSs; see §9.5) by
assuming ionization equilibrium and a uniform emissivity (or, in other words,
that each bubble contains many sources). The equilibrium condition is then
�nH I = αBnenH, where � ≈ εionσ̄H Iλ/(1 + z), εion is the proper emissivity
of ionizing photons (by number), and σ̄H I ∼ 2 × 10−18 cm2 is the frequency-
averaged cross section. If we use the simplest model for the ionizing sources, in
which the rate of ionizing photon production is proportional to the rate at which
gas accretes onto galaxies, we can write (see equation 9.2) εion = ζ ḟcollnH. But
we also know that QH II = ζfcoll/(1 + n̄rec), where n̄rec is the mean number of
recombinations per atom. So we can rewrite the ionizing efficiency ζ in terms
of the filling fraction of ionized bubbles and solve for the resonant optical depth
due to residual neutral gas xH I inside the bubble:

τ res
α (δ) ≈ 40

(1 + δ)2

QH II(1 + n̄rec)

(
10 Mpc

λ

)(
fcoll

dfcoll/dz

)
, (11.15)

where we have assumed that the IGM is isothermal to compute the recombi-
nation coefficient. The factor involving the collapsed fraction is typically of the
order of 3.

Clearly, the optical depth for these photons is large in realistic models; note,
however, that it is small enough that many of the radiative transfer effects im-
portant for photon escape from galaxies (discussed in §11.1.1) can be ignored,
so the absorption from each gas parcel will not have a large frequency width.

11.3.2 The Proximity Effect and Quasar “Near-Zones”

Equation (11.15) shows that an average location inside an ionized bubble is not
likely to be ionized strongly enough to allow significant transmission
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before reionization. However, the region immediately outside an ionizing
source will be more ionized than average owing to photons from that very
source. At moderate redshifts, this “proximity effect” is a useful measure of
the ionizing background, and it is a very attractive probe of the reionization era
as well.

The profile of the ionization rate around a quasar at moderate redshifts is
simple to understand. Suppose there is a uniform metagalactic background
with amplitude �bg. The central quasar with a luminosity Lm produces a specific
intensity Jm ∝ Lm/R

2, where R is the proper distance from the quasar. Thus,
we expect an ionization rate �q ∝ 1/R2. Assuming ionization equilibrium, we
then have

τ(R) ∝ [�bg + �q,0(R0/R)
2]−1, (11.16)

Where R0 is a scale length and �q,0 depends on the quasar luminosity. In prin-
ciple, a simple fit to the absorption profile as a function of distance from the
quasar is sufficient for deriving �bg, especially if �q,0 can be estimated from
the observed luminosity of the quasar redward of the Lyman-α line. In practice,
these estimates are complicated by variations in the Lyman-α forest lines them-
selves and by the biased environments of quasars: the quasar will induce sub-
stantial changes in the radiation field only within a compact “proximity zone”
around the quasar where �q > �bg. This zone corresponds to

Rprox = 1.2�−1/2
12

α + 3

(
mLm

1044 erg s−1

)1/2

proper Mpc, (11.17)

where α is the quasar spectral index, and Lm is evaluated at the H I ionization
edge. This places the proximity zone within the overdense environment of the
quasar’s halo; the increased absorption from this excess gas partially cancels
the effect of the increased ionizing background (the [1 + δ]2 factor in equa-
tion 11.15), making the proximity effect more difficult to see.

Because the ionizing background is much smaller during the reionization
era, it may at first appear that the proximity effect will be easier to observe.
However, in reality, the effect is much more difficult to interpret because the
IGM is so optically thick. In this situation, the observable pattern near a lumi-
nous source will be gradually increasing absorption until saturation is reached.
Figure 11.4 shows some examples; the curves there have each been averaged
over several independent lines of sight to reduce the scatter from the inhomo-
geneous IGM. The horizontal dotted line marks 10% transmission.

The key point is that during the reionization era, there are two possible rea-
sons for such saturation to occur. The first is that the source (usually a quasar)
is still in the process of ionizing its neutral surroundings. Then, there will be a
sharp transition between the highly ionized H II region and the nearly neutral
gas at its edge, which will manifest itself as a dramatic increase in the local op-
tical depth. The second is more similar to the classical proximity effect, except
that the absorption may saturate long before the local ionization rate reaches
the background value, if �bg ≈ 0. Because the observed edge of the transmis-
sion does not necessarily correspond to the classical proximity zone, this feature
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Figure 11.4 Average absorption profiles near the Lyman-α line for quasars in three dif-
ferent redshift bins. Note that the Lyman-α emission lines have been fitted
and removed. The three redshift bins average over eight (5.75 < z < 5.95),
nine (5.95 < z < 6.15), and four (z > 6.15) quasars. The horizontal dot-
ted line marks 10% transmission, conventionally taken as the edge of the
near-zone. Carilli, C. L., et al., Astrophys. J. 714, L834 (2010). Reproduced by
permission of the AAS.

is usually referred to as the near-zone, conventionally defined to be the point at
which the transmission falls below 10%.

In the first case, the size of the H II region depends on the ionizing lumi-
nosity of the quasar (which can be estimated from the spectrum redward of
Lyman-α), the age of the quasar tQ, and the average neutral fraction before the
quasar appeared, x̄H I. The basic radiative transfer problem was solved in sec-
tions 9.1 and 9.8.2; for the purposes of a simple estimate, if recombinations can
be neglected, the proper radius of the H II region is (cf. equation 9.3)iv

Rb ≈ 4.2

x̄
1/3
H I

(
ṄQ

2 × 1057 s−1

)1/3 (
tQ

107 yr

)1/3 (
1 + z

7

)−1

Mpc, (11.18)

where ṄQ is the rate at which the quasar produces ionizing photons, and we
have assumed that all the ionizing photons are absorbed but ignore secondary
ionizations. Note that Rb ∝ (ṄQtQ/x̄H I)

1/3 and varies relatively slowly with
these parameters.

However, the absorption can become saturated well before this limit is
reached. To estimate this point we suppose that the edge of the near-zone is
where the optical depth rises above τlim. We adopt τlim = 2.3 as a fiducial
value (see Figure 11.4). Assuming that the background ionization rate can be

ivHere we ignore relativistic effects in the expansion, which are important at early times. See
equation (9.12) for a more accurate expression.
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neglected (likely a good assumption at these very high redshifts), the transmis-
sion reaches this limiting value at a proper radius

Rlim ≈ 3.1 Mpc
(

ṄQ

2 × 1057 s−1

)1/2 (
T

2 × 104 K

)0.38 (τlim

2.3

)1/2

×
(

3α

α + 3

)1/2 (
1 + z

7

)−9/4

, (11.19)

where the T dependence enters through the recombination coefficient for ion-
ization equilibrium. Note that this limiting radius is independent of the neutral
fraction of the material outside the ionized zone, and it is slightly more sensitive
to the quasar luminosity, Rlim ∝ Ṅ

1/2
Q .

There are two caveats on these size estimates. First, equation (11.19) can
apply only if the quasar light has reached that distance. This requires

tQ > 4.2 × 106x̄H I

(
Rlim

3.1 Mpc

)3 (
ṄQ

2 × 1057 s−1

)−1 (
1 + z

7

)3

yr. (11.20)

(Adding recombinations and clumping will increase this scale by no more than
three to four times.) Interestingly, this timescale is comparable to the canonical
quasar lifetime tQ ∼ 107 yr in fully neutral gas, but for quasars positioned near
the end of reionization (which are actually accessible to observations) it is very
short.

Moreover, our expressions for Rb and Rlim implicitly ignore the possibility
of LLSs or even denser regions in the IGM. If the quasar radiation encounters
a highly overdense region that can maintain τ > 1 in ionization equilibrium,
the ionizing radiation will be highly attenuated at larger distances. Although
these systems are likely to be rare near the quasar (where the radiation field is
particularly strong), they are difficult to identify in the highly saturated forest
spectra found during reionization, and they present an important systematic
concern for measurements of near-zones.

We therefore expect most quasar near-zones to be limited by the proximity
effect rather than the bubble size. If so, these zones can tell us little about the
ionization state of the surrounding gas. In principle, this supposition can be
tested by examining the luminosity dependence of the near-zone size, although
the modest variation between the two models, and the large scatter intrinsic to
any measurement in an inhomogeneous IGM, has made differentiating them
difficult to date. Figure 11.5 shows the measured near-zone sizes for a number
of quasars at z > 5.75. The left panel shows the trend with redshift (here all
the near-zone sizes have been normalized to a common luminosity using the
Rb ∝ Ṅ

1/3
Q relation), while the right panel shows the dependence on absolute

magnitude (with the mean trend over redshift removed).
In the right panel, the dotted curve shows Rb ∝ Ṅ

1/3
Q (with arbitrary scaling);

this is not a fit but is shown only for illustrative purposes. Clearly, the large
scatter in the near-zone sizes, even after a simple redshift correction, makes
it difficult to distinguish this behavior from that expected for the more classic
proximity effect, Rb ∝ Ṅ

1/2
Q .
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Figure 11.5 Left: Measured radii of near-zones in a set of high-z quasars; the symbols
denote the method used to compute the quasar’s redshift. All near-zone
measurements have been scaled to a common quasar luminosity using the
Rb relation in equation (11.18) to better illustrate the trend with redshift.
Typical errors in the near-zone size are ∼ 1 Mpc. The two lines are fits to
the trend with redshift. Right: Dependence of the near-zone size on quasar
absolute magnitude; all the data points have been scaled to a common red-
shift using the mean relation in the left-hand panel to better illustrate the
behavior with luminosity. The dotted line shows Rb ∝ Ṅ

1/3
Q with arbitrary

scaling; note that it is not a fit but is merely meant to guide the eye. Carilli,
C. L., et al., Astrophys. J. 714, L834 (2010). Reproduced by permission of
the AAS.

Nevertheless, there is clearly a steady increase in the near-zone size as red-
shift declines. One possible interpretation is a decrease in x̄H I with cosmic
time; the data require a decline by ∼10 over the range z = 6.4 to z = 5.8. How-
ever, presuming that z ∼ 6 is the tail end of reionization, the proximity effect
is more likely to fix the near-zone size. In that case, the trend with redshift is
most likely attributable to a rapid increase in the background ionization rate
(by a factor of >3), which can substantially boost the total ionization rate in the
outskirts of the quasar’s proximity zone.

Currently, the most challenging aspect of this measurement—other than
finding these quasars in the first place—is determining the quasar’s location.
The only tools we have are the redshifts of the source’s emission lines. Unfor-
tunately, most quasars have strong internal motions and winds, which displace
many of the emission lines from the systemic redshift of the host. The best
choices are low-excitation lines (such as Mg II) or, even better, lines from the
host galaxy itself. Any such lines in the optical or UV are overwhelmed by the
quasar’s own emission, so the most useful lines turn out to be those of CO,
which are strong in these rapidly star-forming galaxies.

There is one additional, and very attractive, way to differentiate between Rb
and Rlim: by examining the absorption in higher Lyman-series lines. Because
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Rlim depends on the maximum detectable optical depth τ 1/2
lim , it increases by the

square root of the optical depth ratio between different lines; for Lyman-β, this
means Rβlim ≈ 2.5Rαlim. However, at the edge of the ionized bubble the neutral
fraction presumably increases by an enormous amount over a very small dis-
tance, so both Lyman-α and Lyman-β should become optically thick at nearly
the same radius. Unfortunately, this test is still sensitive to the large amount of
scatter in the IGM density field (and in the lower-redshift Lyman-α forest that
coincides with and hence obscures the Lyman-β measurement), so the cur-
rent sample of <10 quasars cannot distinguish Rb from Rlim—even though
coincident Lyman-α and Lyman-β absorbers have been detected, it is not clear
whether they are due to a large swath of neutral IGM gas or to a single ab-
sorber.v Simulations suggest that increasing the sample of such quasars by a
factor of 3–5 could lead to useful constraints when x̄H I > 0.1, the regime in
which the finite bubble size starts to affect the Lyman-β near-zone
size.

Another difficulty with near-zone measurements, just as with the classical
proximity effect, is the biased region in which the quasar exists. Although the
gas is only significantly overdense in a relatively small region immediately
around the quasar, even modest overdensities in the dark matter can lead to
substantial overdensities in the biased galaxy population. Moreover, the ion-
ized bubble generated by these galaxies reaches much larger distances than the
galaxy overdensity itself—even the tens of comoving megaparsecs typical of a
bright quasar’s near-zone. The easiest way to understand this is to think of the
overdense region as a piece of a Universe with �m > 1: in that case structure
formation proceeds faster, because of the increased gravity, and both the local
ionized fraction and the ionized bubbles themselves grow faster as well. This
implies that the ionized fraction measured from the quasar near-zone will be
biased relative to the true average.

11.4 The Red Damping Wing

If photons generated near the Lyman-α line, but still redward of it, encounter
nearly neutral gas with τα > 105, the broad Lyman-α absorption line can signif-
icantly affect their transfer through the IGM even though they remain relatively
far from resonance. Considering only the regime in which |m − mα| � �α (and
neglecting the broadening introduced by the finite temperature of the IGM),
we may ignore the second term in the denominator of equation (4.8). Assum-
ing that the IGM has a uniform neutral fraction x̄D at all points between the
edge of a source’s local ionized bubble (which we call zb) and zreion leads to an
analytic result valid within the red damping wing of the Gunn-Peterson trough

vThese kinds of identifications are further complicated by the damping wing absorption, which we
examine next.
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for the optical depth at an observed wavelength λobs = λα(1 + z):5

τD(z) = ταx̄D

(
�α

4π2mα

) (
1 + zb

1 + z

)3/2 [
I

(
1 + zb

1 + z

)
− I

(
1 + zreion

1 + z

)]
,

(11.21)

for z > zb, where

I (x) ≡ x9/2

1 − x
+ 9

7
x7/2 + 9

5
x5/2 + 3x3/2 + 9x1/2 − 9

2
ln

[
1 + x1/2

1 − x1/2

]
. (11.22)

Note that here we define z as the redshift at which the observed photon would
have passed through Lyman-α; however, when z > zb this never happens. This
expression is formally valid only far from line center, but that is usually ac-
ceptable, because the central optical depth is so large that the prediction there
need not be precise. It also assumes �m(z) ≈ 1, which is adequate at the high
redshifts of interest, z � 1.

At wavelengths for which |x − 1|  1, one can approximate the I (x) factors
with their asymptotic limits; in that case,

τD(z) ≈ ταx̄D

(
�α

4π2mα

)
c(1 + z)

H(z)

(
1

Rb1
− 1

Re

)
, (11.23)

where Rb1 is the comoving distance to the edge of the source’s ionized bubble,
and Re is the comoving distance to the surface defining the “end” of reioniza-
tion. As a rule of thumb, the damping wing optical depth approaches unity at
a velocity offset of ∼ 1,500 km s−1, which corresponds to ∼1 proper Mpc at
z ∼ 10.

The exciting observational prospect is that within this red damping wing, the
optical depth experienced by the photons is of the order of unity over a fairly
wide range of redshifts: this means that the damping wing optical depth can be
measured relatively easily, in contrast with the strongly saturated absorption at
line center. Crudely, if we can therefore measure zs and τ(z), we can obtain an
estimate for the IGM neutral fraction.

Figure 11.6 illustrates the resulting absorption profiles for three choices of
x̄D = 0.9, 0.5, and 0.1 (thin dashed, solid, and dotted curves, respectively); in
all cases we take zreion  zb. Here the abscissa measures the wavelength off-
set from the source redshift zs ; we take zb, where neutral gas first appears, to
be 5 comoving Mpc from the source. Note that, especially for the more neutral
cases, the absorption extends to fairly large redshift offsets from line center:
z− zs = 0.01(1+ zs) translates to an observed wavelength offset of 12(1+ zs)Å.
The differences among these curves suggest that the profile of absorption red-
ward of Lyman-α may be a powerful probe of the IGM ionization state.

The dot-dashed line in Figure 11.6 shows the absorption profile of a single
absorbing cloud at a fixed location (i.e., a DLA), normalized to have the same
transmission at zs as the x̄D = 0.1 curve. Obviously, the IGM absorption pro-
file is much gentler than that from a DLA, extending to much larger redshift
offsets. Indeed, equation (11.23) shows that the optical depth scales as the in-
verse of the wavelength offset between the observed wavelength and λα at the
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Figure 11.6 Damping wing absorption profiles as a function of fractional wavelength
offset from the source (at redshift zs ). The thick curves show the absorp-
tion profiles for x̄D = 0.9, 0.5, and 0.1 assuming the “picket fence” model
of absorption (with the dashed, solid, and dotted curves, respectively). The
corresponding thin curves show the absorption profiles for uniformly ion-
ized IGM normalized to the same transmission at zs . Note that the two
dashed curves overlap and are practically indistinguishable. The dot-dashed
curve shows the profile of a DLA, normalized to the same transmission as
the x̄D = 0.1 curves at zs . Mesinger, A., & Furlanetto, S. R., Mon. Not. R.
Astron. Soc. 385, 1348 (2008). Copyright 2008 by the Royal Astronomical
Society.

source redshift. In contrast, DLAs have τ ∝ �λ−2; the difference arises be-
cause a photon traveling through the IGM continues to redshift away from line
center, so a photon at a given final (observed) wavelength therefore began its
travels closer to line center and must have experienced a larger optical depth
than one would expect had it remained at a constant frequency through the en-
tire column. In practice, this may be a crucial discriminant between absorption
intrinsic to a high-redshift source (taking the form of a DLA) and that from
the IGM. For example, nearly all GRBs at lower redshifts have associated high-
column absorbers.6 The different absorption profiles are crucial for identifying
the nature of the Lyman-α absorption.

Unfortunately, the simple toy model we have used so far does not accurately
describe the IGM during reionization, and real damping wing absorption pro-
files are likely to be somewhere between these two limits. We have already
seen that in most reionization scenarios the IGM has a two-phase structure,
with seas of neutral gas surrounding bubbles of ionized matter. A typical line
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of sight through the IGM will therefore pass through a “picket fence” of ab-
sorbers composed of alternating patches of nearly neutral and nearly ionized
gas. The resulting absorption profiles, shown for a toy model by the thick lines
in Figure 11.6, are steeper than those in a uniform IGM (unless the ionized
bubbles are very rare) but shallower than for a DLA: essentially, the photon
passes through a series of quasi-DLAs punctuated by clear, nonabsorbing H II
regions. Nevertheless, because their frequency still changes as they travel, they
experience more absorption than in a single cloud.

Obviously, this picture introduces some significant complications into inter-
preting the damping wing. The easiest way to see this is to consider a crude
estimate for the average ionized fraction in a uniform IGM from inverting
equation (11.23). Here we can estimate x̄D from the absorption at a single
wavelength, provided we assume a 1/�λ profile to be accurate. (Note that we
could also estimate zb from the peak of the absorption line.) In this picket fence
model, the true optical depth is a sum over those from all the neutral stretches
of the IGM, or

τ(z) ≈ τα

(
�α

4π2mα

)
(1 + z)2

∑
i

(
1

z − zb,i
− 1

z − ze,i

)
, (11.24)

where the ith neutral patch stretches between zb,i and ze,i . If we naively equate
this true expression to equation (11.23) and solve for x̄D , we find

x̄D ≈ (z − zb,1)

〈∑
i

(
1

z − zb,i
− 1

z − ze,i

)〉
. (11.25)

If we take a particularly simple model for the picket fence absorbers, in which
the ionized and neutral patches have fixed lengths Rb and fRb, where f =
(1 − QH II)/QH II ensures the proper filling fraction of the bubbles, we can
perform this sum and calculate the bias in our estimator x̄D :

x̄D = 1

2

∞∑
k=1

[
1

(k − 1/2)+ (k − 1)f
− 1

(k − 1/2)+ kf

]
(11.26)

=π(1 −QH II) cot
[
π(1 −QH II)

2

]
. (11.27)

This difference x̄D − (1 − QH II) is always positive and peaks at ∼ 0.3 when
QH II = 0.5, though the fractional bias continues to increase as QH II → 1.
The actual amount of the bias of course depends on the particular model of
reionization (and, in particular, the size distribution and clustering of the H II
regions); more detailed simulations have comparable (though slightly smaller)
bias. This means that the damping wing requires nontrivial modeling to inter-
pret it properly in the context of reionization.

Even if this bias can be corrected, a second problem is that different lines
of sight inevitably pass through different sets of ionized and neutral patches,
so there can be large scatter in the absorption profiles even for a given QH II

and bubble size distribution. This scatter becomes particularly important in the
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Figure 11.7 Probability distributions of the fractional bias in a simple damping wing
estimate of the ionized bubble filling factor, δxD ≡ x̄D/(1 − QH II) − 1.
The different curves show different stages in reionization; all are computed
with a seminumerical simulation of reionization. Note that the mean is
always nonzero, and the distribution becomes both wider and more biased
as reionization progresses. Mesinger, A., & Furlanetto, S. R., Mon. Not. R.
Astron. Soc. 385, 1348 (2008). Copyright 2008 by the Royal Astronomical
Society.

late stages of reionization, because the damping wing optical depth is rather
sensitive to the size of the first neutral patch.

Figure 11.7 illustrates these two problems in the context of a more realistic
seminumerical model of reionization. The curves show the probability distrib-
ution of δxD ≡ x̄D/(1 − QH II) − 1 for a variety of bubble-filling factors. Note
that the means of these distributions are nonzero (implying a bias in the esti-
mator), and the scatter increases dramatically in the later stages of reionization.
This means that reliable estimates of the IGM properties will require a large
number of lines of sight with measured damping wings.

Because the damping wing absorption profile must itself be measured at high
signal to noise, damping wing constraints on reionization require very bright
sources. The two most likely candidates are quasars and GRBs. The former
have the advantage of lying inside large H II regions, which decreases the bias
and scatter in the estimators; however, they often also have substantial Lyman-
α lines with unknown intrinsic properties, which complicates the measurement
of the damping profile.

Figure 11.8 illustrates some of the complexities of a damping wing measure-
ment with a quasar at z = 7.085, ULAS J1120+0641. We show the spectrum
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Figure 11.8 Rest-frame transmission profile of ULAS J1120+0641, in the region of the
Lyman-α emission line, compared with several model absorption profiles.
The transmission profile of ULAS J1120+0641, obtained by dividing the
spectrum by a lower-redshift quasar composite spectrum, is shown as the
binned curve. The random errors are plotted below the data (across all wave-
lengths). The other error curve shows the uncertainty in the Lyman-α equiv-
alent width. Three of the four smooth curves in the upper panel show the
expected absorption from an IGM damping wing with x̄D = 1, 0.5, 0.1 lo-
cated a comoving distance Rb = 17.8 Mpc in front of the quasar (bottom,
second from bottom, and top curves at the Lyman-α wavelength). The other
curve (second from top) shows a DLA absorber with NH I = 4 × 1020 cm−2

located 21 Mpc in front of the quasar. Mortlock, D., et al., Nature 474, 616
(2011). Copyright 2011 by Nature Publishing Group.

normalized to a composite constructed from lower-redshift quasars, which pro-
vides a surprisingly good fit to the data (though it appears to underestimate
the Lyman-α line strength in this particular object). Provided the template is
accurate, the binned curve in the figure therefore shows the measured trans-
mission, which, as expected, declines rapidly slightly blueward of the Lyman-α
line center; this is the near-zone discussed previously. This quasar has a very
small near-zone, which indicates either a high–column density absorber along
the line of sight, the presence of a substantially neutral IGM that the quasar still
must ionize, or a very young age for the quasar. The smooth curves show the
expected absorption for several IGM scenarios. The second curve from the top
at the Lyman-α wavelength shows the absorption profile from a DLA 21 comov-
ing Mpc in front of the source. The others show the absorption expected from
a uniformly neutral IGM beginning 17.8 comoving Mpc in front of the quasar;
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these take x̄D = 0.1, 0.5, and 1, from top to bottom. Of these, the DLA profile
appears to provide the best fit; however, more sophisticated fits taking into ac-
count the inhomogeneous ionization structure of the IGM could also match the
data.

GRBs have much simpler intrinsic spectra (nearly power law over this range),
which makes extracting the damping wing easier. However, their host galaxies
often have strong DLA absorbers, which interfere with the damping wing, and
their position inside small galaxies makes the bias and scatter large. It is not
clear which will eventually prove more useful, though in either case, construct-
ing samples of many sources will be difficult. Also, in contrast with quasars,
GRBs (and their faint host galaxies) have a negligible influence on the sur-
rounding IGM, because the bright UV emission of a GRB lasts less than a
day, compared with tens of millions of years for a quasar. Therefore, bright
GRBs are unique in that they probe the true ionization state of the surrounding
medium without modifying it.

11.5 The Lyman-α Forest as a Probe of the Reionization Topology

Given the utility of the Lyman-α forest for understanding the ionization state
of the IGM at low and moderate redshifts, the extension of these techniques
to the cosmic dawn appears to provide an obvious test of the topology and
nature of the reionization process. However, we have already seen that the
Gunn-Peterson optical depth was large at that time, even in highly ionized gas.
It is thus not obvious that we should expect a clear signature of the ionized
bubbles.

Nevertheless, the nature of the transformation from a bubble-dominated
IGM to the postreionization “web-dominated” IGM does offer some hope. Once
the ionized bubbles became larger than the mean free path of the ionizing
photons, the ionizing background saturated—even if the Universe were fully
ionized, the metagalactic background would not increase. Thus, we can expect
nearly as much transmission in bubbles that reached this saturation limit as in
the postreionization IGM.

But there is one additional factor to consider: the damping wing from the
neutral gas surrounding each ionized bubble. With the rule of thumb that
τD <1 only at distances>1 proper Mpc from fully neutral gas, this requires that
ionized bubbles be at least a few megaparsecs large to allow for any transmis-
sion. Fortunately, in most reionization models this constraint is easily fulfilled,
at least in the latter half of reionization (see Figure 9.5, for example).

Bubbles that allow transmission must be very large to build up a high enough
ionizing background and avoid the damping wing, so they contain an enormous
number of luminous sources. This in turn means that their ionizing back-
ground is fairly uniform (except at the edges of the bubble, but there the damp-
ing wing is large anyway). Thus, just as in the postreionization IGM, transmis-
sion will most likely come from highly underdense voids in which the neutral
fraction is small. Equation (11.15) shows that τα < 1 requires δ < 0.1–0.2.
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Figure 11.9 A model for the expected cumulative number of Lyman-α forest transmis-
sion features at z = 6.1 if the IGM has QH II = 0.9, 0.85, 0.8, and 0.75
(solid, long-dashed, short-dashed, and dotted curves, respectively). The cal-
culation uses the excursion set model for reionization (see §9.4) and an in-
homogeneous IGM density distribution calibrated to simulations at lower
redshifts. Furlanetto, S. R., et al., Mon. Not. R. Astron. Soc. 354, 695 (2004).
Copyright 2004 by the Royal Astronomical Society.

Such deep voids are very rare at high redshifts, because structure formation
was still in its infancy— and, of course, such regions were very far from galaxy
concentrations and so likely remained in neutral regions throughout nearly all
of reionization.

Thus, we expect transmission spikes to be extremely rare (but not impossible)
during reionization. With models for the H II region sizes, the emissivity of
the galaxies driving reionization, and of the density distribution of the IGM,
it is not difficult to estimate the possible abundance of transmission features.
Figure 11.9 shows an optimistic example calculation for transmission at z = 6.1
(in the range probed by the highest-redshift known quasars). The curves show
that observable transmission gaps with τ < 2.3 occur only about once per total
observed Lyman-α forest path length of �z ∼ 3.

In reality, transmission will be even more rare, because this simple calcula-
tion makes the optimistic assumption that photons travel to the edge of their
bubble, without any limits from LLSs in the IGM. But even so, Figure 11.9
shows that they are sufficiently rare that precise quantitative constraints on
reionization from any such transmission spikes will require much larger sam-
ples of quasars or GRBs than currently available. Drawing conclusions about
reionization from the forest is instead very difficult. Indeed, some simulations
of the reionization process show that the present data cannot even rule out
reionization ending at z < 6, since some small pockets of neutral gas could
remain, buried inside the long stretches of saturated absorption that were com-
mon at this time.7
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Overall, the Lyman-α forest (especially together with absorption in Lyman-β
and Lyman-γ ) is best at constraining the very end of the reionization era, as
discussed in §4.7, unless the red damping wing can be measured on its own.

11.6 Lyman-α Halos around Distant Sources

11.6.1 The Scattering of Damping Wing Photons

As we have already discussed in the context of Lyman-α scattering within galax-
ies, Lyman-α line photons emitted by these galaxies are not destroyed but in-
stead are absorbed and reemitted as they scatter. For scattering in the uniform
IGM, this problem is particularly simple and illuminates more of the physics of
the scattering process. For simplicity, we neglect the H II regions surrounding
a galaxy here and imagine photons that begin on the red side of the line and
scatter through the Hubble flow away from their source.

Owing to the Hubble expansion of the IGM around the source, the frequency
of the photons is slightly shifted by the Doppler effect in each scattering event.
As a result, the damping wing photons diffuse in frequency to the red side
of the Lyman-α resonance. Eventually, when their net frequency redshift is
sufficiently large, they escape and travel freely toward the observer (see
Figure 11.10). As a result, the source creates a faint Lyman-α halo on the sky.vi

These Loeb-Rybicki Lyman-α halos can be simply characterized by the frequency
redshift relative to the line center, m� = |m − mα|, which is required to make the
optical depth from the source equal to unity. At high redshifts, the leading term
in equation (11.21) yields

m� = 8.85 × 1012 Hz ×
(

�bh

0.05
√
�m

)(
1 + zs

10

)3/2

(11.28)

as the frequency interval over which the damping wing affects the source spec-
trum. A frequency shift of m� = 8.85 × 1012 Hz relative to the line center corre-
sponds to a fractional shift of (m�/mα) = (v/c) = 3.6×10−3, or a Doppler velocity
of v ∼ 103 km s−1. The Lyman-α halo size is then defined by the correspond-
ing proper distance from the source at which the Hubble velocity provides a
Doppler shift of this magnitude,

r� = 1.1
(
�b/0.05

�m/0.3

)
Mpc. (11.29)

Typically, the observable Lyman-α halo of a source at zs ∼ 10 occupies an angu-
lar radius of ∼15′′ on the sky (corresponding to ∼0.1r�) and yields an asymmet-
ric line profile as shown in Figures 11.10 and 11.11. The scattered photons are
highly polarized, with the polarization direction determined by the orientation

viThe photons that begin blueward of Lyman-α and get absorbed in the Gunn-Peterson trough
are also reemitted by the IGM around the source. However, since these photons originate on the
blue side of the Lyman-α resonance, they travel a longer distance from the source than do the
Lyman-α line photons before they escape to the observer. The Gunn-Peterson photons are therefore
scattered from a larger and hence dimmer halo around the source.
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Lyman-α source before reionization

H I
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IGM

λα(1 + zs)
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Figure 11.10 Halo of scattered Lyman-α line photons from a galaxy embedded in the
neutral IGM prior to reionization (also called a Loeb-Rybicki halo); see Color
Plate 24 for a color version of this figure. The line photons diffuse in
frequency owing to the Hubble expansion of the surrounding medium
and eventually redshift out of resonance and escape to infinity. A distant
observer sees a Lyman-α halo surrounding the source, along with a charac-
teristically asymmetric line profile. The observed line should be broadened
and redshifted by ∼1,000 km s−1 relative to other lines (such as Hα) emit-
ted by the galaxy.

of the observer relative to the last scattering atom. Thus, the shape of the halo
would be different if viewed through a polarized filter.8

Detection of the diffuse Lyman-α halos around bright high-redshift sources
(which are sufficiently rare, so that their halos do not overlap) would provide a
unique tool for probing the gas distribution and the velocity field of the neu-
tral IGM before the epoch of reionization. The Lyman-α sources serve as lamp
posts that illuminate the surrounding H I fog. However, owing to their low
surface brightness, the detection of Lyman-α halos through a narrowband filter
is much more challenging than direct observation of their sources. Moreover,
the velocity fields around these galaxies may be complicated by winds and in-
fall, which would affect the line brightness and profile in similar ways to those
discussed in §11.1.1.

11.6.2 Lyman-α Blobs

A particularly interesting example of Lyman-α line emission in the interface
between galaxies and the IGM are the so-called “Lyman-α blobs” (LABs) orig-
inally discovered in narrowband images at moderate redshifts (z∼3).9 So far,
several tens of LABs have been found in the redshift range z ∼ 2–7, making
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Figure 11.11 Monochromatic photon luminosity of a Lyman-α halo as a function of nor-
malized frequency shift from the Lyman-α resonance, m̃ ≡ (mα−m)/m�. Note
that only the photons inside the red damping wing scatter in this compact
halo; those on the blue side of Lyman-α scatter at much larger distances.
The observed spectral flux of photons F(m) (in photons cm−2 s−1 Hz−1)
from the entire Lyman-α halo is F(m) = (L̃(m̃)/4π d2

L)(Ṅα/m�)(1 + zs)
2,

where Ṅα is the production rate of Lyman-α photons by the source (in
photons s−1), m = m̃m�/(1 + zs), and dL is the luminosity distance to the
source. Loeb, A., & Rybicki, G. B., Astrophys. J. 524, 527 (1999). Repro-
duced by permission of the AAS.

them much more common than initially expected.10 These blobs have a range
of properties, but all are characterized by significantly extended Lyman-α line
emission (ranging in size from ∼10 kpc “halos” around star-forming galaxies
to >150 kpc giants with no obvious central galaxy in the rest-frame UV). Some
appear to be diffuse elliptical objects, while others are much more filamentary.
The brighter objects, with line luminosities L > 1044 erg s−1, are extraordinar-
ily powerful, corresponding to star formation rates>50M� yr−1 if their energy
source is attributed to obscured star formation. The lines can be quite broad but
do not show any unusual features like double-peaked profiles. Two example ob-
jects are shown in Figure 11.12.

Bright LABs are typically located near massive galaxies that reside in dense
regions of the Universe. Multiwavelength studies of LABs reveal a clear associ-
ation of the brighter blobs with submillimeter and IR sources that form stars
at exceptional rates of ∼103M� yr−1, or with obscured active galactic nuclei (in
fact, strong Lyman-α emission has been known for many years to surround
some high-redshift radio galaxies).11 However, other blobs have been found
that are not associated with any source powerful enough to explain the observed
Lyman-α luminosities.12

The origin of LABs is still unclear. Some models relate LABs to cooling ra-
diation from gas assembling into the cores of galaxies.13 Other models invoke
photoionization of cold (T∼104 K), dense, spatially extended gas by an obscured
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Figure 11.12 Left: A false-color image of a Lyman-α blob (LAB) at redshift z = 2.656.
The hydrogen Lyman-α emission is shown together with the images in
the optical V-band and the near-IR J and H bands. (See Color Plate 25 for
a color version of this figure.) Note the compact galaxies lying near the
northern (top) end of the LAB. The Lyman-α image was obtained using
the SuprimeCam imaging camera on the Subaru Telescope, and the V, J,
and H band images were obtained using the ACS and NICMOS cameras
on the Hubble Space Telescope. This LAB was originally discovered by the
Spitzer Space Telescope. Prescott, M., & Dey, A. (2010). Right: A false-color
image of a LAB at redshift z = 6.6, obtained from a combination of images
at different IR wavelengths. Ouchi, M., et al., Astrophys. J. 696, 1164 (2009).
Reproduced by permission of the AAS.

quasar14 or extended X-ray emission;15 the compression of ambient gas by su-
perwinds to a dense Lyman-α emitting shell;16 or star formation triggered by
relativistic jets from AGN.17 The latest models relate LABs to filamentary flows
of cold (∼104 K) gas into galaxies, which are generically found in numerical
simulations of galaxy formation (see §8.2).18 These cold flows contain ∼5–15%
of the total gas content in halos as massive as Mhalo ∼ 1012–1013M�.19

Although these objects have been observed in detail so far only at low red-
shifts, similar mechanisms offer the prospect of learning not only about star
formation inside high-redshift galaxies and the gross properties of the IGM but
also about the detailed structure of the gas accreting onto, or flowing out of,
young galaxies. Lyman-α studies may therefore ultimately hold the key to un-
derstanding the initial stages of galaxy formation and growth.

11.6.3 Lyman-α Emission from the Intergalactic Medium

One additional source of diffuse Lyman-α emission may be important in the
prereionization era: photons generated by IGM gas.20 In principle, they may
allow us to image the ionized phase as it filled the Universe.
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Conceptually, there are two possible sources for such emission. First, in any
portion of the ionized medium, the gas will continually recombine, generating
Lyman-α photons at roughly two-thirds of this recombination rate. These pho-
tons will then propagate toward the observer. If we characterize the clumpiness
of the volume by C ≡ 〈

n2
e

〉
/ 〈ne〉2, this Lyman-α photon production rate, per

unit proper volume, is

ṅα,IGM = 2

3
αB 〈ne〉

〈
np

〉
C, (11.30)

where we conservatively adopt the case-B recombination rate, assuming that
the ionizing photons generated by recombinations directly to the ground state
escape to fully neutral gas at the edge of the ionized region. A region of volume
V will therefore produce a number flux of Lyman-α photons ∼ṅα,IGMV/4π d2

L.
Assuming that the region expands at the usual Hubble flow rate, the relevant
column density over a given observing band is simply determined by the radial
distance corresponding to the band, so the surface brightness per unit wave-
length of the emissionvii is

d�

dλobs
≈ 1

4π

ṅα,IGM

(1 + z)3

drp

dz

dz

dλobs
(11.31)

≈ 0.032C
(

1 + z

10

)1/2

photons cm−2 s−1 sr−1 Å
−1
, (11.32)

where the factor (1+z)−3 is the usual cosmological surface dimming, (dA/dL)2,
modified for our definition in terms of photon number flux rather than energy
flux.

In principle, a spectrum along any given line of sight will thus show an en-
hancement in the background at λα(1 + zr), where zr is the location of the
reionization surface, followed by an alternating pattern of high and low inten-
sity as the line of sight passes through the patchwork of H II regions. How-
ever, unless the IGM is extremely clumpy, the surface brightness provided by
equation (11.32) is very small and unlikely to be detectable in any reasonable
observation for the foreseeable future.

Fortunately, there is a second effect that can substantially increase the pho-
ton flux emerging from the hot “skin” of an ionization front propagating into
the nearly neutral IGM: collisional excitation. Hydrogen line cooling is by far
the most important cooling mechanism for gas of primordial composition and
T ∼ 104–105 K, and a substantial fraction of that line emission is deposited in
the Lyman-α line. The emissivity in this case is

ṅα,CE = nenH Iq
tot
Lyα(T ), (11.33)

where q tot
Lyα is the rate at which collisions generate Lyman-α photons (including

those generated through cascades from higher electronic levels). This last func-
tion increases rapidly near T ∼ 104 K and peaks at T ∼ 4 × 105 K; however, at

viiThe surface brightness is the flux per solid angle from an object, or the flux divided by As/d2
A,

where As is the proper area of the object.
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those high temperatures the gas is nearly entirely ionized, so nH I is small, and
the Lyman-α emission rate decreases again.

Put another way, the total amount of Lyman-α emission thus depends on
the thermal energy imparted to each parcel of gas during the photoionization
process: ṅα,CEtcool ∼ nk(Ti − Tf ), where Ti is the initial post-ionization temper-
ature, and Tf is the final value. The physics of line excitation then determines
the relevant cooling time as well as a factor of the order of unity that regulates
the fraction of the thermal energy released as Lyman-α photons. The strongest
emission will therefore surround spectrally hard sources, which heat the gas to
high temperatures (see §9.9).

Because q tot
Lyα depends sensitively on temperature, and because nH I changes

rapidly within the ionization front, a detailed estimate of the surface brightness
requires a radiative transfer simulation. A simple estimate, informed by such
simulations, is simply to integrate the specific intensity through the ionization
front, so that

ILyα ≈ 1

π

∫
nα,CE dr (11.34)

∼ f

π
CAn2

p

(
1

σH I,〈m〉np

)
q tot

Lyα(〈T 〉), (11.35)

where A is a geometric factor of the order of unity describing the run of xH I

through the ionized front, and we have evaluated the collisional excitation rate
at an effective temperature 〈T 〉. The factor 1/π accounts for the fraction of pho-
tons directed toward the observer. We have also introduced the clumping factor
C to describe the enhancement in the collision rate inside a clumpy medium.
Finally, we have characterized the thickness of the ionization front by the mean
free path of a photon at a mean energy 〈m〉, and f is the fraction of the Lyman-α
photons that escape to the observer.

The corresponding surface brightness (integrated across the entire ionization
front) is then � ∼ ILyα/(1 + z)3, which is independent of redshift because the
decreased thickness of the ionization front compensates for surface brightness
dimming. With 〈T 〉 = 3 × 104 K and 〈m〉 = 3mH I,21

� ∼ 10C
(
f

0.5

A

1/4

)
photons cm−2 s−1 sr−1. (11.36)

The fiducial choice for A simply takes xH I(1 − xH I) ∼ 1/4 in the primary
emission zone.

Even with reasonably optimistic clumping factors of C ∼ 5, this is still a
rather low surface brightness, and its detection presents a substantial challenge
for the largest telescopes available. If a signal can be detected, another challenge
remains in distinguishing IGM emission from the integrated background gen-
erated inside the ISM of unresolved high-redshift galaxies (see §13.2.1). How-
ever, searches around known bright quasars with relatively large H II regions
allow one to integrate over substantial areas on the sky and search for a “coher-
ent” signal representing the entire outer boundary of the ionized bubble.
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11.7 Lyman-α Emitters during the Reionization Era

We now return to discuss the properties of more normal galaxies that have
Lyman-α lines, commonly referred to as Lyman-α emitters or LAEs. We saw in
§10.2.1 that this strong emission line provides a convenient marker for young
star-forming galaxies, and one of the most efficient ways to find distant galaxies
is with narrowband searches that identify sources with strong emission lines in
a narrow redshift range.

We saw in §11.1.1 that the intrinsic properties of the Lyman-α line depend
on a host of complex factors. However, we also found in §11.3.1 and §11.4
that resonant absorption in the ionized IGM and much stronger absorption
from neutral gas—even from the damping wing for photons that do not pass
through resonance—can also strongly affect the line (both in its amplitude and
profile); this latter factor is denoted T IGM

Lyα in equation (11.2). These effects make
the Lyman-α emission lines of galaxies an interesting and potentially powerful
probe of IGM properties. However, we must always bear in mind the complex-
ity of the intrinsic line as an important source of systematic confusion for such
a probe.

Figure 11.13 shows how this IGM reprocessing can dramatically alter the ob-
served line intensity and profile; the top panel shows the lines, while the bottom
panel shows the corresponding optical depth profiles. In the top panel, the up-
per dotted curve shows the assumed intrinsic line, which we place at z = 10 and
take as a Gaussian with width 27 km s−1 (these are arbitrary choices chosen for
illustrative purposes). The other curves show the effects of IGM reprocessing,
including both the damping wing from fully neutral gas beginning a distance
Rb from the line source (with Rb decreasing from top to bottom) and resonant
scattering from the ionized medium within (except for the lower dotted curve).
The optical depths providing this absorption are shown in the bottom panel: the
nearly horizontal lines are the damping wing optical depths (withRb decreasing
from bottom to top), while the dotted curve shows the resonant value.

Note that the resonant absorption is large everywhere blueward of line center
but is modest or negligible on the red side. This is a rather generic result (here
we have included only the ionization from the galaxy itself, which dominates
on the relevant scales, so the ionization structure on large scales is negligible);
in general, we expect LAEs at z > 5 to have asymmetric line profiles, with the
blue side cut off by resonant IGM absorption.viii

However, the damping wing absorption that affects the red side (as well as
the blue side) depends sensitively on the large-scale environment and, in partic-
ular, the displacement from the source to the nearest neutral gas. As described
previously, a bubble with Rb = 1 proper Mpc produces τD ≈ 1; in fact, this rule
of thumb works reasonably well throughout the relevant high-z regime.

viiiIn principle, this could be avoided if the line center was displaced redward of the galaxy’s redshift,
owing to reprocessing through a wind (see §11.1.1). However, nearly all observed LAEs (and Lyman-
α emission lines from other moderate- and high-redshift galaxies) are asymmetric, even if they have
large wind velocities.
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Figure 11.13 Top: Example line profiles for a galaxy at z = 10. The upper dotted curve
shows the intrinsic line profile, assumed to be a Gaussian with standard
deviation 27 km s−1. The solid, long-dashed, and short-dashed curves show
the observed line after reprocessing through the IGM; they place the galaxy
in ionized bubbles with radii Rb = 10, 5, and 3 comoving Mpc, respec-
tively. The lower dotted curve shows the line if we neglect resonant absorp-
tion within the ionized bubble, assuming Rb = 10 Mpc. Bottom: The dot-
ted line shows the resonant absorption from the ionized bubble. The solid,
long-dashed, short-dashed, and dot-dashed curves show the damping wing
optical depth for Rb = 10, 5, 3, and 1 Mpc, respectively. Furlanetto,
S. R., et al., Mon. Not. R. Astron. Soc. 354, 695 (2004). Copyright 2004 by
the Royal Astronomical Society.

We therefore expect that as we penetrate farther back into the reionization
era, with the bubbles growing smaller and smaller, more and more of their
Lyman-α lines will be extinguished by the neutral gas. In the remainder of this
section we explore the consequences of this naive expectation for LAE surveys
during reionization.

11.7.1 Galaxies within Ionized Bubbles

To understand the interplay between the damping wing and galaxy populations,
we must first understand how galaxies populate the H II regions that surround
them. Fortunately, because we can use the same method—the excursion set
formalism—to compute the halo and ionized bubble abundances, this is a
relatively easy task.
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Consider an ionized bubble with massmb and a mean overdensity δb; accord-
ing to the model in §9.4, this overdensity is exactly that required for a collapse
fraction large enough to produce one ionizing photon per hydrogen atom in-
side the bubble, so δb = B(mb).ix We wish to know the abundance of galaxies
as a function of mass m within this ionized bubble, n(m|mb).

In the excursion set picture (see §3.4.2), this is simply proportional to the
fraction of random walks that begin at (mb, δb) and end at (m, δcrit), where δcrit

is the critical linearized overdensity for halo collapse (which is a function of m
in, for example, the Sheth-Tormen model). But this problem is actually iden-
tical with the “extended Press-Schechter” problem, in which we calculated the
progenitors of a given halo at an earlier redshift: the only difference is that here
our “descendant halo” is a bubble and we work at the same redshift—which is
possible because the criterion for an ionized bubble requires a lower overden-
sity than halo collapse itself.

Thus we can immediately write

n(m|mb) =
√

2

π

ρ̄

m2

∣∣∣∣ d ln σ

d lnm

∣∣∣∣ σ
2[δcrit(z)− B(mb)]
(σ 2 − σ 2

b )
3/2

exp
{
−[δcrit(z)− B(mb)]2

2[σ 2 − σ 2
b ]

}
,

(11.37)
where σ 2 = σ 2(m), and σ 2

b = σ 2(mb).
We can also perform the reverse calculation (analogous to the distribution of

halo descendants) to compute the probability pb(mb|m) that a halo of massm is
part of a bubble of mass mb. Figure 11.14 shows the results of this calculation
for a small halo (mh = 109M�) and a large one (mh = 1011M�). The different
curves in each panel correspond to a sequence of ionized fractions in a model of
reionization. Unsurprisingly, the median bubble size increases as reionization
progresses (because all bubbles grow with time), but note that it also strongly
depends on the halo mass: large galaxies are far more likely to reside in large
bubbles than are average galaxies. This is just another manifestation of the in-
creasing bias of galaxies with their mass.

11.7.2 LAE Number Counts during Reionization

Next, let us imagine performing a sequence of narrowband LAE searches at pro-
gressively larger redshifts. We expect that once the typical bubble size falls be-
low ∼1 proper Mpc, the IGM damping wing will start to extinguish the Lyman-
α emission lines even if the galaxies still exist. We might therefore imagine a
simple counting exercise as a test for reionization, aiming to see a decline in
the abundance of LAEs.

Of course, there are many other reasons why the LAE density may decline—
most obviously, the halo mass function changes rapidly with z at these early
times, so the galaxy abundance most likely does as well. Ideally, one would
therefore calibrate the experiment to a broadband galaxy survey that is not sub-
ject to the same selection effects—a precipitous decline in LAE abundance with

ixHere, for simplicity, we ignore recombinations in the calculation.
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Figure 11.14 Probability that halos with mh = 109 and 1011 M�reside in ionized bub-
bles larger than a given radius Rb. Here we use the excursion set model
of reionization with ζ = 40; the bubble sizes are relatively independent
of this choice, for a fixed QH II, but the halo populations themselves are
highly redshift dependent. In each panel, the curves correspond to z = 12
(QH II = 0.74, solid), z = 13 (QH II = 0.48, long-dashed), z = 14
(QH II = 0.3, short-dashed), z = 15 (QH II = 0.19, dotted), z = 16
(QH II = 0.11, dot-dashed) Furlanetto, S. R., et al., Mon. Not. R. Astron.
Soc. 354, 695 (2004). Copyright 2004 by the Royal Astronomical Society.

only a gentte decline in the overall galaxy density would be good evidence for
IGM absorption. Similarly, one could also imagine identifying a galaxy sample
using photometric techniques (as in §10.2.2) and then following them up spec-
troscopically to determine how their Lyman-α lines evolve. Note, however, that
the complicated physics of Lyman-α generation and transfer within galaxies al-
ways leaves some room for doubt, since such a decline could also be attributed
to the evolving IMF of stars or changes in their dust content.

Nevertheless, this simple test is very attractive. We can use the excursion set
formalism described in §11.7.1 to estimate how the abundance would decline.
We ignore the effects of resonant absorption (since they depend on the local en-
vironment of the galaxy and hence are unlikely to evolve rapidly during reion-
ization) but include the damping wing absorption from neutral IGM gas. Let us
suppose that the survey is sensitive to all sources with L > Lmin. If we then take
L ∝ m for simplicity, a galaxy halo of mass m will be detected only if the damp-
ing wing has τD < ln(m/mmin), where L(mmin) = Lmin. Then, the number
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density of observable galaxies is

n(> L) =
∫
dmb nb(mb)Vb

∫ ∞

mD

dmn(m|mb), (11.38)

where mD is the minimum halo mass that remains observable inside a bubble
of massmb and volume Vb. Note thatmD decreases withmb, since larger bubbles
cause less damping wing absorption. Of course, in reality, τD is a function not
only of bubble size but of a galaxy’s position within the bubble: those at the
edge always experience strong absorption.

This simple model is in good agreement with more detailed calculations
using simulations of reionization (either full-scale or seminumerical).
Figure 11.15 shows the luminosity function at several different neutral fractions
(including fully ionized, top curve) measured in a seminumerical simulation.
Clearly, damping wing absorption from the neutral gas can have an enormous
effect on the observed abundance of galaxies in these surveys.

The detailed calculation reveals two interesting effects. First, the fractional
decline is relatively modest (no more than a factor ∼ 2) until QH II < 0.5; be-
yond that point the abundance declines steeply, because the ionized bubbles
have characteristic sizes ∼10 comoving Mpc, or ∼1 proper Mpc, whenQH II ∼
0.5. Larger bubbles, late in reionization, have τD < 1 and so have only a small
effect on the observed abundance.

The second factor is visible in the bottom panel of Figure 11.15: evidently,
the fractional decline in LAE abundance is nearly independent of halo mass (or
intrinsic luminosity). This occurs because the distribution of τD is quite broad
(roughly lognormal), owing not only to the range of halo sizes but also to the
distribution of galaxies within each bubble. For faint galaxies, which roughly
follow a power-law intrinsic distribution, the convolution of these two effects
preserves the power law. At the bright end, where the intrinsic luminosity func-
tion declines exponentially, the breadth of the τD distribution masks the change
in slope.

11.7.3 LAE Clustering during Reionization

The fact that galaxies within large ionized bubbles remain (relatively) unatten-
uated while those inside small bubbles are extinguished by the damping wing
suggests that not only did the mean number density of LAEs evolve throughout
reionization, but their spatial distribution evolved as well. Figure 11.16 shows
this explicitly. Each panel shows a slice through a seminumerical simulation of
reionization; here we fix z = 9 and vary the ionized fraction across the panels
(from fully ionized at left to QH I ≡ 1 −QH II = 0.77 at right). Each white dot
corresponds to a galaxy with an observable Lyman-α line, assuming the same
model as the last section for its luminosity function. The overall trend is clear:
galaxies that are relatively isolated in the leftmost panel disappear first, while
those that are part of a strong overdensity (near the bottom center of the image)
remain visible even to large neutral fractions.
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Figure 11.15 Luminosity function of LAEs at z = 9 in a seminumerical simulation of
reionization, as a function of the mean neutral fraction QH I = 1 −QH II.
The sequence of curves from top to bottom is from small to large QH I.
The bottom panel shows the ratio of the curves to that in a fully ionized
Universe. Mesinger, A., & Furlanetto, S. R., Mon. Not. R. Astron. Soc. 386,
1990 (2008). Copyright 2008 by the Royal Astronomical Society.

The best way to describe this phenomenon quantitatively is through the clus-
tering of the galaxies. A simple toy model illustrates how it enhances the ap-
parent clustering on small scales (relative to galaxies observed in the contin-
uum, for example); see Figure 11.17. Suppose that galaxies with number den-
sity n̄ are distributed randomly throughout the universe, but we can observe
only those with at least one neighbor within a sphere of volume V  n̄−1.
In other words, the ionized bubbles surrounding such clumped sources over-
lap, creating a large enough common bubble to hold the damping wing at
bay. Assuming a Poisson distribution, the number density of observed objects
would be

nobs = n̄(1 − e−n̄V ). (11.39)
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QH I = 0.00 QH I = 0.26 QH I = 0.51 QH I = 0.77

Figure 11.16 Maps of visible LAEs at z = 9 in a seminumerical simulation, assuming
QH I ≈ 0, 0.26, 0.51, 0.77, from left to right. All slices are 250 Mpc on a
side and 20 Mpc deep. We assume that all halos with observed luminosi-
ties greater than that corresponding to an unattenuated galaxy with Mh >

1.67 × 1010 M� are visible and that L ∝ Mh. Mesinger, A., & Furlanetto,
S. R., Mon. Not. R. Astron. Soc. 386, 1990 (2008). Copyright 2008 by the
Royal Astronomical Society.

(a) (b) (c)

Figure 11.17 Toy model for the excess clustering induced in a Lyman-α selected galaxy
population during reionization. (a) First, we assume a randomly distrib-
uted galaxy population. A continuum survey, sensitive to all these galaxies,
would detect no clustering signal. (b) The H II regions generated by these
galaxies: note that when galaxies are close together, their H II regions over-
lap, producing long stretches of nearly ionized gas through which Lyman-
α photons can easily propagate. (c) A LAE survey would see galaxies only
inside these large H II regions, all of which have neighbors (by construc-
tion), so the apparent clustering would be large even though the underlying
population is randomly distributed.

As usual, the correlation function of the observed sample is defined through
the total probability of finding two galaxies in volumes δV1 and δV2,

δP = n2
obs (1 + ξ) δV1 δV2. (11.40)

However, we know that every observed galaxy has a neighbor within V ; thus,

δP = nobs δV1 (δV2/V ) (11.41)

for small separations (where the factor δV2/V assumes the neighbor to be ran-
domly located within V ). Thus,

ξ = 1/(nobsV )− 1 (11.42)
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on such scales: even though the underlying distribution is random, the selec-
tion criterion induces clustering. Note that it can be extremely large if V  n−1

obs.
On large scales, the modulation takes a different form. An observed galaxy

resides in a large bubble, corresponding to an overdense region. Because of
the bias of the underlying dark matter field, that overdense region will tend to
lie near other overdense regions—and hence other large bubbles. Thus, we are
more likely to see galaxies near the original object than in an average slice of the
universe. Because we do not see similar galaxies in small (less-biased) bubbles,
the large-scale bias is generically larger than that intrinsic to the galaxies.

Because these two effects have different amplitudes, the bubbles introduce
a scale-dependent bias to the correlation function of galaxies, with a break at
r ≈ Rc, where Rc is the characteristic size of the ionized bubbles. Again using
the excursion set formalism, we can estimate this modified bias in the limits
r  Rc and r � Rc.

By analogy with the halo model for the density field, these limiting regimes
correspond to correlations between galaxies within a single bubble and within
two separate bubbles. We begin with large scales: the observed clustering is the
average bias of the bubbles weighted by the number of galaxies in each H II
region (analogous to the two-halo term for the density field):

b∞ =
∫
dmb nb(mb) bH II(mb) Vb

∫ ∞

mD

dmh
nh(mh|mb)

n̄gal
, (11.43)

where we integrate only over those halos visible after damping wing absorption,
n̄gal is the mean number density of observable galaxies, and bH II(mb) is the bias
of an ionized bubble of mass mb (see equation 9.24).

The behavior on small scales is somewhat more subtle. If galaxies were ran-
domly distributed within each bubble, the simple argument in the first para-
graph of this section suggests that the correlation function would just be the
weighted average of the number of pairs per H II region. However, in addition
to there being an increase in the number of galaxies in each bubble, the galaxies
also trace density fluctuations within each bubble. On moderately small scales
where nonlinear evolution in the density field may be neglected, we therefore
write

b2
sm =

∫
dmb nb(mb) Vb b

2
h(mb)

〈Ngal(Ngal − 1)|mb〉
N̄2

gal

, (11.44)

where N̄gal = n̄galVb, 〈Ngal(Ngal − 1)|mb〉 is the expected number of galaxy pairs
within each bubble, and b2

h measures the excess bias of these halos inside each
bubble. Note the similarity to the halo-model calculation of the galaxy power
spectrum here; in fact, this equation form can be derived formally by construct-
ing the galaxy density field from bubbles and their constituent halos, in analogy
to the halo model. This term then corresponds to the “two-halo, one-bubble”
term in such a treatment; that is, correlations between two particles that lie in
the same bubble but different dark matter halos. The “bubble profile” describ-
ing the distribution of galaxies within the bubble turns out to be proportional
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to the square root of the linear matter correlation function. Provided the typi-
cal bubbles have more than two galaxies, we can write the expected number of
pairs as

〈Ngal(Ngal − 1)|mb〉 ≈ max{0, N̄gal(mb)[N̄gal(mb)− 1]}. (11.45)

The remaining factor is bh(mb). It may seem reasonable to take this to be
the mean value of the usual excursion set halo bias, evaluated over n(mh|mb).
However, the pair density inside each bubble already includes much of this bias
because it counts the number of galaxies in a region with overdensity δb = B.
We therefore want only the “excess” bias of the galaxies relative to density fluc-
tuations on scales smaller than mb, which is the bias evaluated from the condi-
tional mass function in equation (11.37). Following the excursion set definition
of this bias, we have

bh(mh|mb) = 1 + (δc − δx)
2/(σ 2 − σ 2

b )− 1

δc(z = 0)− B(mb)
. (11.46)

We show the resulting limiting bias cases at z = 10 as a function of QH II

in Figure 11.18. In each panel, the different curves take different galaxy popu-
lations, with smaller galaxies having less net bias. Panels (a) and (b) show bsm

and b∞. We scale the results to the bias b̄h that would be intrinsic to the galaxy
population if absorption could be ignored. Panel (c) shows the ratio b∞/bsm,
illustrating the magnitude of the “break” in the linear bias. We emphasize that
the scale at which the break occurs will evolve throughout reionization along
with the characteristic bubble size Rc; for illustrative purposes we mark several
values of Rc.

Clearly, both bsm and b∞ decrease throughout reionization. The large-scale
bias decreases because the ionized regions must lie nearer the mean density
(and hence be less biased) as QH II → 1: this behavior must be generic to any
model in which reionization begins in overdense regions. The small-scale bias
decreases because bubbles large enough to allow transmission become com-
mon: early on, only those galaxies with near neighbors are visible, so the corre-
lations are strong. In the middle and final stages of reionization, most galaxies
lie inside bubbles large enough to permit transmission, so more typical galaxies
become visible, and bsm → b̄h.

These qualitative results also hold true in more detailed calculations with
numerical simulations. Figure 11.19 shows the estimated angular correlation
function (i.e., the three-dimensional correlation function projected on the plane
of the sky) from a radiative transfer simulation of LAEs at z = 6.6, the highest
redshift window easily visible to a ground-based telescope. The different curves
in each panel correspond to different ionized fractions; the different panels de-
scribe different surveys, with the top panel comparable to existing capabilities
and the others a few times larger. Note the enhancement in small-scale cor-
relations at small ionized fractions; this is the same effect we have described
with bsm. The large-scale power is also enhanced, but it is much less sensitive
to QH II.
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Figure 11.18 (a): Predicted small-scale bias of LAEs at z = 10, relative to the bias that
would be expected if all galaxies above the mass threshold were visible.
This applies to separations larger than the nonlinear scale but smaller than
the characteristic bubble size Rc. The solid, long-dashed, and short-dashed
curves take mobs,min = 108, 109, and 1010 M�, respectively. The dotted
curves show the predicted galaxy bias, neglecting absorption, relative to its
true value (the small errors at early times result from the approximations
described in the text). (b) Predicted large-scale bias at z = 10, relative to
the bias that would be expected if all galaxies above the mass threshold
were visible. (c) Ratio of large-to-small scale bias; the transition between
the two regimes occurs roughly at Rc, which is marked for a few different
values of the bubble-filling factor QH II. Furlanetto, S. R., et al., Mon. Not.
R. Astron. Soc. 365, 1012 (2006). Copyright 2006 by the Royal Astronomical
Society.

Although the correlation function and power spectrum (and through them
the linear bias) are the most straightforward manifestations of the increased
clustering, the “mask” applied to the galaxy distribution is itself non-Gaussian,
so other clustering statistics—such as counts in cells or higher-order
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Figure 11.19 Angular correlation function of LAEs in a radiative transfer simulation of
reionization. The simulation takes z = 6.6 and assumes all LAEs with an
observed luminosity greater than the intrinsic luminosity of a halo with
m = 7 × 1010 M� are visible. The different curves in each panel assume
different ionized fractions. The top panel estimates the errors for existing
surveys with the Subaru Deep Field in which LAEs are detected photomet-
rically. The other two panels assume larger surveys (with ∼5 times more
LAEs); the middle panel assumes a photometric survey, while the bottom
one assumes the LAEs can be selected spectroscopically. In each one, the
smaller error bars include Poisson fluctuations in the galaxy counts, while
the larger spreads also include cosmic variance. McQuinn, M., et al., Mon.
Not. R. Astron. Soc. 381, 75 (2007). Copyright 2007 by the Royal Astronom-
ical Society.

correlations—are also useful. All these probes follow the qualitative behavior
of the bias, increasing most dramatically early in the reionization process.

Both the analytic and numerical approaches show that the bias increases
rapidly with neutral fraction when QH II < 0.5, at least doubling and some-
times increasing by an even larger amount, especially on large scales. This
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result, together with the change in the shape of the LAE correlation function
with respect to the dark matter, makes the clustering signature much more ro-
bust to uncertainties in the nature of the LAE hosts. This is because the linear
bias is a relatively slowly varying function of halo mass and redshift; mimick-
ing the shift due to the ionized bubbles would require a drastic change in the
properties of the galaxies.

However, it is worth emphasizing again that the radiative transfer of Lyman-
α photons through the IGM is a complex process, and it can affect the observed
clustering even after reionization is complete (thus the resonant absorption,
which we have neglected in this section, can also be important). Interestingly,
the frequency dependence of the scattering process induces anisotropies,
generating clustering signatures analogous to redshift–space distortions.
Fortunately, this component should not evolve as rapidly during reionization
as the damping wing.22
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Chapter Twelve

The 21-cm Line

As powerful as it is for studying the high-z Universe, the Lyman-α transition
has the following major disadvantages:

• Most important, the Gunn-Peterson optical depth is enormous. Even a very
small neutral fraction, of the order of ∼10−3, suffices to render the IGM
opaque in this line. Thus, we are not able to use it to study the early, or
even middle, phases of reionization except in special circumstances.

• Because the Lyman-α transition lies in the UV band, observing it requires
bright UV sources that are very rare at high redshifts, limiting forest stud-
ies to only a modest number of lines of sight.

• The high excitation energy of the Lyman-α transition prevents us from us-
ing it to study the cold prereionization IGM, because the temperatures are
much too low there to collisionally excite the line. Moreover, the large opti-
cal depth for absorption prevents us from measuring the IGM temperature
through the line width.

The first of these difficulties can be overcome by using a resonant transi-
tion of a rarer element, such as a metal, but even if such elements, exist, their
distribution introduces extra uncertainty into the interpretation (see §6.5). We
can address all these problems by searching for a weaker, lower-energy line of
atomic hydrogen: the best candidate is the spin-flip or hyperfine line. This tran-
sition was predicted theoretically by Hendrik van de Hulst in 1944 (following a
suggestion by Jan Oort) and first observed from the sky by Harold Ewen and Ed
Purcell through an office window at the Harvard Physics department in 1951.
The transition is driven by the interaction of the spins of the proton and elec-
tron, whose relative directions affect the energy of the electron’s orbit. An atom
in the upper state eventually undergoes a spin-flip transition, emitting a photon
with a wavelength of 21 cm. As we shall see, this transition is extremely weak,
so the effective IGM optical depth is only of the order of 1%: this makes the en-
tire neutral IGM accessible during the cosmic dawn. Moreover, the transition
energy is so low that it provides a sensitive thermometer of the low-temperature
IGM, and as a low-frequency radio transition, it can be seen across the entirety
of the IGM against the CMB.

Figure 12.1 illustrates the power of the spin-flip transition with an anal-
ogy to the well-known structure of Swiss cheese. Each slice of cheese has a
different structure, depending on where the air bubbles happen to lie within
it. In the case of the spin-flip transition, by observing different wavelengths
of 21(1 + z) cm, one slices the Universe at different redshifts z. Moreover,
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Figure 12.1 A diagram of 21-cm imaging of ionized bubbles during the epoch of reion-
ization illustrating to analogy to slicing Swiss cheese. The technique of slic-
ing at intervals separated by the typical dimension of a bubble is optimal for
revealing different patterns in each slice.

the redshifted 21-cm emission should display angular structure as well as
frequency structure owing to inhomogeneities in the gas density, the ionized
fraction of hydrogen, and the fraction of excited atoms—the analogs of the air
bubbles in Swiss cheese. A full map of the distribution of H I as a function
of redshift would provide a three-dimensional image of the Swiss-cheese struc-
ture of the IGM during reionization. This mapping tomography provides the
only way to map the distribution of >90% of the Universe’s baryonic matter
during the dark ages and cosmic dawn.

Figure 12.2, which shows a more concrete overview of the expected spin-flip
signal, has two interesting aspects. The first is the sky-averaged, or monopole,
brightness, which records the average properties of the H I as a function of
observed wavelength (or, equivalently, cosmic time). This is shown in the bot-
tom panel in brightness temperature units relative to the CMB (see later for
a detailed discussion). Several different phases are labeled; we discuss each in
turn in this chapter. The top panel shows the fluctuations inherent in this sig-
nal, which arise from the discrete, clustered luminous sources. The spin-flip
background measures the UV and X-ray radiation fields over a broad swath of
cosmic history, complementing the direct probes of individual galaxies that we
have already described.

This chapter describes how we use the 21-cm line to study the high-z Uni-
verse. Following convention in the literature, we will often refer to the signal as
“21-cm radiation,” although in reality the observed wavelengths are larger by a
factor of (1 + z).
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Figure 12.2 Overview of the expected 21-cm signal (see Color Plate 26 for a color version
of this figure). Top panel: Time evolution of fluctuations in the 21-cm bright-
ness from just before the first stars form to the end of reionization. This
evolution is pieced together from instantaneous redshift slices through a
(100 Mpc)3 numerical simulation volume. Coloration indicates the strength
of the 21-cm brightness as it transitions from absorption to emission
and finally disappears owing to ionization. Bottom panel: Expected
evolution of the sky-averaged 21-cm brightness from the dark ages at z =
150 to the end of reionization sometime before z = 6. The frequency struc-
ture is driven by the interplay of gas heating, the coupling of gas and 21-cm
temperatures, and the ionization of the gas. The considerable uncertainty in
the exact form of this signal arises from the poorly understood properties of
the first galaxies. Reprinted from Nature 468, 772, Pritchard, J., & A. Loeb,
“Cosmology: Hydrogen was not ionized abruptly,” Fig. 1 (p. 772), Copyright
2010, with permission from Nature Publishing Group.

12.1 Radiative Transfer of the 21-cm Line

The radiative transfer equation for the specific intensity Im of a spectral line is

dIm

d�
= φ(m)hm

4π
[n1A10 − (n0B01 − n1B10) Im] , (12.1)

where d� is a proper path length element, φ(m) is the line profile function nor-
malized by

∫
φ(m)dm = 1 (with an amplitude of the order of the inverse of

the frequency width of the line and centered around the line frequency), sub-
scripts 0 and 1 denote the lower and upper atomic levels, ni denotes the number
density of atoms at the different levels, and Aij and Bij are the Einstein coeffi-
cients for the transition between these levels (with i and j the initial and final
states, respectively). In our case, the line frequency m21 = 1420.4057 MHz corre-
sponds to a wavelength of λ21 = 21.1061 cm. We can then make use of the stan-
dard relations in atomic physics: B10 = (g0/g1)B01, and B10 = A10(c

2/2hm3),
where g is the spin degeneracy factor of each state. For the 21-cm transition,
A10 = 2.85 × 10−15 s−1, and g1/g0 = 3.
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The relative populations of hydrogen atoms in the two spin states define the
so-called spin temperature TS through the relation(

n1

n0

)
=

(
g1

g0

)
exp

{−T∗
TS

}
, (12.2)

where T∗ ≡ E10/kB = 68 mK is equivalent to the transition energy E10. In the
regime of interest, T� � Tγ as well as the spin temperature TS , and so all related
exponentials can be expanded to leading order.

For convenience, we quantify Im by the equivalent brightness temperature,
Tb(m), required of a blackbody radiator (with spectrum Bm), such that Im =
Bm(Tb). Throughout the range of frequencies and temperatures relevant to the
21-cm line, the Rayleigh-Jeans formula is an excellent approximation to the
Planck curve, so Tb(m) ≈ Im c

2/2kBm2.
In the Rayleigh-Jeans limit, the equation of radiative transfer along a line of

sight through a cloud of uniform excitation temperature TS becomes

T ′
b(m) = TS(1 − e−τm)+ T ′

R(m)e
−τm (12.3)

where the optical depth τm ≡ ∫
ds αm is the integral of the absorption coefficient

(αm) along the ray through the cloud, T ′
R is the brightness of the background

radiation field incident on the cloud along the ray, and s is the proper distance.
Because of the cosmological redshift, the emergent brightness T ′

b(m0)measured
in a cloud’s comoving frame at redshift z creates an apparent brightness at
Earth of Tb(m) = T ′

b(m0)/(1+ z), where the observed frequency is m = m0/(1+ z).
Henceforth, we will work in terms of these observed quantities.

The absorption coefficient is determined from the Einstein coefficients via1

α = φ(m)
hm

4π
(n0B01 − n1B10). (12.4)

Because all astrophysical applications have TS � T∗, approximately three of
four atoms find themselves in the excited state (n0 ≈ n1/3). As a result, the
stimulated emission correction is significant (and the net absorption depends
on TS).

In an expanding Universe with a local hydrogen number density nH and with
a velocity gradient along the line of sight of dv‖/dr‖, the 21-cm optical depth can
be derived similarly to equation (4.11).i Writing φ(m)∼ 1/(	m) we obtain

τ10 = 3

32π

hc3A10

kBTSm
2
10

xH InH

(1 + z) (dv‖/dr‖)
(12.5)

≈ 0.0092 (1 + δ) (1 + z)3/2
xH I

TS

[
H(z)/(1 + z)

dv‖/dr‖

]
, (12.6)

In the second part TS is Kelvin temperature, and we have scaled to the mean
IGM density at z and to the average velocity gradient (the Hubble flow).

iInterestingly, the 21-cm case was computed by George Field in 1959, several years before the
Gunn-Peterson calculation.2
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In the latter case, 	Im ∝ 	�φ(m)m = |c dt/dz|(m dz/dm) = c/H and provides
the analog of the Gunn-Peterson optical depth.

In practice, the background radiation source is usually the CMB, so T ′
R =

Tγ (z), and we observe the contrast between high-redshift hydrogen clouds and
the CMB. Because the optical depth is so small, we can expand the exponentials
in equation (12.3) as follows:

Tb(m)≈ TS − Tγ (z)

1 + z
τm0 (12.7)

≈ 9 xH I(1 + δ) (1 + z)1/2
[

1 − Tγ (z)

TS

] [
H(z)/(1 + z)

dv‖/dr‖

]
mK (12.8)

Here, Tb < 0 if TS <Tγ , which yields an absorption signal. Emission occurs if
TS >Tγ ; both regimes are important for the high-z Universe. Note that δTb satu-
rates if TS � Tγ , but the absorption can become arbitrarily large if TS � Tγ . The
observability of the 21-cm transition therefore hinges on the spin temperature;
we next describe the mechanisms that drive TS either above or below Tγ (z).

12.2 The Spin Temperature

Three competing processes determine TS : (i) absorption of CMB photons (as
well as emission stimulated by them); (ii) collisions with other hydrogen atoms,
free electrons, and protons; and (iii) scattering of UV photons. In the presence
of the CMB alone, the spin states reach thermal equilibrium with TS = Tγ on a
timescale of ∼T∗/(TγA10) = 3×105(1+z)−1 yr. This timescale is much shorter
than the age of the Universe at all redshifts after cosmological recombination.
However, the other two processes break this coupling. We let C10 and P10 be
the de-excitation rates (per atom) from collisions and UV scattering, respec-
tively. We also let C01 and P01 be the corresponding excitation rates. The spin
temperature is then determined in equilibrium byii

n1 (C10 + P10 + A10 + B10ICMB) = n0 (C01 + P01 + B01ICMB) , (12.9)

where ICMB is the specific intensity of CMB photons. With the Rayleigh-Jeans
approximation, we can rewrite equation (12.9) as

T −1
S = T −1

γ + xcT
−1
K + xαT

−1
c

1 + xc + xα
, (12.10)

where xc and xα are coupling coefficients for collisions and UV scattering, re-
spectively, TK is the gas kinetic temperature, and we have used the principle of
detailed balance through the relation

C01

C10
= g1

g0
e−T�/TK ≈ 3

(
1 − T�

TK

)
. (12.11)

iiBecause the relevant timescales are all much shorter than the expansion time, equilibrium is an
excellent approximation.
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We have also defined the effective color temperature of the UV radiation field Tc
via

P01

P10
≡ 3

(
1 − T�

Tc

)
. (12.12)

We next calculate xc, xα , and Tc. In the limit in which Tc → TK (a reasonable
approximation in most situations of interest), we may write equation (12.10) as

1 − Tγ

TS
= xc + xα

1 + xc + xα

(
1 − Tγ

TK

)
. (12.13)

12.2.1 Collisional Coupling

We first consider collisional excitation and de-excitation of the hyperfine lev-
els, which dominate in dense gas. The coupling coefficient for collisions with
species i is

xic ≡ Ci10

A10

T�

Tγ
= ni κ

i
10

A10

T�

Tγ
, (12.14)

where κi10 is the rate coefficient for spin de-excitation in collisions with that
species (with units of cm3 s−1). The total xc is the sum over all species i, which
in principle includes collisions with (i) other hydrogen atoms, (ii) free electrons,
(iii) protons, and (iv) other species (helium and deuterium); the last turn out to
be unimportant.

These rate coefficients are ultimately determined by the quantum-
mechanical cross sections of the relevant processes. We do not list them in
detail but merely present the results in Figure 12.3.3 Although the atomic cross
section is small, in the unperturbed IGM, collisions between neutral hydrogen
atoms nearly always dominate these rates, because the ionized fraction is small.
Free electrons can be important in partially ionized gas; collisions with protons
are important only at the lowest temperatures.

Crucially, the collisional coupling is quite weak in a nearly neutral, cold
medium. Thus, the overall density must be large for this process to effectively
fix TS . A convenient estimate of their importance is the critical overdensity, δcoll,
at which xc = 1 for H–H collisions:

1 + δcoll = 0.99
[
κ10(88 K)

κ10(TK)

] (
0.023

�bh2

) (
70

1 + z

)2

, (12.15)

where we have inserted the expected temperature at 1 + z = 70. In the stan-
dard picture, at redshifts z < 70, xc � 1, and TS → Tγ ; by z∼ 30 the IGM
essentially becomes invisible. It is worth emphasizing, however, that κ10 is ex-
tremely sensitive to TK in this regime. If the universe is somehow heated above
the fiducial value, the threshold density can remain modest: δcoll ≈ 1 at z = 40
if TK = 300 K.



chapter12 August 31, 2012

414 CHAPTER 12

κ 10
 (c

m
3  s

–1
)

1 10 104103102

H–e−

H–p+

H–H

10–9

10–10

10–11

10–12

10–13

10–8

T (K)

10–7

Figure 12.3 De-excitation rate coefficients for H–H collisions (dashed line), H–e− colli-
sions (dotted line), and H–p+ collisions (solid line). Note that the net rates
are also proportional to the densities of the individual species, so H–H
collisions still dominate in a weakly ionized medium. Furlanetto, S. R., &
Furlanetto, M. R., Mon. Not. R. Astron. Soc. 379, 130 (2007). Copyright 2007
by the Royal Astronomical Society.
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Figure 12.4 Level diagram illustrating the Wouthuysen-Field effect. We show the
hyperfine splittings of the 1S and 2P levels. The solid lines label tran-
sitions that mix the ground-state hyperfine levels, while the dashed lines
label complementary allowed transitions that do not participate in mixing.
Pritchard, J. R., & Furlanetto, S. R., Mon. Not. R. Astron. Soc. 367, 1057
(2006). Copyright 2006 by the Royal Astronomical Society.

12.2.2 The Wouthuysen-Field Effect

We therefore require a different mechanism to break the coupling to the CMB
during the era of the first galaxies, namely, the Wouthuysen-Field mechanism
(named after the Dutch physicist Siegfried Wouthuysen and Harvard astro-
physicist George Field who first explored it).4 The mechanism is illustrated in
Figure 12.4, where we have drawn the hyperfine sublevels of the 1S and 2P
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states of H I. Suppose a hydrogen atom in the hyperfine singlet state absorbs a
Lyman-α photon. The electric dipole selection rules allow	F = 0, 1 except that
F = 0 → 0 is prohibited (here F is the total angular momentum of the atom).
Thus the atom will jump to either of the central 2P states. However, these
same rules allow this state to decay to the 1S1/2 triplet level.iii Thus, atoms can
change hyperfine states through the absorption and spontaneous reemission of
a Lyman-α photon (or, indeed, any Lyman-series photon).

The Wouthuysen-Field coupling must depend on the total rate (per atom) at
which Lyman-α photons are scattered within the gas,

Pα = 4πσ0

∫
dm Jm(m)φα(m), (12.16)

where σm ≡ σ0φα(m) is the local absorption cross section, σ0 ≡ (π e2/me c)fα ,
fα = 0.4162 is the oscillator strength of the Lyman-α transition, φα(m) is the
Lyman-α absorption profile, and Jm is the angle-averaged specific intensity of
the background radiation field.iv The line typically has a Voigt profile φV , as
described in §11.1.1.

What about transitions to higher Lyman-n levels? Suppose that a photon red-
shifts into the Lyman-n resonance. After absorption, it can either scatter
(through a decay directly to the ground state) or cascade through a series of
intermediate levels and produce different photons. The direct decay probabili-
ties are PnP→1S ∼ 0.8, so a Lyman-n photon will typically scatter Nscatt ≈ (1 −
PnP→1S)

−1 ∼ 5 times before instead initiating a decay cascade. In contrast,
Lyman-α photons scatter hundreds of thousands of times before being des-
troyed (see §11.1.1 for some examples). As a result, coupling from the direct
scattering of Lyman-n photons is suppressed compared with Lyman-α by a large
factor.

However, Lyman-n photons can still be important because of their cascade
products. Consider the decay chains shown in Figure 12.5. For Lyman-β, the
only permitted decays are to the ground state (which regenerates a Lyman-β
photon and starts the process again) or to the 2S level. The Hα photon produced
in the 3P → 2S transition (and, indeed, any photon produced in a decay to an
excited state) escapes to infinity. Thus, the atom eventually finds itself in the 2S
state, which decays to the ground state via a forbidden two-photon process with
A2S→1S = 8.2 s−1. These photons, too, escape to infinity. Thus coupling from
Lyman-β photons can be completely neglected.v

But, now, consider Lyman-γ excitation, also shown in Figure 12.5. This can
cascade (through 3S or 3D) to the 2P level, in which case the original Lyman-n
photon is “recycled” into a Lyman-α photon, which then scatters many times
through the IGM. Thus, the key quantity for determining the coupling induced

iiiHere we use the notation FLJ , where L and J are the orbital and total angular momentum of the
electron, while F is the total angular momentum of the atom.
ivBy convention, we use the specific intensity in units of photons cm−2 Hz−1 s−1 sr−1 here, which
is better conserved during the expansion of the Universe (whereas energy redshifts away).
vIn a medium with very high density, atomic collisions can mix the two n = 2 angular momentum

states, but that process is unimportant in the IGM.
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Figure 12.5 Decay chains for Lyman-β and Lyman-γ excitations. We show Lyman-n
transitions by dashed curves, Lyman-α by the dot-dashed curve, cascades
by solid curves, and the forbidden 2S → 1S transition by the dotted curve.
Pritchard, J. R., & Furlanetto, S. R., Mon. Not. R. Astron. Soc. 367, 1057
(2006). Copyright 2006 by the Royal Astronomical Society.

by Lyman-n photons is the fraction frec(n) of cascades that terminate in Lyman-
α photons. We have seen that frec(n = 3) vanishes, but detailed quantum-
mechanical calculations show that the higher states all have frec ∼ 1/3.5

Focusing again on the Lyman-α photons themselves, we must relate the total
scattering rate Pα to the indirect de-excitation rate P10. We first label the 1S and
2P hyperfine levels a–f, in order of increasing energy, and let Aij and Bij be
the spontaneous emission and absorption coefficients for transitions between
these levels. We write the background flux at the frequency corresponding to
the i → j transition as Jij . Then,

P01 ∝ BadJad
Adb

Ada + Adb
+ BaeJae

Aeb

Aea + Aeb
. (12.17)

The first term contains the probability for an a→d transition (BadJad), together
with the probability that the subsequent decay will terminate in state b; the sec-
ond term is the same for transitions to and from state e. Next, we need to relate
the individual Aij coefficients to Aα = 6.25 × 108 Hz, the total Lyman-α spon-
taneous emission rate (averaged over all the hyperfine sublevels). We can do
this by using a sum rule stating that the sum of decay intensities (giAij ) for
transitions from a given nFJ to all the n′J ′ levels (summed over F ′) is propor-
tional to 2F + 1;6 the relative strengths of the permitted transitions are then
(1, 1, 2, 2, 1, 5), where we have ordered the lines (bc, ad, bd, ae, be, bf), and
the two-letter labels represent the initial and final states. With our assumption
that the background radiation field is constant across the individual hyperfine
lines, we find P10 = (4/27)Pα .
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We may then write as the coupling coefficient xα as

xα = 4Pα
27A10

T�

Tγ
= Sα

Jα

J cm
, (12.18)

where in the second equality we evaluate Jm at line center and set J cm ≡ 1.165 ×
10−10[(1+z)/20] cm2 s−1 Hz−1 sr−1. We include here a correction factor Sα that
accounts for variations in the intensity near the line center (see later discus-
sion). This coupling threshold for xα = Sα can also be written in terms of the
number of Lyman-α photons per hydrogen atom in the Universe, which we de-
note J̃ cm = 0.0767 [(1 + z)/20]−2. This threshold is relatively easy to achieve in
practice.

Two challenges remain: to calculate Tc and the correction factor Sα . The for-
mer is the effective temperature of the UV radiation field, defined in equa-
tion (12.12), which is determined by the shape of the photon spectrum at the
Lyman-α resonance. That the effective temperature of the radiation field must
matter is easy to see: the energy deficit between the different hyperfine split-
tings of the Lyman-α transition (labeled bc, ad, etc.) implies that the mixing
process is sensitive to the gradient of the background spectrum near the Lyman-
α resonance. More precisely, the procedure described after equation (12.17)
yields

P01

P10
= g1

g0

nad + nae

nbd + nbe
≈ 3

(
1 + m0

d ln nm
dm

)
, (12.19)

where nm = c2 Jm/2m2 is the photon occupation number. Thus, by comparison
with equation (12.12) we find

h

kBTc
= −d ln nm

dm
. (12.20)

A simple argument shows that Tc ≈ TK :7 so long as the medium is extremely
optically thick, the enormous number of Lyman-α scatterings must bring the
Lyman-α profile to a blackbody of temperature TK near the line center. This
condition is easily fulfilled in the high-redshift IGM, where τα � 1. Specifically,
atomic recoils during scattering (the last term in equation 11.9) tilt the spectrum
to the red and are primarily responsible for establishing this equilibrium.

The scattering process is actually much more complicated than naively ex-
pected, because scattering itself modifies the shape of Jm. Intuitively, a flat
input spectrum develops an absorption feature because of the increased scat-
tering rate near the Lyman-α resonance. Photons continually lose energy by
redshifting, but they also lose energy through recoil whenever they scatter.
If the fractional frequency drift rate is denoted by A, continuity requires that
nmA = constant; when A increases near resonance, the number density must
fall. On average, the energy loss (or gain) per scattering is8

	Erecoil

E
= hm

mpc2

(
1 − TK

Tc

)
, (12.21)

where the first factor comes from recoil off an isolated atom, and the second
factor corrects for the distribution of initial photon energies; the energy loss
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vanishes when Tc = TK , and when Tc < TK , the gas is heated by the scattering
process.

To compute the suppression factor in the intensity we must calculate the
photon spectrum near Lyman-α. We begin with the radiative transfer equation
in an expanding universe (written in comoving coordinates and again using
units of cm−2 s−1 Hz−1 sr−1 for Jm; cf. equation 4.42):

1

cnHσ0

∂Jm

∂t
= −φα(m) Jm +Hmα

∂Jm

∂m
+

∫
dm′ R(m, m′) Jm′ + C(t)ψ(m). (12.22)

Here the first term on the right-hand side describes absorption, the second
is redshifting due to the Hubble flow, and the third accounts for reemission
following absorption. R(m, m′) is the “redistribution function” that describes the
frequency of an emitted photon, which depends on the relative momenta of
the absorbed and emitted photons as well as the absorbing atom. The last term
describes injection of new photons: C is the rate at which they are produced,
and ψ(m) is their frequency distribution.

The redistribution function R is the complicated aspect of the problem,
but it can be simplified if the frequency change per scattering (typically of
the order of 	mD) is “small.” In that case, we can expand Jm′ to second order
in (m − m′) and rewrite equation (12.22) as a diffusion problem in frequency.
The steady-state version of equation (12.22) becomes, in this so-called Fokker-
Planck approximation,

d

dx

(
−A J +D dJ

dx

)
+ Cψ(x) = 0, (12.23)

where x ≡ (m − mα)/	mD , A is the frequency drift rate, and D is the diffusivity.
In general, the Fokker-Planck approximation is valid when (i) the frequency
change per scattering (∼	mD) is smaller than the width of any spectral features,
and either (iia) the photons are outside the line core, where dφα/dx is small, or
(iib) the atoms are in equilibrium with Tc ≈ TK .

Solving for the background spectrum thus reduces to specifying A and D.
The first involves the Hubble flow, which causes a drift AH = −τ−1

α (without
any associated diffusion). The remaining terms come from R and incorporate
all the physical processes relevant to energy exchange in scattering. The drift
from recoil is9

Dscatt =φα(x)/2, (12.24)

Ascatt = −(η − x−1
0 )φα(x), (12.25)

where x0 ≡ mα/	mD , and η ≡ (hm2
α)/(mpc

2	mD). The latter is the recoil para-
meter measuring the average loss per scattering in units of the Doppler width.

Finally, to solve equation (12.23) we must specify the boundary conditions,
which essentially correspond to the input photon spectrum (ignoring scatter-
ing) and the source function. Because the frequency range of interest is so nar-
row, two cases suffice: a flat input spectrum (which approximately describes
photons that redshift through the Lyman-α resonance, regardless of the initial
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source spectrum) and a step function, where photons are “injected” at line cen-
ter (through cascades or recombinations) and redshift away. In either case, the
first integral over x is trivial. At high temperatures, where spin flips are unim-
portant to the overall energy exchange, we can write

φ
dJ

dx
+ 2{[η − (x + x0)

−1]φ + τ−1
α }J = 2K/τα. (12.26)

The integration constant K equals J∞, the flux far from resonance, both for
photons that redshift into the line and for injected photons at x < 0; it is zero
for injected photons at x > 0.

The formal analytic solution, when K �= 0, is most compactly written in
terms of δJ ≡ (J∞ − J )/J∞:vi

δJ (x) = 2η
∫ ∞

0
dy exp

[
−2{η − (x + x0)

−1}y − 2

τα

∫ x

x−y
dx ′

φα(x ′)

]
. (12.27)

(An analogous form also exists for photons injected at line center.) The full
problem, including the intrinsic Voigt profile of the Lyman-α line, must be
solved numerically,10 but including only the Lorentzian wings from natural
broadening allows a simpler solution that is quite accurate in the most inter-
esting regime of TK < 1,000 K.

The crucial aspect of equation (12.27) is that (as expected from the preced-
ing qualitative argument) an absorption feature appears near the line center;
its strength is roughly proportional to η, our recoil parameter. The feature is
more significant when TK is small (or the average effect of recoil is large).
Figure 12.6 shows some example spectra (both for a continuous background
and for photons injected at line center).

Usually, the most important result is the suppression of the radiation spec-
trum at line center compared with the assumed initial condition. This decreases
the total scattering rate of Lyman-α photons (and hence the Wouthuysen-Field
coupling) below what one naively expects. The suppression factor (from
equation 12.18) is

Sα =
∫ ∞

−∞
dx φα(x) J (x) ≈ [1 − δJ (0)] ≤ 1, (12.28)

where the second equality follows from the narrowness of the line profile.
Again, the Lorentzian wing approximation turns out to be an excellent one;
when TK � T�, the suppression is

Sα ∼ exp

[
−0.803

(
TK

1 K

)−2/3 ( τα
106

)1/3
]
. (12.29)

Note that this form applies to both photons injected at line center as well as
those that redshift in from infinity. As we can see in Figure 12.6, the suppres-
sion is most significant in cool gas.

viHere we assume the gas has a sufficiently high temperature that the different hyperfine subtran-
sitions can be treated as one.
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Figure 12.6 Background radiation field near the Lyman-α resonance at z = 10; x ≡
(m − mα)/	mD is the normalized deviation from line center. The upper and
lower sets are for continuous photons and photons injected at line center,
respectively. (The former are normalized to J∞; the latter have arbitrary
normalization.) The solid and dashed curves take TK = 10 and 1,000 K,
respectively. Furlanetto, S. R., & Pritchard, J. R., Mon. Not. R. Astron. Soc.
372, 1093 (2006). Copyright 2006 by the Royal Astronomical Society.

The fundamental reason for the suppression is the recoil from scattering.
Momentum conservation during each scattering slightly decreases the fre-
quency of the photon. The strongly enhanced scattering rate near line center
means that photons “flow” through that region of the spectrum more rapidly
than elsewhere (where only the cosmological redshift applies), so the amplitude
of the spectrum is smaller. Meanwhile, the scattering in such an optically thick
medium also causes photons to diffuse away from line center, broadening the
feature well beyond the nominal line width.

12.3 The Brightness Temperature of the Spin-Flip Background

With the basic atomic physics of the 21-cm line in place, we now turn to esti-
mating the astrophysical inputs that determine its properties. Of course, these
inputs are at the moment unknown, so at first we keep the discussion general
and then later focus on some particular simple models as examples.

12.3.1 Feedback: The Lyman-α Background

After z∼ 30, when collisional coupling becomes unimportant, the spin tem-
perature is determined by the scattering of Lyman-α photons. In practice, the
relevant photons do not start at the Lyman-α wavelength, because those redshift
out of resonance very soon after they are created and do not contribute to the
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coupling except very near their sources. Instead, the important photons begin
in the UV and redshift into a Lyman-series line, possibly cascading down to a
Lyman-α photon.

To compute Jα , we therefore begin with the proper UV emissivity at a fre-
quency m, ε(m, z). Here we consider the simple limit in which this emissivity is
nearly uniform.

In fact, we have already discussed this background in some detail, for these
photons, which range in energy from 10.2 to 13.6 eV, are (nearly) the same
as those that contribute to the Lyman-Werner background that dissociated H2

molecules in the early Universe (see §6.1.4). The difference is that here we are
concerned not with the photons between the Lyman resonances but with those
photons that do redshift into those resonances (and then cascade into Lyman-
α, in the case of higher-n transitions). Given the UV emissivity, the desired
background is

Jα(z)=
nmax∑
n=2

J (n)α (z)

= c

4π

nmax∑
n=2

frec(n)

∫ zmax(n)

z

dz′
∣∣∣∣ dtdz′

∣∣∣∣
(

1 + z

1 + z′

)3

4π
c

H(z′)
ε(m′

n, z
′),

(12.30)

where m′
n is the frequency at redshift z′ that redshifts into the Lyman-n res-

onance at redshift z, and zmax(n) is the largest redshift from which a pho-
ton can redshift into the Lyman-n resonance. This equation is very similar to
equation (6.7)—and hence equation (4.43)—because the Lyman-Werner and
Wouthuysen-Field backgrounds arise from nearly the same photons. The only
major difference is that the latter includes photons that cascade from higher
Lyman-series absorptions, so it requires a sum over all those line frequencies.
The sum must be truncated at some large nmax that is determined by the typical
size of ionized regions around the sources, but the result is not sensitive to the
precise cutoff value.

Just as with the Lyman-Werner background, the Lyman-α intensity is fairly
uniform in the standard cosmological model: in fact the effective “horizon”
within which a given source is visible is even larger than in that other case, be-
cause the gap between Lyman-α and Lyman-β corresponds to ∼250 comoving
Mpc. However, unlike for the Lyman-Werner background, Wouthuysen-Field
coupling is rather sensitive to the precise intensity of the background, so the
fluctuations are still very important. Moreover, just as for the Lyman-Werner
background, this horizon is comparable to the scales over which the relative
baryon and dark matter velocities vary, so that may induce much stronger fluc-
tuations in the Wouthuysen-Field coupling (see §3.2.2).11 For simplicity, we
ignore the latter effect here.

These fluctuations, in turn, depend on the sources of the photons, most likely
star-forming galaxies. If the star formation rate traces the rate at which matter
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collapses into galaxies, the comoving emissivity at frequency m is

εc(m, z) = f�
ρb

mp
NLn(m)

dfcoll

dt
, (12.31)

where NLn(m) is the number of photons produced in the frequency interval
m ± dm/2 per baryon incorporated into stars. Although real spectra are rather
complicated, a useful quantity is the total number Nα of photons per baryon in
the interval 10.2–13.6 eV (which is very similar to NLW in equation 6.10). For
low-metallicity Population II stars and very massive Population III stars, these
values are Nα = 9,690 and Nα = 4,800, respectively.12

Of course, processes other than star formation can also create a Lyman-α
background. These include especially UV photons from quasars (which can
be modeled in the same way at stars, though NLn changes) and collisional ex-
citation by higher-energy X-rays. For the latter, a fraction fc ∼ fi ∼ xH I/3 of
the energy is typically lost to excitations, and ≈ 0.8 of that energy ends up in
Lyman-α photons.13 It is easy to see that it can be quite significant. The critical
intensity for the Wouthuysen-Field effect corresponds to ∼1 photon per 10 hy-
drogen atoms, or ∼1 eV per atom. Because the fractions of energy deposited as
ionization and collisional excitation are comparable, any scenario that appeals
to X-rays for significant ionization would also induce strong coupling once the
IGM became ∼10% ionized.

In any case, computing the fluctuations in the intensity is a more difficult
task. The simplest approach is to use a modified version of the halo model (in-
troduced in §3.6.1) applied to the radiation background instead of to the density
field. Here, we construct the background by imagining that each galaxy is sur-
rounded by a radiation field with a specified shape, Jh(r|�), where � labels all
the parameters that may determine an individual galaxy’s luminosity (princi-
pally, we presume later, the host halo’s mass). The total radiation background
J (x) is then the sum of the radiation from all the halos, just as the density field
is the sum of the density profiles of each dark matter clump in the halo model.
We can therefore use the usual machinery of the halo model to describe the
radiation background. Then,

PJ (k) = P 1h
J (k)+ P 2h

J (k), (12.32)

where P 1h
J describes correlations from a single galaxy’s radiation, and P 2h

J ,
those between galaxies.

The key input is therefore to determine the intensity profile of each galaxy.
If we consider only the radiation between Lyman-α and Lyman-β, the profile
of photons that redshift into the Lyman-α resonance will follow the usual 1/r2

law, with just two modifications: (i) the profile will be truncated where those
photons with the largest initial energies (just below Lyman-β) redshift into the
Lyman-α resonance, and (ii) the relevant emitted frequency (chosen so that it
redshifts into Lyman-α resonance at r) varies with radius r . However, we must
also add those photons that redshift into a higher Lyman-n series resonance
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Figure 12.7 Left: Lyman-α flux profile of a massive galaxy at z = 20. The solid line shows
the full calculation, the dashed line assumes frec = 1 for all n, and the dotted
line ignores all cascades from higher energies (all are normalized to have
the same total luminosity). The vertical dashed lines along the horizontal
axis mark the horizons of the respective Lyman transitions. The right axis
converts the local flux to the Wouthuysen-Field coupling coefficient assum-
ing Sα = 1; for context, the dashed horizontal line shows the collisional cou-
pling coefficient at z = 20 assuming no IGM heating. Right: Dimensionless
power spectrum of the Lyman-α background for several simple star forma-
tion scenarios. The solid and dashed curves are chosen to be near the peak
of the Lyman-α fluctuations in each scenario. They assumeMmin = 106 M�
at z = 30 (solid curve) and Mmin = 108 M� at z = 20.5 (dotted curve);
both take f� = 0.1 to normalize the background. The dashed curve takes
Mmin = 106 M� at z = 30 but assumes that each halo can form stars for
only 3 Myr, ∼2% of the age of the Universe. Pritchard, J. R., & Furlan-
etto, S. R., Mon. Not. R. Astron. Soc. 367, 1057 (2006); copyright 2006 by the
Royal Astronomical Society. Holzbauer, L. N., & Furlanetto, S. R., Mon. Not.
R. Astron. Soc., 419, 718 (2012). Copyright 2011 by the Royal Astronomical
Society.

and then cascade to Lyman-α. Thus, the total profile is

Jh,α(r) =
∞∑
n=1

frec(n)
L(m′

n|�)/hm′
n

(4πr)2
, (12.33)

where L(m|�) is the luminosity per unit frequency from the source (with pa-
rameters �), m′

n is the frequency that redshifts into the Lyman-n resonance
at r , and each term in the sum is included only when r is smaller than the
effective horizon for these photons. The left panel in Figure 12.7 shows this
profile for a massive galaxy at z = 20. Note that it is slightly steeper than the
1/r2 expectation at moderate distances from the source, owing to the cascade
effects.
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In practice, the light travel time over the Lyman-α horizon is >100 Myr, a
substantial fraction of both the age of Universe and the lifetime of a typical
source (either stars or quasars). As a result, the source luminosity likely changes
significantly during the time period of interest, and some estimate of source
evolution is necessary. In the simplest models, one can take L ∝ dfcoll/dt in
order to reflect the overall evolution of gas inside galaxies.

The right panel of Figure 12.7 shows some example power spectra for
the intensity of this background. We consider two cases: one in which the
luminous sources are extremely small (existing in all halos above 106 M�, solid
curves) and one in which only massive halos host sources (above 108M�,
dotted curves). In both cases, we have normalized the mean amplitude of the
Lyman-α background so that the background just reaches the coupling thresh-
old, xα ≈ 1,vii by setting f� = 0.1 and z = 20 and z = 30 for the high- and
low-mass case, respectively. In both cases, intensity fluctuations are small on
large scales:<1% for k < 0.1 Mpc−1, comparable to the horizon of each source.

If sources are common, the fluctuations remain small at smaller scales as
well, owing to the enormous number of them. But if sources are rare, the “one-
halo” term representing the intensity profile of each source becomes important
at moderate or large scales, and the fluctuations can be moderately large on
these scales. The dashed curve illustrates this situation: it assumes that each
halo can form stars only in a single burst lasting 3 Myr (such as if each halo
hosts a single short burst of Population III star formation). In this case, the
fluctuations are much stronger, because at any given time most of the halos
are invisible (in the language of the halo model, the occupation fraction is very
small even above the minimum mass for star formation), but the average radi-
ation background also falls well below threshold. As mentioned previously, the
fluctuations also increase substantially if the relative streaming of baryons and
dark matter is included.

In §12.5 we consider how fluctuations in this background translate into fluc-
tuations in the 21-cm signal.

12.3.2 Feedback: IGM Heating

The Wouthuysen-Field background couples the spin temperature to the gas
kinetic temperature, so we must also compute the latter. A number of processes
may contribute to it: shock heating from structure formation, UV photons, and
X-rays.

The role of shock heating is unclear: very little of the IGM gas had been
incorporated into sheets or filaments at these times, so the usual shocks that
surround the cosmic web are unimportant. However, the very low temperature
gas (T < 30 K) has large peculiar velocities from gravitational infall, and shocks
may have occurred earlier in such an environment. The large-scale baryon
velocities generated during recombination (see §2.1.2) may be important in
this regard.

viiMore precisely, these curves have βα = 1 (see equation 12.45).
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However, we have seen that ionizing photons very effectively heat the
gas, but the ionized gas itself does not, of course, contribute to the 21-cm
signal.viii

The photons that trigger Lyman-α coupling do exchange energy with the
IGM, through recoil. The typical energy exchange per scattering is small
(see equation 12.21), but the number of scatterings is large. If the net heat-
ing rate per atom followed the naive expectation, ∼Pα × (hmα)

2/mpc
2, the gas

temperature would exceed Tγ soon after Wouthuysen-Field coupling became
efficient.

However, the details of radiative transfer radically change these expecta-
tions. In a static medium, the energy exchange must vanish in equilibrium
even though scattering continues at nearly the same rate. Scattering induces
an asymmetric absorption feature near mα (Figure 12.6) whose shape depends
on the combined effects of atomic recoils and the scattering diffusivity. In equi-
librium, the latter exactly counterbalances the former.

In an expanding universe without scattering, the absorption feature would
redshift away; thus, the equilibrium energy exchange rate is simply that re-
quired to maintain the feature in place. For photons redshifting into resonance,
the absorption trough has total energy

	uα = (4π/c)
∫
(J∞ − Jm)hm dm, (12.34)

where J∞ is the input spectrum (thus, the integration extends over the dip in
Figure 12.6). The radiation background loses εα = H	uα per unit time through
redshifting; this energy goes into heating the gas. Relative to adiabatic cooling
by the Hubble expansion, the fractional heating amplitude is14

2

3

εα

kBTKnHH(z)
= 8π

3

hmα

kBTK

J∞	mD

cnH

∫ ∞

−∞
dx δJ (x) (12.35)

≈ 0.80

T
4/3
K

xα

Sα

(
10

1 + z

)
. (12.36)

Here we have evaluated the integral for the continuum photons that redshift
into the Lyman-α resonance; the “injected” photons actually cool the gas
slightly. The net energy exchange when Wouthuysen-Field coupling becomes
important (at xα ∼ Sα) is therefore just a fraction of a degree, and in practice,
gas heating through Lyman-α scattering is usually unimportant.

The reason for the inefficiency of heating is that the scattering diffusivity
acts to cancel the effects of recoil. From Figure 12.6, it is obvious that the
background spectrum is weaker on the blue side of the line than on the red.
Scattering tends to return the photon toward line center, with the extra energy

viiiMoreover, the ionized regions do not significantly recombine unless somehow the source emissiv-
ity declines dramatically. The best example is a highly luminous quasar that ionizes a large region
around itself and then shuts off shortly thereafter.
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deposited in or extracted from the gas. Because more scattering occurs on
the red side, this tends to transfer energy from the gas back to the photons,
canceling the recoil exchange.

Thus, IGM heating is likely dominated by X-rays—whether from Population
III stars, supernova remnants, stellar-mass black holes, or quasars. We have
already seen (equation 9.65) that X-rays from a “reasonable” quasar population
can have a dramatic effect on the IGM, but even the weaker X-ray emissivity of
stellar-mass black holes can also be significant.

A simple, but plausible, way to parameterize this emissivity is with the local
correlation between the star formation rate (SFR) and the X-ray luminosity in
the photon energy band of 0.5–8 keV,15

LX = 3 × 1039fX

(
SFR

M� yr−1

)
erg s−1, (12.37)

where fX is an unknown renormalization factor appropriate for high redshifts.
We can only speculate as to the accuracy of this correlation at higher redshifts.
Certainly, the scaling is appropriate so long as recently formed remnants dom-
inate, but fX likely evolves with redshift.

The X-ray emission has two major sources. The first is inverse-Compton scat-
tering off relativistic electrons accelerated in supernovae. In the nearby Uni-
verse, only powerful starbursts have strong enough radiation fields for this
mechanism to be significant; however, at high redshifts it probably plays an
increasingly important role, because the CMB energy density uγ ∝ (1 + z)4.
Assuming that ∼5% of the supernova energy is released in this form yields
fX ∼ 5 if ∼1051 erg is released in supernovae per 100M� in star formation.
The second class of sources, which dominate in locally observed galaxies, are
high-mass X-ray binaries, in which material from a massive main-sequence star
accretes onto a compact neighbor. Such systems were born as soon as the first
massive stars died, only a few million years after star formation commenced.
So they certainly ought to exist in high-redshift galaxies, although their abun-
dance depends on the metallicity and stellar initial mass function. To the extent
that massive stars are more abundant at high redshifts (see the discussions of
the IMF in chapter 5), we would expect such binaries also to be more abundant,
which is consistent with some observational hints of evolution in this relation
toward higher redshifts.

Regardless of the details of the sources, the heating rate and temperature
profile around each source can be computed following the methods in §9.8.2.
Note that, unlike the Wouthuysen-Field background, the IGM temperature de-
pends not on the instantaneous emissivity of sources but on the accumulated
emissivity over the entire history of structure formation. Thus, the IGM tem-
perature structure is more complicated to compute, although the same basic
picture—built from the effects of each source halo—applies.

Figure 12.8 shows the temperature histories and power spectra of TK for two
models in which the heating is due to star-forming galaxies. In the left panels,
the thick lines take fX = 10 and standard Population II stars, forming with an
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Figure 12.8 Left: Thermal history of two models of X-ray heating, Wouthuysen-Field
coupling, and reionization. In the top panel, the solid, dashed, and dotted
lines show TK , Tγ , and TS , respectively. The light and dark lines take Popu-
lation II and III star formation properties, respectively, (see text for details).
The bottom panel shows the mean spin-flip brightness temperature Tb in
the same two models. Right: Power spectrum of temperature fluctuations
in the same models, from z = 20 (where the mean temperature is nearly
that of an adiabatically cooling IGM) to z = 10 (where TK�Tγ ). The upper
and lower panels are for the Population II and Population III models shown
at left, respectively. The peak at late times corresponds to the typical mean
free path of X-ray photons. The thin dark curves show the fluctuations for
uniform heating for comparison (in this case the fluctuations arise from
variations in the expansion cooling rate). Pritchard, J. R., & Furlanetto, S. R.,
Mon. Not. R. Astron. Soc. 376, 1680 (2007). Copyright 2007 by the Royal
Astronomical Society.

efficiency f� = 0.1 in halos with Tvir> 104 K; the thin lines are identical but take
f� = 0.01 and use very massive Population III stars to determine the UV prop-
erties. Note that even with this relatively modest heating rate, heating begins
at z∼ 15, and the IGM temperature surpasses Tγ shortly thereafter. The right
panels show the corresponding temperature power spectra; the top and bottom
panels are for the Population III and Population II models, respectively. In ab-
solute terms, the temperature fluctuations begin quite modestly; at z = 20 they
are driven primarily by variations in the adiabatic cooling rate with IGM den-
sity. By z = 15, the fractional fluctuations are ∼20%—which will translate into
large 21-cm fluctuations. The absolute amplitude of the fluctuations continues
to increase at lower redshifts, but the fractional fluctuations decrease as more
sources appear. Moreover, in the limit TK�Tγ , the 21-cm brightness tempera-
ture is independent of TK , so these fluctuations are unimportant.
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Figure 12.9 Monopole of the spin-flip brightness temperature (the so-called global 21-
cm signal) in several models of early structure formation (see Color Plate 27
for a color version of this figure). Left: Major variations around our fiducial
model (solid curve with several turning points), as indicated. Each curve ei-
ther eliminates a physical process (like heating or ionization) or maximizes
it. Right: Suites of models in which the Lyman-α (lower panel) and X-ray
heating (upper panel) efficiencies are varied by a factor of 104. Pritchard,
J. R., & Loeb, A., Phys. Rev. D82, 023006 (2010). Copyright 2010 by the
American Physical Society.

12.4 The Monopole of the Brightness Temperature

We are now in a position to compute the time evolution of the brightness tem-
perature Tb in some simple models. We begin in this section with the mono-
pole, or sky-averaged brightness, as a function of frequency. Figure 12.9 shows
the results (as functions of both redshift and observed frequency) for a set of
models, illustrating the wide range of possible histories. At left we show some
highly simplified models. The solid curve with several turning points is our
fiducial model, in which we take fX = 1 and standard Population II stars,
forming with an efficiency f� = 0.1 in halos with Tvir> 104 K. The other two
solid lines show histories with no star formation (flat below z∼ 30) and with
a hot, fully coupled IGM (descending from large Tb). The dashed curve shows
a history in which reionization does not occur, and the dotted curve shows a
history in which heating is turned off.

The right panels take somewhat more sophisticated models, in which the
X-ray heating efficiency (via fX, see equation 12.37) and Lyman-α intensity (via
a parameter fα , defined so that the intensity from each galaxy is fα times that
in the fiducial model) are varied by factors of 104.



chapter12 August 31, 2012

THE 21-CM LINE 429

Lyman-αDensity

Collisionally
coupled regime

No 21-cm
signal

X-ray UV DLA

zα
zRzT

TS ~ Tγ

z*
z ~ 200 z ~ 30

Dark Ages Cosmic Dawn EoR

Re
io

ni
za

tio
n

Figure 12.10 Cartoon of the different phases of the 21-cm signal (see Color Plate 28 for a
color version of this figure). The signal transitions from an early phase of
collisional coupling to a later phase of Lyman-α coupling through a short
period where there is little signal. Fluctuations after this phase are domi-
nated successively by spatial variation in the Lyman-α, X-ray, and ionizing
UV radiation backgrounds. After reionization is complete, there is a resid-
ual signal from neutral hydrogen in galaxies. Pritchard, J. R., & Loeb A.,
“21 cm Cosmology in the 21st Century,” Reports on Progress in Physics, 75,
086901 (2012). Reproduced with permission from IOP Publishing Ltd.

These different models are essentially cartoons, but they illustrate several
important points about the 21-cm background. The most important is the
presence of five critical points in the spin-flip background, separating the eras
shown in Figure 12.10.

1. The first, at z∼ 80, occurs long before star formation becomes significant
during the collisionally coupled regime. This point reflects the decreasing
effectiveness of collisional coupling and occurs roughly when the density
δcoll falls below unity (see equation 12.15), at which point TS → Tγ , and
the IGM signal fades. This transition is well specified by atomic physics
and the standard cosmology, at least in the absence of any exotic dark
sector processes that may input energy into the IGM at z > 50. This signal
therefore provides a clear probe of cosmology, at least in principle.

2. The remaining transition points are determined by the properties of lu-
minous sources, so their timing is much more uncertain. In our fiducial
model, the next crucial event is the formation of the first stars (at z∼ 30),
which flood the Universe with Lyman-α photons and so reignite the 21-cm
background. Interestingly, the timing of this transition is relatively inde-
pendent of the luminosity of these sources, because (at least in this model)
the massive halos that host these sources are so far out on the exponential
tail of the mass function that their luminosity is primarily determined by
the rate of halo collapse. Thus, this turning point primarily constrains the
characteristic mass of the first galaxies.

3. Next (usually), is the minimum in Tb, which occurs just before IGM heat-
ing begins to become significant and is determined by fX. However, if fX
is very large compared with fα , this heating transition can precede strong
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coupling. In simple models like we use here, in which both the X-ray and
UV luminosities trace fcoll, the net X-ray heat input 	Tc when xα = 1 is

	Tc

Tγ
∼ 0.08fX

(
fX,h

0.2

fcoll

	fcoll

9,690

Nα

1

Sα

) (
20

1 + z

)3

, (12.38)

where 	fcoll ∼ fcoll is the effective collapse fraction appearing in the inte-
grals of equation (12.30), and fX,h is the fraction of the X-ray energy that
goes into heating (see §9.8.2). Note that	Tc is independent of f�, because
we have assumed that both the coupling and heating rates are proportional
to the star formation rate. Clearly, for our fiducial (Population II) parame-
ters the onset of Wouthuysen-Field coupling precedes the point at which
heating begins, which is ultimately the reason for the strong absorption
in our fiducial model.

4. The fourth turning point is at the maximum of Tb. In the fiducial model,
this marks the point at which TK�Tγ , so that the temperature part of
equation (12.8) saturates. From that time forward, the only factors affect-
ing the monopole are the redshift and the ionized fraction, so the signal
starts to decrease rapidly once reionization begins in earnest. Most likely,
this happens after coupling is already strong and heating is significant.
Again, in the simple models used here the ionized fraction when xα = 1
is given by

x̄i,c ∼ 0.05
(

fesc

1 + n̄rec

Nion

Nα

fcoll

	fcoll

1

Sα

)(
20

1 + z

)2

, (12.39)

where n̄rec is the mean number of recombinations per baryon. For Popu-
lation II stars with a normal IMF, Nion/Nα ≈ 0.4; thus, even in the worst
case, where fesc = 1 and n̄rec = 0, coupling will become efficient dur-
ing the initial stages of reionization. However, very massive Population
III stars have much harder spectra, with Nion/Nα ≈ 7. In principle, it is
therefore possible for Population III stars to reionize the universe before
xα = 1, although this is rather unlikely given their fragility (see chapter 6).
It is less clear whether the IGM will appear in absorption or emission
during reionization. We find

	T

Tγ
∼

(
x̄i

0.025

) (
fX

fX,h

fesc

4800

Nion

10

1 + z

)
(1 + n̄rec) (12.40)

for the heat input	T as a function of x̄i . Thus, provided fX > 1, the IGM
will be much warmer than the CMB during the bulk of reionization. But
the right panel of Figure 12.9 shows that this is by no means assured.

5. The monopole signal (nearly) vanishes when reionization is complete; the
residual brightness is due to gas that is self-shielded from the metagalactic
ionizing background (and hence primarily lies inside galaxies, since the
LLSs still have small ionized fractions).

Several efforts to observe this monopole signal are underway, including the
Cosmological Reionization Experiment (CoRE) and the Experiment to Detect
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Figure 12.11 Brightness temperature of the radio sky at 150 MHz in Galactic
coordinates. Contours are drawn at 180 (dashed), 270, 360, 540, 1100,
2,200, 3,300, 4,400, and 5,500 K. Heavy lines indicate constant
declinations:−26.5◦, +35◦, and +54◦ with dots to mark 2-hour intervals
of time (these are ideal for two other existing experiments, the Murchi-
son Widefield Array, or MWA; and LOFAR, or Low Frequency Array). Star
symbols indicate the coordinates of four bright z>6.2 quasars. Reprinted
from Phys. Rep., 433, 4–6, Furlanetto, S.R., S.P. Oh, & F.H. Briggs,
“Cosmology at low frequencies: The 21 cm transition and the high-redshift
Universe,” 181–301, Copyright 2006, with permission from Elsevier. Based
on data from Landecker, T.L., & Wielebinski, R., Aust. J., Phys. Astrophys.
Supp. 16 (1970).

the Global Epoch of Reionization Signal (EDGES)16. The wide range of histories
shown in Figure 12.9 illustrates how powerful such observations would be.

Because global experiments aim to detect an all-sky signal, single-dish
measurements (even with a modest-sized telescope) can easily reach the re-
quired millikelvin sensitivity. However, the much stronger synchrotron fore-
grounds from our Galaxy nevertheless make such observations extremely
difficult: they have Tsky > 200–104 K over the relevant frequencies (see the
map in Figure 12.11). The fundamental strategy for extracting the cosmologi-
cal signal relies on the expected spectral smoothness of the foregrounds (which
primarily have power-law synchrotron spectra), in contrast with the nontriv-
ial structure of the 21-cm background. Nevertheless, isolating the high-redshift
component will be a challenge requiring extremely accurate calibration over a
wide frequency range and, most likely, sharp localized features in Tb(z) that can
be distinguished from smoother foreground features.

Current estimates show that rapid reionization histories that span a redshift
range 	z < 2 can be constrained, provided that local foregrounds can be well
modeled.17 Observations in the frequency range 50–100 MHz can potentially
constrain the Lyman-α and X-ray emissivity of the first stars and black holes:
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even though the foregrounds are significantly worse at these lower frequencies,
the strong absorption signal present in many models may be easier to observe
than the gently varying reionization signal. However, it may be necessary to
perform such observations from space, to avoid systematics from terrestrial in-
terference and the ionosphere (in fact, the best observing environment is the far
side of the moon, where the moon itself blocks any radio signals from Earth).

12.5 Statistical Fluctuations in the Spin-Flip Background

While the 21-cm monopole contains a great deal of information about the mean
evolution of the sources, every component in equation (12.8) can also fluctuate
significantly. For the density field this is obvious: the evolving cosmic web im-
prints growing density fluctuations on the matter distribution. For some of the
other aspects, the luminous sources cause 21-cm fluctuations. Ionized gas is
organized into discrete H II regions (at least in the most plausible models), and
the Lyman-α background and X-ray heating are also concentrated around galax-
ies. The single greatest advantage of the 21-cm line is that it allows us to sep-
arate this fluctuating component both on the sky and in frequency (and hence
cosmic time). Thus, we can study the sources and their effects on the IGM in
detail. It is the promise of these “tomographic” observations that makes the
21-cm line such a singularly attractive probe.

Observing the 21-cm fluctuations has one practical advantage as well. The
difficulty of extracting the global evolution from the enormously bright fore-
grounds shown in Figure 12.11 lies in its relatively slow variation with fre-
quency. On the small scales relevant to fluctuations in the signal, the gradients
increase dramatically: for example, at the edge of an H II region Tb drops by
∼20 mK essentially instantaneously. As a result, separating fluctuations from
the smoothly varying astronomical foregrounds may be much easier. Unfortu-
nately, constructing detailed images will remain extremely difficult because of
their extraordinary faintness; telescope noise is comparable to or exceeds the
signal except on rather large scales. Thus, a great deal of attention has recently
focused on using statistical quantities readily extractable from low signal-to-
noise maps to constrain the IGM properties. This technique is motivated in part
by the success of CMB measurements and galaxy surveys at constraining cos-
mological parameters through the power spectrum. In our case, although any
number of statistical quantities may be useful (especially during reionization,
when the fluctuations are highly non-Gaussian), we take the power spectrum
as our primary analysis tool.

We first define the fractional perturbation to the brightness temperature,
δ21(x) ≡ [Tb(x) − T̄b]/T̄b, a zero-mean random field. We are interested in its
Fourier transform δ̃21(k). Its power spectrum is defined to be〈

δ̃21(k1) δ̃21(k2)
〉
≡ (2π)3δD(k1 − k2)P21(k1), (12.41)

where δD(x) is the Dirac delta function, and the angular brackets denote an
ensemble average. Power spectra for other random fields (such as the fractional
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overdensity δ, the ionized fraction, etc.), or cross–power spectra between two
different fields, can be defined in an analogous fashion.

As is obvious from equations (12.8) and (12.10), the brightness temperature
depends on a number of input parameters. Expanding those equations to linear
order in each of the perturbations, we can write

δ21 = βδb + βxδx + βαδα + βT δT − δ∂v, (12.42)

where each δi describes the fractional variation in a particular quantity: δb for
the baryonic density (for which we use the matter density, though the baryonic
density is smoother on very small scales owing to pressure smoothing), δα for
the Lyman-α coupling coefficient xα , δx for the neutral fraction (note that using
the ionized fraction would cause a sign change), δT for TK , and δ∂v for the line-
of-sight peculiar velocity gradient. The expansion coefficients βi are

β = 1 + xc

xtot(1 + xtot)
, (12.43)

βx = 1 + xHH
c − xeH

c

xtot(1 + xtot)
(12.44)

βα = xα

xtot(1 + xtot)
, (12.45)

βT = Tγ

TK − Tγ
+ 1

xtot(1 + xtot)

(
xeH
c

d ln κeH
10

d ln TK
+ xHH

c

d ln κHH
10

d ln TK

)
, (12.46)

where xtot ≡ xc + xα , and we have split the collisional term into the domi-
nant H–e− and H–H components (xeH

c and xHH
c , respectively) where necessary.

Here we have assumed Tc = TK throughout; this is reasonable in most cases
but, if not, the expressions become much more complicated. By linearity, the
Fourier transform δ̃21 can be written in a similar fashion. (For now we ignore
the velocity term; see §12.5.1)

Each of these expressions has a simple physical interpretation. For β, the
first term describes the increased matter content, and the second describes the
increased collisional coupling efficiency in dense gas. For βx , the two terms de-
scribe direct fluctuations in the ionized fraction and the effects of the increased
electron density on xc. (The latter is important only in partially ionized regions;
21-cm emission is negligible in H II regions, of course.) βα simply measures the
fractional contribution of the Wouthuysen-Field effect to the coupling. The first
term in βT parameterizes the speed at which the spin temperature responds
to fluctuations in TK , while the others include the explicit temperature depen-
dence of the collision rates. Note that all these terms, with the crucial exception
of δ∂v , are isotropic; we discuss this latter effect in the next section.

For context, Figure 12.12 shows how these expansion coefficients evolve in
a typical structure formation model (similar to those described in the previ-
ous section). The density coefficient β increases with time until z∼ 20 before
abruptly falling to unity. At z > 20, collisions are only marginally important,
so the extra collisional coupling imparted by an increased density has a rela-
tively large effect; at lower redshifts, collisional coupling is negligible compared
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Figure 12.12 Redshift dependence of perturbative expansion coefficients in a fiducial
model similar to that of Figure 12.9. We show β (solid curve), βx (dotted
curve), βα (dot-dashed curve), and βT (light curve). Note that the singular-
ity in βT at z = 17 is artificial in that it does not actually appear in the
fluctuation amplitude. Furlanetto, S. R., Oh, S. P., & Briggs, F. H., Physics
Reports 433, 181 (2006). Copyright 2006 by Elsevier.

with the Wouthuysen-Field effect, so the second term in equation (12.43) van-
ishes. βx behaves nearly identically, because (outside H II regions) the ionized
fraction remains small. Fluctuations in the Lyman-α background are impor-
tant only over a limited redshift range (where xα ∼ 1, or the coupling is mar-
ginal); at lower redshifts, all the gas is strongly coupled, so fluctuations in the
background are unimportant. The temperature coefficient has the most com-
plicated dependence, because it depends on the mix of Compton heating and
collisional coupling. Note that the apparent singularity occurs where TK = Tγ ;
it is not physical, because T̄b also vanishes at the same point. At lower redshifts,
TK � Tγ , and the emission saturates: βT → 0.

Based on equation (12.41), the power spectrum contains all possible terms of
the form Pδiδj ; some or all could be relevant in any given situation. Of course,
in most instances the various δi will be correlated in some way; statistical 21-
cm observations ideally hope to measure these separate quantities. We have
already included some of the obvious correlations in equations (12.43)–(12.46),
such as the variation of the collision rate with the ionized fraction. But we have
left others implicit: for example, overdense regions are ionized first in most
reionization models. A more subtle example is the relation of δα to the other
quantities: as we saw in §12.2.2, it depends on the radiation spectrum and hence
on density, neutral fraction, and temperature in addition to the background
flux.

In all these expansions, one must bear in mind that δx is always of the order
of unity if the ionization field is built from H II regions, because in that case
xi = 0 or 1, and terms such as δδx are, in fact, first order and must be retained
in detailed calculations.
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Figure 12.13 Cartoon of redshift space distortions in the linear regime. If an observation
uses redshift as a proxy for distance, it is subject to confusion if velocities
do not precisely follow the mean Hubble expansion. In (a), we imagine
observing a region at the mean density that follows the Hubble flow (top
row). In that case, the inferred radial width of the region will be precisely
correct (bottom row). However, if the region is overdense, so that the local
expansion rate is smaller than the Hubble flow, the inferred radial width
will be smaller than its true width, so the observed density will be even
larger (column b). Finally, if the region is underdense (and so expanding
faster than average, it will appear even more underdense in redshift space
(column c).

12.5.1 Redshift-Space Distortions

In general, we expect the fluctuations in density, ionization fraction, Lyman-α
flux, and temperature to be statistically isotropic, because the physical processes
responsible for them have no preferred direction [e.g., δ(k) = δ(k)].ix However,
peculiar velocity gradients introduce anisotropic distortions. Bulk flows on large
scales, and, in particular, infall onto massive structures, compress the signal in
redshift space (the so-called Kaiser effect),18 enhancing the apparent clustering
amplitude, as illustrated in Figure 12.13. On small scales, random motions in
virialized regions create elongation in redshift space (the “finger of God” effect),
reducing the apparent clustering amplitude.x

We start by labeling the coordinates in redshift space by s. Working for sim-
plicity under the assumption that the survey volume has a small radial depth
(so that the Hubble parameter H can be considered constant throughout the

ixActually, this assumption can break down on extremely large scales, because then the growth of
structure with redshift becomes important. Fortunately, the 21-cm brightness field contains only
rapidly evolving features on such large scales near the tail end of reionization. The evolution is
generally not important on the scales accessible to observations.
xIn most applications, these tend to wash out fluctuations in redshift space. Fortunately, this effect

is negligible for the spin-flip background because the vast majority of the gas lies outside massive
virialized structures (and gas inside such halos is almost always inside ionized regions anyway).
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volume), we can write for the relation of these coordinates to real space r

s(r) = r + U(r)
H

, (12.47)

where U(r) = v · x̂ is the radial component of the peculiar velocity.
Next, we consider a set of particles with number density n(r) that are biased

with respect to the dark matter by a factor b. Number conservation demands
that the fractional overdensity in redshift space be related to that in real space
via [1 + δs(s)]d3s = [1 + δ(r)]d3r. The Jacobian of the transformation is

d3s = d3r
[

1 + U(r)
r

]2 [
1 + dU(r)

dr

]
, (12.48)

because only the radial component of the volume element, r2dr , changes from
real to redshift space. The density observed in redshift space increases if the
peculiar velocity gradient is smaller than the Hubble flow and decreases other-
wise. Thus, assuming |U(r)| � Hr ,

δs(r) = δ(r)−
(
d

dr
+ 2

r

)
U(r)

H
. (12.49)

Conveniently, the peculiar velocity field itself is a function of the dark matter
density field, as described by equation (2.13).

To see which of these corrections is more important, consider a plane-wave
perturbation, U ∝ eik·r. Then, the derivative term is ∼kU/H0, while the last
term is ∼U/H0r . But r is the median distance to the survey volume, and k cor-
responds to a mode entirely contained inside it. For all but the largest surveys,
we must therefore have kr � 1, and we may neglect the last term. If we further
make the small-angle approximation, so that x̂ is also approximately a constant
over the survey volume, we can take the Fourier transform of equation (12.49)
and find

δs(k) = δ(k)[1 + βµ2
k] (12.50)

where µk = k̂ · x̂ is the cosine of the angle between the wave vector and the line
of sight, and we have used (see equation 2.13)

U(r) =
∫

d3k

(2π)3
eik·x[−iβδ(k)] k̂ · x̂

k
. (12.51)

Here β = f (�m)/b corrects for a possible bias between the tracers we are study-
ing and the growth rate of dark matter perturbations, and f (�m) ≈ �0.6

m (z). For
the case of 21-cm fluctuations in the IGM gas, the bias factor is very close to
unity except below the Jeans filtering scale. Moreover, at high redshifts, when
the universe is matter dominated, f ≈ 1.

The redshift-space distortions therefore provide an anisotropic amplification
to the background signal. The anisotropy occurs because only modes along the
line of sight are affected, as illustrated in Figure 12.13. To understand the am-
plification, consider a spherical overdense region. Its excess gravitational force
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causes it to recollapse. Along the radial direction, the collapse decreases the ve-
locity width of the object relative to the Hubble flow (at least in linear theory),
compressing the overdensity in redshift space. Similarly, a spherical underden-
sity expands faster than average, causing it to appear elongated in the radial
direction. Averaged over all modes, these distortions amplify the signal by a
factor ≈ 〈

(1 + µ2)2
〉 ≈ 1.87.

However, the anisotropies are actually even more helpful in that they provide
angular structure to the signal, which may allow us to separate the many con-
tributions to the total power spectrum. Schematically, brightness temperature
fluctuations in Fourier space have the form

δ21 = µ2βδ + δiso (12.52)

where we have collected all the statistically isotropic terms in equation (12.42)
into δiso. Neglecting “second-order” terms (see later discussion) and setting β =
1, we can therefore write the total power spectrum as 19

P21(k) = µ4Pδδ + 2µ2Pδisoδ + Pδisoδiso . (12.53)

By separately measuring these three angular components (which requires, in
principle, estimates at just a few values of µ), we can isolate the contribution
from density fluctuations Pδδ . This would not have been possible without pe-
culiar velocity flows: comparison with equation (12.42) shows that, in the most
general case, Pδisoδ and Pδisoδiso contain several different power spectra, includ-
ing those of the density, neutral fraction, and spin temperature as well as their
cross–power spectra.

Disentangling these other components is more difficult, since there are sev-
eral remaining power spectra to be determined from the two measured quan-
tities Pδisoδ(k) and Pδisoδiso(k). Fortunately, in many regimes one or more of the
terms can be neglected. For example, during the earliest stages of reionization
(when δx is negligible), one might be able to measure the power spectrum of
spin temperature fluctuations as well as its correlations with density. At late
times (when TS � Tγ , and Tb becomes independent of TS), one might likewise
ignore spin temperature fluctuations and measure the ionization fraction fluc-
tuations Pδx and Pxx .

An additional difficulty originates from the correlations of “second-order”
terms in the perturbation expansion, such as δδx , that produce four-point terms
in the power spectrum. As mentioned previously, δx is not necessarily a small
parameter, so these terms can be substantial, and in practice they can produce
terms with nontrivial µ dependence, especially during reionization. The pres-
ence of these terms make attempts to separate the µn powers during reioniza-
tion more difficult; the prospects are much better before δx becomes important.

Another important caveat to recovering redshift-space distortions is that they
require a high signal-to-noise measurement of the angular structure of the
signal. Unfortunately, the noise is anisotropic: radio foregrounds have much
more power across the sky than in the line-of-sight direction. (Indeed, this
very feature is crucial to foreground-removal algorithms.) Moreover, it is much
easier to probe small physical scales in the frequency direction than across the
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Figure 12.14 Slices through a “seminumerical” simulation (left), and the corresponding
spherically averaged power spectra (right), for a model of the spin-flip back-
ground at z = 30.1, 21.2, 17.9, 10.0 (top to bottom); see Color Plate 29 for
a color version of this figure. The slices were chosen to highlight various
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angular dimensions. As a result, taking advantage of this “separation of angular
powers” will be difficult.

12.5.2 Other Statistical Measures

So far we have focused our discussion on the three-dimensional power spec-
trum, which is familiar to most cosmologists and provides a reasonable de-
scription of the spin-flip background during most of its evolution. In fact the
power spectrum is a complete statistical description of any purely Gaussian
random field (whose only parameters are, by definition, the mean and vari-
ance as a function of spatial scale). Inflation predicts that the initial matter
density field is nearly Gaussian, making the power spectrum a powerful tool in
cosmology.

However, nonlinear evolution—and the radiation fields from luminous
sources—spoil this simple statistical description for the 21-cm fluctuations,
especially when ionized bubbles become prevalent late in reionization. It is
easy to see that a Gaussian probability distribution can no longer adequately
describe the 21-cm field during these periods: at infinite spatial resolution, the
signal is either nearly zero (in an ionized bubble) or ∼20 mK (in the neutral gas,
where there is still some variation owing to the density field and possibly TS).
This bivariate distribution is a strong signature of ionized bubbles and would
provide a powerful test of the morphology of reionization; unfortunately, in ex-
periments where the Gaussian noise per pixel is larger than ∼20 mK, this kind
of distribution may be difficult to detect, especially in the presence of complex
astrophysical foregrounds.

Other statistical measures, such as higher-order correlations, may also
offer additional information and are the subject of ongoing research in the
community.

12.6 Spin-Flip Fluctuations during the Cosmic Dawn

Figure 12.14 shows several snapshots of a “seminumerical” computer sim-
ulation (see §9.6.2) of the spin-flip background during the important stages
outlined in our discussion of the monopole signal of §12.4, including both

Figure 12.14 (Continued). epochs in the cosmic 21-cm signal (from top to bottom):
the onset of Lyman-α pumping (here the dark regions show the cold gas
around the first galaxies); the onset of X-ray heating (here the dark regions
are cold gas, while the compact spots represent hot gas around the first
black holes); the completion of X-ray heating (where all the gas is hot); and
the midpoint of reionization (where black regions are ionized bubbles).
All slices are 1 Gpc on a side and 3.3 Mpc deep. Mesinger, A., Furlanetto,
S. R., & Cen, R., Mon. Not. R. Astron. Soc. 411, 955 (2011). Copyright 2011
by the Royal Astronomical Society.
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Figure 12.15 Evolution of brightness temperature fluctuations at k = 0.1 Mpc−1 in two
models of the early history of the 21-cm background; this is near the peak
sensitivity of most of the planned experiments. The light thick curves use
parameters similar to our fiducial model in Figure 12.9 (and also the light
curves in Figure 12.8); the dark thin curves use the Population III model
from Figure 12.8. The dashed curve includes the effects of Lyman-α fluc-
tuations only, the dotted curve includes the effects of heating fluctuations
only; the solid curve includes both (but not ionization). Panels (a) and (b)
show the spherically averaged rms fluctuation and one of the anisotropic
components, respectively. Pritchard, J. R., & Furlanetto, S. R., Mon. Not.
R. Astron. Soc. 376, 1680 (2007). Copyright 2007 by the Royal Astronomical
Society.

snapshots of the fields (in the left column) and the corresponding (spheri-
cally averaged) power spectra (in the right column). The underlying model is
very similar to the fiducial model whose mean signal is shown in Figure 12.9,
though the redshifts of the critical points differ slightly. Importantly, the fluc-
tuations are substantial throughout all the interesting regimes.

The top row of Figure 12.14 shows the point where Lyman-α pumping
begins to be significant. The hydrogen gas is cold (TK � Tγ ), and the spin
temperature is just beginning to decouple from the CMB. In this case the
fluctuations are driven by the discrete, clustered first galaxies: their radiation
field drives TS → TK around those first sources while leaving most of the IGM
transparent.

In this model, the Lyman-α radiation field very quickly builds up the bright-
ness temperature fluctuations. We illustrate this feature in Figure 12.15, which
shows the evolution of the amplitude of the power spectrum at one particular
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wavenumber (k = 0.1 Mpc−1, near the peak sensitivities of most arrays).xi The
dashed curve shows the effects of the Lyman-α fluctuations: they build up to a
peak, with amplitude ∼10 mK, before decreasing again once Lyman-α fluctua-
tions become strong everywhere (so that βα ∝ 1/xα → 0).

The second row in Figure 12.14 shows the signal near the onset of X-ray
heating. At this point in the model, the Lyman-α coupling is strong nearly every-
where, so most of the IGM is cold and hence appears in absorption. But near
the first X-ray sources (assumed to be star-forming galaxies here), the X-ray
background has already heated the gas to TS�Tγ , so these regions appear in
emission. The net effect is a very large fluctuation amplitude, with a strong
contrast between emitting and absorbing regions.

Figure 12.15 also helps to illustrate this behavior. Here, the dotted curve
includes only the effects of heating fluctuations (implicitly assuming strong
Lyman-α coupling throughout). The signal rises to ∼20 mK when this strong
contrast is in place, then the fluctuations decrease once more as the IGM
becomes hot (and hence saturates in emission).

The solid curve in Figure 12.15 includes both heating and Lyman-α fluctua-
tions. In this model the X-ray background lags the Wouthuysen-Field coupling,
but not by a large margin. As a result, the net signal actually decreases in the early
phases of the heating era. This occurs because only the regions near the first
sources have strong coupling, but these are also the regions that are heated; the
resulting emission signal is weaker than absorption because of the saturation
in equation (12.8). Once the Lyman-α background reaches more of the IGM,
the signal increases quickly.

The third row in Figure 12.14 shows the 21-cm signal after heating has sat-
urated (TS � Tγ ) throughout the IGM. At this point, spin temperature fluctu-
ations no longer contribute to Tb, and only the density field affects the overall
signal. The fluctuations are thus relatively modest (as in the late stages of the
model of Figure 12.15). However, this period could be very important for cos-
mological measurements, because the astrophysical uncertainties in the ion-
ized fraction and TS are less significant (see later discussion).

Finally, the fluctuations increase again once reionization begins in earnest,
as shown in the bottom row of Figure 12.14: here the fluctuations in the map
are dominated by the contrast between the ionized bubbles and fully neutral
gas between them. As we saw in §9.4, the pattern of these bubbles contains
information about the ionizing sources creating them.

Figure 12.16 shows how the dimensionless power spectrum 	2
21(k) =

k3P21(k)/(2π2) (or the power per logarithmic interval in wavenumber of the 21-
cm signal) evolves in a radiative transfer simulation of the reionization process.
(To recover the 21-cm signal one needs to multiply these values by the mean
brightness temperature in a fully neutral medium, T 2

0 ≈ [282(1 + z)/10] mK2.)
The different curves show a sequence of ionized fractions, from nearly neutral

xiThis example is taken from a different analytic model, so the times of the critical points differ
relative to the seminumerical calculation; however, the qualitative evolution is identical.
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Figure 12.16 Dimensionless power spectra 	2
21(k) of the spin-flip background during

the reionization era in a numerical simulation with radiative transfer; to
obtain the 21-cm signal one needs to multiply 	2

21(k) by the mean bright-
ness temperature in a fully neutral medium, ∼[282(1 + z)/10] mK2. The
curves show the power spectrum through a sequence of mean ionized frac-
tions; the redshifts at which these points are achieved (not listed) do not
significantly affect the signal, except through the mean brightness temper-
ature. Lidz, A., et al., Astrophys. J. 680, 982 (2008). Reproduced by permis-
sion of the AAS.

(QH II = 0.02) to almost fully ionized (QH II = 0.96). In this model, these span
the range of redshifts z∼ 11.5–6.8, but the curves change little if one holdsQH II

constant but chooses a different redshift.
Clearly, both the shape and amplitude of the power spectrum evolve sub-

stantially throughout reionization. At first, the 21-cm power spectrum simply
traces the matter power spectrum, as ionized regions have not yet significantly
affected the IGM (and in this model TS � Tγ throughout the IGM, so spin tem-
perature fluctuations are likewise unimportant). The power then decreases on
large scales because the ionized bubbles appear first in the densest regions,
suppressing the signal there and hence decreasing the overall contrast in the
21-cm maps.

This behavior is simplest to understand if we decompose the power spectrum
into parts that describe perturbations in each relevant physical parameter and
retain only the dominant components (see equation 12.42):

	2
21(k) = T 2

0 Q
2
H I

[
	2
δδ(k)+ 2	2

xδ(k)+	2
xx(k)

]
. (12.54)

In this equation, 	2
δδ and 	2

xx represent the power spectra of the density field
and ionized fraction, and 	2

xδ is the cross–power spectrum of the density with
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the ionized fraction.xii Because	2
xδ is a cross power, it can be negative—that is,

the neutral fraction QH I is small when δ is large in most reionization models.
In the early phases of reionization, this term dominates the ionized power itself,
	2
xx , and so the net power falls.
However, by QH II ∼ 0.5, the ∼20 mK contrast between ionized and neutral

gas dominates the maps, and the power increases rapidly: now the ionized bub-
bles fill a wide range of density, so 	2

xδ is small but 	2
xx is large—at least on

large scales. In fact, the power from this term peaks on the characteristic scale
of the ionized bubbles (which is well defined in most reionization models;
see Figure 9.5). In combination with the contribution from the matter power
spectrum, this power peak leads to a strong enhancement of power on moder-
ate scales (k∼ 0.1 Mpc−1), followed by a decline at smaller wavenumbers (not
shown clearly in this figure because of the finite size of the simulation box).

At the same time, on scales much smaller than the bubble size, the 21-cm
power is significantly smaller than expected from the matter power spectrum
alone. This difference is largely due to the higher-order terms we have ignored:
within an ionized region, the ionized fraction is largely uncorrelated with the
small-scale density perturbations. Effectively, then, the contrast on these scales
decreases because many of the small-scale overdensities no longer appear in
the 21-cm map. The net effect is an overall flattening in 	2

21 throughout reion-
ization. The flattening shifts to larger scales throughout reionization, and the
amplitude decreases as less of the gas can emit 21-cm photons.

Because the power spectrum of the ionized fraction dominates the signal on
large scales, the spin-flip background could be an effective tool for studying the
morphology of reionization (and the sources that drive it); the shape and am-
plitude of the power spectrum can inform us of the time history of reionization
throughout the IGM and (through the bubble size distribution) the clustering
properties of the sources that drive it. This interpretation is relatively model-
independent (in contrast with galaxy surveys, whose implications for reioniza-
tion are difficult to interpret owing to the many unknown properties of the
observed galaxies).

The final phase in the evolution of the 21-cm background is the end of reion-
ization, when the vast majority of the gas is ionized, and so the spin-flip signal
declines dramatically. But it does not disappear: substantial reservoirs of neutral
gas still exist inside self-shielded galaxy-sized objects—the “damped Lyman-α
absorbers” we discussed earlier. Observations show that these systems typically
have TS � Tγ ; in this limit the power spectrum is simply

	2
21(k) ≈ T 2

0 Q
2
H I	

2
gg(k), (12.55)

where	2
gg is the galaxy power spectrum (which can be computed easily with the

halo model), and QH I is measured from a census of DLAs to be a few percent

xiiHere we have included only “low-order” terms in which two quantities are correlated, for sim-
plicity. In fact, because the ionized fraction is usually either ∼0 or ∼1, “higher-order” terms such
as 	2

xδ,xδ , expressing the joint correlations between ionized fraction and density evaluated at two
different locations, are not necessarily smaller than the terms we have retained.
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Figure 12.17 Redshift evolution of the angle-averaged 21-cm power spectrum in a
model with reionization ending at z = 6.5. We show the amplitude for
k = 0.01 Mpc−1 (solid curve), k = 0.1 Mpc−1 (dotted curve), k = 1 Mpc−1

(short-dashed curve), and k = 10 Mpc−1 (long-dashed curve). After reion-
ization, the fluctuations trace neutral gas inside galaxies and DLAs and so
mirror the galaxy power spectrum. The diagonal curves show contours of
a fixed fraction of the sky brightness as a function of frequency. Pritchard,
J. R., & Loeb, A., Phys. Rev. D 78, 103511 (2008). Copyright 2008 by the
American Physical Society.

after reionization.20 Figure 12.17 compares the postreionization signal with the
higher-redshift one at several different wavenumbers in a model where reion-
ization is tuned to end at z = 6.5. Provided galactic systems do dominate the
neutral gas, fluctuations in the spin-flip background at redshifts after reioniza-
tion therefore present an interesting cosmological probe—with the same infor-
mation as galaxy surveys—but offer little information about the IGM itself.

12.6.1 Extracting Cosmological Measurements from the Spin-Flip
Background

To this point, we have focused on the spin-flip background as a rich astro-
physical data set. However, it also holds great promise for measurements of
“fundamental” cosmological information, much like the CMB. There are sev-
eral reasons for this promise. First, the 21-cm signal probes a time period when
structure formation was still in its infancy—and, in particular, still within the
well-understood linear regime through most of space. Second—unlike with
galaxy surveys—the 21-cm signal probes the majority of baryonic matter that
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Figure 12.18 The fraction of the total comoving volume of the observable Universe that
is available up to a redshift z, as a function of z. Loeb, A., & Wyithe, J.S.B.,
Phys. Rev. Lett. 100, 161301 (2008). Copyright 2008 by the American Phys-
ical Society.

lies outside virialized structures, allowing us to access directly the linear fluctu-
ations in the matter field.

Third—unlike the CMB—a 21-cm survey yields a three-dimensional dataset
and hence probes a much larger fraction of the cosmic volume. We will see in
the next section that the ultimate fractional uncertainty in the amplitude of any
Fourier mode of wavelength λ is given by ∼1/

√
N , where N is the number of

independent elements of size λ that fit within the survey volume. For the two-
dimensional map of the CMB, N is the surveyed area of the sky divided by the
solid angle occupied by a patch of area λ2 at z∼ 103. For a three-dimensional
field, we obtain one of these maps at every frequency, vastly increasing the size
of the available data set. Figure 12.18 shows the fraction of the total comoving
volume of the observable Universe that is available up to different redshifts.
Clearly, 21-cm surveys at z∼ 10 probe a much bigger comoving volume than
conventional galaxy surveys at z < 1.

Finally, the 21-cm power extends down to the pressure-dominated (Jeans)
scale of the cosmic gas. This is orders of magnitude smaller than the comoving
scale at which the CMB anisotropies are damped by photon diffusion. Con-
sequently, the spin-flip background can trace the primordial inhomogeneities
with a much finer resolution (i.e., many more independent pixels) than the
CMB. Altogether, the preceding factors imply that 21-cm tomography of cosmic
hydrogen may potentially carry more information about the initial conditions
of our Universe than any other method.

Of course, extracting cosmological information in the presence of the rich
astrophysics that sets the 21-cm brightness may be challenging. Fortunately,
there are two regimes in which it may be possible. The first is before the first
stars lit up the Universe. During these dark ages, there was no astrophysics
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that could possibly interfere; however, at such high red-shifts, corresponding to
low frequencies, the noise is extraordinarily large (see Figure 12.17), so this era
will remain inaccessible for the foreseeable future.

A second possibility is that the ionization and temperature factors in
equation (12.8) vanish; then, the spin-flip brightness traces density and veloc-
ity fluctuations, both of which can easily be translated into fundamental cos-
mological parameters like the matter content or Hubble constant. We saw in
§12.4 that such a scenario is plausible: the Wouthuysen-Field effect could have
become strong long before reionization began in earnest, and X-ray heating
could also have been very fast—but this outcome is by no means guaranteed. If
not, cosmological information can be extracted only if the astrophysics is well
understood.

We will see later that high-precision measurements of the 21-cm background
are challenging, and for the foreseeable future the direct constraints on, for
example, the matter power spectrum will not be competitive with those from
galaxy surveys or the CMB. However, because the spin-flip background extends
to such small scales, it still adds new cosmological information compared with
other measurements. This tool is particularly useful for cosmological parame-
ters that depend crucially on small scales, such as the shape of the primordial
power spectrum and the neutrino mass (because the free streaming of neutri-
nos erases small-scale power).21

12.7 Mapping the Spin-Flip Background

The prospect of studying reionization, and even earlier epochs, by mapping
the distribution of atomic hydrogen across the Universe through its 21-cm
spectral line has motivated several teams to design and construct arrays of
low-frequency radio antennas. For redshifts z∼ 6–50, the corresponding ob-
served frequencies are mobs ∼ 30–200 MHz. Although the radio technology for
the frequency range of interest has existed for decades—and is essentially the
same that we use every day for television or radio communication—these ex-
periments face three extreme challenges before they can observe the spin-flip
background:

• The low-frequency band is heavily used by humans (as it includes the FM
radio band, analog TV stations, and a host of satellite and aircraft commu-
nications channels), and the resulting terrestrial radio interference is as many
as 10 orders of magnitude brighter than the 21-cm background. Most of
the designs therefore place the observatories in isolated locations far from
the contaminating sources (although some residual contamination does
remain). However, this interference is usually (though not always) narrow-
band, so one can also attempt to measure the cosmological signal only in
the gaps between contaminated channels. Even then, the presence of such
bright foregrounds places serious requirements on the dynamic range of
the low-frequency observatories.
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• The ionosphere is refractive at low frequencies (and at the lowest fre-
quencies, corresponding to redshifts z > 50, becomes opaque). This causes
sources to jitter across the sky as patches of the ionosphere move across
the telescope beam. The refraction phenomenon is similar to atmospheric
seeing in optical astronomy, although the timescale for the jitter is much
slower (several seconds in this case). It can be corrected in software by
calibrating to the locations of a set of point sources distributed across the
field of view, although this is by no means a trivial computing effort. The
ionosphere is more active during the day and during times of high solar
activity. This activity—together with the large brightness of the sun itself at
these frequencies—restricts these observatories to operating only at night.

• Most significantly, the spin-flip background is far from the only astronom-
ical source in the sky. Nearly all nonthermal radio sources are bright in the
low-frequency band, especially the synchrotron radiation from the Milky
Way galaxy, as we saw in Figure 12.11. But other extragalactic sources—
including AGN, galaxy clusters, and even normal star-forming galaxies—
also contribute. As rule of thumb, typical high-latitude, “quiet” portions of
the sky have a brightness temperature22

Tsky ≈ 180
( m

180 MHz

)−2.6
K. (12.56)

This brightness is so large that it swamps the noise from even a simple
receiver. We immediately see that 21-cm mapping will require large inte-
gration times and large collecting area to overcome this “noise,” which is
at least 104 times stronger than the cosmic signal.

Despite numerous efforts over the past four decades to observe fluctuations
in the spin-flip background, these factors—as well as not-yet mature theories of
the first galaxies—have conspired to prevent any detection. Now, with modern
computing, it has become possible to analyze the enormous volume of data gen-
erated by experiments to see this background. Currently, several experiments
are either in the early phases of operations or final phases of construction. All
these mapping experiments are interferometers, in which the signals from mul-
tiple antennas are correlated to produce one larger, higher-resolution telescope.

The wide ranges of approaches taken by teams highlight the vitality of
this field; the theoretical promise described in this chapter is now being trans-
formed into actual instruments. The current tomographic projects include the
following:

• The Giant Metrewave Radio Telescope (GMRT; in India) is an interfer-
ometer with thirty 45-m antennas operating at low radio frequencies. The
21-cm background was an early motivator for the project, which was com-
pleted more than a decade ago, but the theoretical landscape changed radi-
cally, and only now has GMRT returned to this project. The large collecting
area provides a powerful tool, but the instrument’s narrow field of view and
difficult radio environment present challenges. Nevertheless, the GMRT
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team was the first to put limits on the spin-flip background, ruling out a
cold, neutral IGM at z∼ 8 in the summer of 2010.23

• The Low Frequency Array (LOFAR; with the core in the Netherlands and
outlying stations throughout Europe) is a large, general-purpose low-
frequency radio telescope that began operations in 2010. Because it has
many other science goals, LOFAR is not completely optimized to observe
the spin-flip background, but its large collecting area (especially inside a
compact “core” most useful for these observations) and advanced comput-
ers nevertheless make it a powerful machine for this purpose. Its location
in Western Europe means that LOFAR faces by far the most difficult
terrestrial radio environment. Moreover, it uses an enormous number
of dipole antennas and combines their individual signals into “stations”
that are then used as interferometers. While this design allows for a
large collecting area, it presents analysis challenges in understanding
the instruments sufficiently well to extract the tiny cosmological signal.

• The Murchison Widefield Array (MWA) in Western Australia is an inter-
ferometer built almost entirely to observe the 21-cm background. Thus, the
project hopes to leverage the relatively small experiment into limits com-
petitive with larger first-generation experiments. Like LOFAR, MWA uses
thousands of dipoles grouped into “tiles,” which increase the collecting
area at the cost of complexity. Because MWA’s tiles are smaller, though,
it achieves a larger field of view than LOFAR, which partially compensates
for the much smaller collecting area. Figure 12.19 illustrates the antenna
tile design of MWA.

• The Precision Array to Probe the Epoch of Reionization (PAPER, with
instruments in Green Bank, West Virginia; and South Africa) combines
signals from single dipoles into an interferometer. Without tiles, PAPER
has a much smaller total collecting area than the other projects but has
the advantages of a well-calibrated and well-understood instrument and
an enormous field of view. The PAPER instrument is gradually building
toward 128 antennas.

In addition to this impressive suite of ongoing efforts, larger experiments
are planned for the future, with their designs and strategies informed by this
present generation.

In this section we briefly describe how these experiments work and hope to
measure the spin-flip background. Of course, we cannot hope to do full justice
to a topic as rich as radio observations and interferometry in this chapter, so
we focus on the ideas most relevant to the spin-flip background and refer the
interested reader to one of the many good textbooks on radio astronomy for
more detailed information (see Further Reading).

12.7.1 A Brief Introduction to Radio Telescopes

The sensitivity of a telescope system depends on the competition between the
strength of the cosmic signal collected by the antenna and the noise. The signal
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Figure 12.19 One of the antenna “tiles” used in the Murchison Widefield Array (MWA)
experiment in Western Australia (see Color Plate 30 for a color version of
this figure). Each such tile is composed of 16 crossed-dipole antennae, with
their signals combined through hardware at the station. The full telescope
combines the signals from ∼128 tiles interferometrically. This allows for
a large (several hundred square degree) field of view with a moderately
large collecting area. The antennas operate in the range 80–300 MHz, cor-
responding to z≈ 6–15 (although the telescope will be sensitive to the spin-
flip background only at z < 10). Courtesy of C. Lonsdale.

output of the antenna can be specified as an antenna temperature, Ta , which is
the temperature of a matched resistive load that would produce the same power
level (Pa = kB Ta 	m for the resistor) as the signal power P = Ae Sm	m/2 re-
ceived in one of two orthogonal antenna polarizations, where Ae is the effective
collecting area of the telescope, Sm is the source flux density (assuming an unpo-
larized source), and	m is the observed frequency bandwidth. From these terms
we define the antenna sensitivity factor Ka ≡ Ta/Sm = Ae/2kB .

The signal-to-noise ratio is evaluated by comparing Ta and Tsys, the system
temperature, which is similarly defined as the temperature of a matched resistor
input to an ideal noise-free receiver that produces the same noise power level
as measured at the output of the actual receiver. The system temperature in-
cludes contributions from the telescope, the receiver system, and the sky; the
latter dominates in our case. Noise fluctuations 	T N decline with increased
bandwidth and integration time tint according to the radiometer equation,

	T N = κc
Tsys√
	m tint

≈ Tsys√
	m tint

, (12.57)

where κc ≥ 1 is an efficiency factor accounting for the details of the signal detec-
tion scheme; for simplicity we set κc = 1, which is a reasonable approximation
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for the telescopes discussed here. Equation (12.57) has a simple interpretation.
Since the occupation number of the photons is large, they behave as a classical
electromagnetic wave. The number of independent samples of the noise tem-
perature is then the number of cycles observed during the integration time,
Ncyc ∼	mtint, and the uncertainty in the system temperature Tsys is reduced by
the factor of

√
Ncyc for Gaussian statistics (applicable in the limit of Ncyc � 1).

The noise level (in flux density units) for an unresolved source is then

σS = Tsys/Ka√
	m tint

. (12.58)

Note that the noise level decreases with the telescope collecting area Ae. How-
ever, in many applications, we must take into account that the total collecting
area may be distributed over a much larger physical area, to achieve better an-
gular resolution θD ≈ λ/Dmax, where λ is the (observed) wavelength, and Dmax

is the maximum distance between antennas. In this case, the equivalent bright-
ness temperature uncertainty is

	T N = σSc
2

2kBm2�B
≡ Tsys

ηf
√
	m tint

, (12.59)

where ηf ≡ Atot/D
2
max is the array filling factor, and �B ≈ θ2

D is the solid angle
subtended by the telescope beam. An appreciation of this dependence on ηf is
crucial: the integration time required to detect a given surface brightness grows
as tint ∝ D4

max if the (fixed) total collecting area is spread over larger areas to
achieve better angular resolution.

We can develop better insight into the radio telescope response through a
thought experiment in which a radio telescope is encased in a blackbody of
temperature T . Regardless of its size, and with proper impedance matching,
the telescope will produce an antenna temperature Ta = T at its output. For this
reason, attempts to observe the global 21-cm background are more concerned
with issues of matching and gain calibration than with antenna size.

However, a telescope constructed with a beam of solid angle �B will still de-
liver Ta = T at its output if (i) it is embedded in a blackbody radiation field or
(ii) an emitter of brightness temperature TB = T entirely fills its beam. Un-
fortunately, real radio telescopes do not form perfectly defined beams, and all
suffer from sidelobes whose shapes and responses are dictated by diffraction
and scattering of the incident radiation through the telescope. This is especially
true of arrays, where a fraction (1 − ηf ) of the total response lies outside the
beam defined by θD ∼ λ/Dmax.

Using equation (12.56) with Tsys ≈ Tsky to estimate the telescope noise 	T N

for a single-dish measurement of an unresolved source, we find

	T N |sd ≈ 0.6 mK
(

1 + z

10

)2.6 (
MHz

	m

100 hr

tint

)1/2

. (12.60)

The mean 21-cm signal has T0 ∼ 20 mK; thus, single-dish telescopes can easily
reach the sensitivity necessary to detect the global 21-cm background. In this
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regime, the challenge is instead to separate the slowly varying cosmological sig-
nal from the foregrounds. However, detecting individual features is still limited
by the resolution of the telescope: a small single dish can detect the mean signal
across the entire sky but cannot identify individual ionized bubbles.

12.7.2 Noise Estimates for 21-cm Interferometers

At radio frequencies, interferometry is required to make maps with even a rel-
atively coarse resolution; for realistic collecting areas, the array dilution factor
ηf dramatically decreases the sensitivity. Again using equation (12.56) for the
system temperature, we find

	T N |int ∼ 2 mK
(

Atot

105 m2

) (
10′

θD

)2 (
1 + z

10

)4.6 (
MHz

	m

100 hr

tint

)1/2

. (12.61)

The angular resolution scale of θD ∼ 10′ and the frequency resolution scale of
	m∼ 1 MHz correspond to ∼20 Mpc.xiii The current generation of telescopes
have Atot < 105 m2, so imaging (i.e., mapping pixels with a signal-to-noise ratio
much greater than unity) will be possible only on large scales that exceed the
typical sizes of bubbles during most of reionization. It is for this reason that
near-term imaging experiments focus primarily on giant H II regions gener-
ated by extremely luminous quasars during the middle phases of reionization,
when the contrast between the large ionized bubble and the background IGM
is largest.

Although equation (12.61) provides a simple estimate of an interferometer’s
sensitivity, we will see that the rate at which interferometers sample different
scales depends on its design; this effectively makes ηf a function of angular
scale. Thus, equation (12.61) provides only a rough guide.

When two antennas are coupled electronically to form an interferometer, the
combined response projected on the sky resembles the characteristic diffraction
pattern of a double slit. The spacing depends on the distance between the two
elements, or the baseline. In general, the interferometer response to the sky
brightness distribution Im(n̂) for a particular “visibility” V, corresponding to a
particular baseline and frequency pair, in units of temperature, is

V(n̂0, u, v, m) ≈
∫
dx dy Tb(x, y, m)Wm(n̂0, n̂) e2πi (ux+vy), (12.62)

whereWm is the normalized response pattern of the antennas, and A = λ(uî, vĵ,
wẑ) is the vector (on the ground) between the two elements. In the orthogonal
(u, v,w) coordinate system, the w-axis aligns with the direction toward the sky
at the center of the beam, and the u- and v-axes are oriented so that the v-axis
projects onto the local meridian. The coordinates x and y are angles measured
in the “sky plane” relative to the intersection of ẑ with the celestial sphere. In
this Fourier transform of the sky, u and v represent spatial frequencies, and

xiiiMore precisely, a bandwidth	m corresponds to a comoving distance ∼1.8 Mpc(	m/0.1 MHz)[(1+
z)/10]1/2, while an angular scale θD corresponds to 2.7(θD/1′)[(1 + z)/10]0.2 Mpc.
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the w-axis produces a phase offset in the interferometer fringe that can be cali-
brated. (This representation assumes that the interferometer sees only a small
piece of the sky, so that the “flat sky” approximation is valid; that is not true for
some of the 21-cm telescopes, but the basic formalism presented here provides
a reasonable approximation with much less technical difficulty.)

We must keep in mind that this Fourier integral does not properly
account for sources far outside the primary beam; in effect, these add a noise-
like contribution entering through the sidelobes that inevitably appear outside
the primary beam.

Given the difficulty of high signal-to-noise imaging, attention has focused on
statistical measurements. We now turn to estimating the sensitivity of 21-cm ex-
periments to the power spectrum. Error estimates for other statistical measures
must still be developed, but the basic principles are the same. For simplicity, we
consider only the effects of thermal noise and cosmic variance, which provide
a fundamental limit. Systematics (especially foregrounds) present equally large
difficulties, and the community is hard at work developing strategies to mitigate
them, some of which we will discuss later.

We begin with the complex visibility of equation (12.62). The detector noise
for a single visibility measurement is closely related to equation (12.57).
Equation (12.58) implies

	T N(m) = λ2 Tsys

Ae
√
	mtu

, (12.63)

where here, tu is the integration time of this particular baseline; owing to Earth’s
rotation, these large interferometers continually shift their sky coverage (in a
manner analogous to “drift-scanning” in optical astronomy), so this is not the
same as the total integration time. Also,Ae is the collecting area of each antenna
element (which we assume to be perfectly efficient, for simplicity).

The observed “visibility data cube” conventionally used in radio astronomy
is actually a hybrid of Fourier-space (u, v) and redshift-space (m) coordinates
and is thus inconvenient for comparing with theoretical models. One can ei-
ther transform the visibility data to the sky plane to obtain the “image cube” or
transform the frequency (redshift) coordinate to its Fourier-space equivalentxiv

to obtain a representation with spatial frequency for all three dimensions,

Tb(u) =
∫
B

dmV(u, v, m) e2πiηm, (12.64)

where the integration extends over the full bandwidth B of the observation,
u ≡ uî + vĵ + ηẑ, and η has dimensions of time. In this representation, the
effective noise can be obtained by Fourier transforming the signal across the
frequency axis, which yields

	T N(u) = λ2 Tsys

√
B

Ae
√
tu

≈ Tsys√
B tu

× λ2

Ae δη
. (12.65)

xivObviously, this transformation is not useful for noncosmological radio astronomy applications,
where there is no frequency–distance relation.
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In the second equality, we have set δη = B−1. The factor Ae/λ2 × δη then
represents the Fourier-space resolution of the observation (or the inverse vol-
ume sampled by the primary beam, in the appropriate units); note the similar-
ity to equation (12.57). Here 	T N(u) has units of temperature divided by time,
because of the Fourier transform in the frequency direction.

To estimate the statistical errors, we need the covariance matrix of the noise
for antenna pairs at baselines ui and uj . Because the thermal noise errors are
uncorrelated between measurements, this is simply a diagonal matrix in which
each element is the square of equation (12.65). In transforming to the physical
wavevector k, we distinguish between the component u⊥ oriented along the sky
(corresponding to k⊥ = 2πu⊥/D, where D is the comoving distance to the
observed survey volume) and the component k‖ along the line of sight. It is
useful to do this because interferometers can have arbitrarily good frequency
resolution, while the u⊥ coverage is always fixed by the baseline distribution.

We define the number density of baselines that observe a given u⊥ as n(u⊥);
this value is normalized so that its integral over the u⊥ half-plane is NB =
Na (Na − 1)/2, the total number of baselines in the array of Na antennas. Two
properties of n(u⊥) are noteworthy. First, because of Earth’s rotation, it is az-
imuthally symmetric and thus only a function of u⊥ = |u⊥|. Second, for a
smooth antenna distribution, n(u⊥) is virtually always a decreasing function of
u⊥. This fact follows from a simple geometric consideration: it is difficult to
arrange the antenna distribution to have many more long baselines than short
ones. We can write

tk ≈ n(u⊥)
(
Ae

λ2

)
tint. (12.66)

As before, Ae/λ2 ≈ δu δv is the angular component of the Fourier-space reso-
lution. Thus, the noise covariance matrix is

CN(ki , kj )≡ 〈	T N(ui )∗ 	T N(uj )〉

=
(
λ2 B Tsys

Ae

)2
δij

B tk
. (12.67)

Equation (12.67) represents the thermal noise contribution to the covariance
matrix; even in an ideal experiment with no systematics from foregrounds, we
must also include errors from sample variance. This component is

CSV (ki , kj )= 〈T ∗
b (ki ) Tb(kj )〉

≈ δijT 2
0 〈xH I〉2

∫
d3u |W̃ (ui − u)|2 P21(u)

≈ T 2
0 〈xH I〉2P21(ki )

λ2 B2

Ae D2	D
δij , (12.68)

where 	D ∝ B is the line-of-sight depth of the observed volume in comoving
units, and T0 is the average brightness temperature of a fully neutral IGM. In
the first line of the equation, the average is over baseline and frequency pairs
indexed by ki and kj (or equivalently ui and uj ). In the second line, W̃ is the
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Fourier transform of the primary beam response function, including the finite
bandwidth, and is most naturally expressed in the “observed” units u. It typi-
cally differs from zero in an area δu δv δη ≈ Ae/(λ

2B) and (ignoring efficien-
cies) integrates to unity over the beam. For the last line, we have assumed that
u is much larger than the width of this response function. Then, P21(u) is con-
stant across the beam and can be extracted from the integral, which becomes
simply (δu δv δη)−1. We have also transformed to the more physically relevant
wavenumber k, which introduces a factor B/(D2	D).

Equation (12.68) has a simple physical interpretation: it is essentially a
normalization factor (T 2

0 〈xH I〉2B2) multiplied by P21/Vsurv, where Vsurv ≈ 	D

(D2λ2/Ae) is the total volume observed by the telescope. This factor counts the
number of independent estimates N available to the measurement of a given
Fourier mode; the squared error then scales as 1/N .

To translate these values into error estimates, we use the common Fisher
information matrix approach (see also §10.4.3), which provides an idealized
estimate of the measurement errors given the total covariance matrix C =
CN + CSV . We ignore any possible systematics and inefficiencies in the data
reduction. Given a vector of parameters �, the (i, j) element of the Fisher ma-
trix is defined as24

Fij ≡
〈
− ∂2 lnL
∂�i ∂�j

〉
(12.69)

= Tr
[

C−1 ∂C
∂�i

C−1 ∂C
∂�j

]
, (12.70)

where L is the log-likelihood function. For the simple case of measuring the
binned power spectrum from the data points, the “parameters” are the power
spectrum amplitudes in each of the bins, �i = P	T ≡ T 2

0 〈xH I〉2P21(ki ); in
more general cases they are the parameters of a theoretical model meant to de-
scribe the data. The Cramer-Rao inequality states that the errors on any unbiased
estimator of the power spectrum must satisfy

δP	T (ki ) ≥ 1√
Nc(ki )

√
(F−1)ii , (12.71)

where Nc is the number of measurements in the appropriate bin and F−1 is the
inverse of the Fisher matrix.

In the case we are studying, the Fisher matrix is particularly simple to use
because the covariance matrix is diagonal. (This will not be true for real data,
because foreground cleaning and other systematic effects induce correlated
residual errors, but the matrix provides a rough estimate of the noise limits.)
The resulting error (from a single baseline) on a power spectrum estimate is

δP21(ki ) = P21(ki )+ T 2
sys

Btint

D2	D

n(k⊥)

(
λ2

Ae

)2

. (12.72)

The last step is to count the number of Fourier cells in each power spectrum
bin, which depends on the Fourier-space resolution of the instrument. Recall
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that when redshift-space distortions are included, P21 is not truly isotropic, but
it is azimuthally symmetric. Thus, we use Fourier cells grouped into annuli of
constant (k, µ). Then, in the limit that kµ is much larger than the effective k‖
resolution,

Nc(k) ≈ 2π k2	k	µ×
[
Vsurv

(2π)3

]
, (12.73)

where the last term represents the Fourier-space resolution. The total errors
from all estimates within a bin simply add in quadrature. In its essence, this
calculation is identical to our estimate for the errors on galaxy power spectrum
measurements in §10.4.3, except that the shot noise relevant to galaxy number
counts is replaced by the thermal noise of each mode.

Equations (12.67), (12.68), and (12.72) fully specify the effects of noise in the
absence of systematic effects. But to make estimates we must determine the
effective observing time tk for each mode—and hence the baseline distribution
n(u⊥) by equation (12.66)—as well as the sampling density (equation 12.73 for
a measurement in annuli). These two quantities are obviously highly depen-
dent on the design of the experiment. It is therefore useful to consider the sim-
ple thermal noise-dominated case to develop some intuition for array design.
Substituting for Nc in equation (12.72) and ignoring the first term (which is
equivalent to working on small scales), we find

δP	T ∝ A−3/2
e B−1/2

[
1

k3/2 n(k, µ)

] (
T 2

sys

tint

)
. (12.74)

Here we have assumed that the power spectrum is measured in bins with
constant logarithmic width in k but constant linear width in µ. From equa-
tion (12.74), we can deduce a number of fundamental considerations driving
array design.

• First, δP21 ∝ t−1
int , because the power spectrum depends on the square of

the intensity.
• Second, we can increase the collecting area in two ways. One is to add

antennas while holding the dish area Ae constant. Recall that n(k, µ) is
normalized to the total number of baselines NB ∝ N2

a : thus, adding anten-
nas of a fixed size decreases the errors by the total collecting area squared.
(Of course, the number of correlations needed also increases by the same
factor, so this strategy is costly in terms of computing.) The other method
is to make each antenna larger but hold their total number fixed. In this
case, the total number of baselines, and hence n(k, µ), remains constant,
but δP	T ∝ A

−3/2
e . Increasing the collecting area in this way is not as effi-

cient because it decreases the total field of view of the instrument, which
is set by the field of view of each antenna.

• Third, adding bandwidth increases the sensitivity relatively slowly: δP	T ∝
B1/2, because it adds new volume along the line of sight without affect-
ing the noise on any given measurement. Of course, one must be wary
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of adding too much bandwidth because of systematics (especially fore-
grounds).

• Finally, as a function of scale k, δP	T ∝ k−3/2 n(k, µ)−1. The first factor
comes from the increasing (logarithmic) volume of each annulus as k in-
creases. But in realistic circumstances the sensitivity actually decreases to-
ward smaller scales because of n. This result is most obvious if we consider
a map at a single frequency. In that case, high-k modes correspond to small
angular separations or large baselines; for a fixed collecting area the array
must therefore be more dilute, and the sensitivity per pixel decreases, as in
equation (12.61). In the (simple but unrealistic) case of uniform uv cover-
age, the error on a measurement of the angular power spectrum increases
as θ−2

D for a fixed collecting area.
Fortunately, the three-dimensional nature of the true 21-cm signal

moderates this rapid decline toward smaller scales: even a single dish can
measure structure along the line of sight on small physical scales. Math-
ematically, because n(k, µ) = n(k⊥), each baseline can image arbitrarily
large k‖, at least in principle. For an interferometer, this implies that short
baselines still contribute to measuring large-k modes. Thus, provided they
have good frequency resolution, compact arrays are surprisingly effective
at measuring small-scale power . There is one important caveat: if short
wavelength modes are sampled only along the frequency axis, only modes
with µ2 ≈ 1 can be measured. Thus little, if any, information is recovered
on the µ dependence of the redshift-space distortions. Studying this aspect
of the signal does require baselines able to measure the short transverse
modes with µ2 ≈ 0.

Figure 12.20 summarizes the expected errors (including only thermal noise
and cosmic variance, not systematics) on the spherically averaged power spec-
trum. The thin curves show a forecast for an experiment four times larger than
the MWA (but otherwise with identical parameters, comparable to the best con-
straints expected from the first generation of experiments). We assume 1,000
hours of integration on a single field (roughly 1-year of realistic observing condi-
tions), the observed modes binned into segments of width	k = k/2 (as shown
by the horizontal bars), and a radial survey width corresponding to 6 MHz (or
	z∼ 0.5).

Provided it reaches this limit, such an experiment can place fairly stringent
constraints at scales of k < 1 Mpc−1. Smaller scales are swamped by thermal
noise. The errors on large scales come from cosmic variance, although here
they are quite modest because of the large field of view of the telescope. To reach
smaller scales will require more collecting area to reduce the noise. The thick
curves show the estimated errors for a futuristic experiment, with 5,000 antenna
tiles (40 times more than the MWA) and 400 times larger total collecting area.
This experiment would provide good constraints out to k∼ 10 Mpc−1.

Unfortunately, measuring very large physical scales with these experiments
is likely to be very difficult, because of the other astronomical foregrounds.
To separate the Galactic synchrotron radiation from the cosmological signal,
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Figure 12.20 Estimated errors on the spherically averaged 21-cm power spectrum at z =
8 for an experiment four times larger than the MWA (thin curves) and
one with 100 times larger collecting area (thick curves). The central values
of the latter are shifted downward for clarity of presentation. We assume
1,000 hours of integration on a single field, the observed modes binnel into
segments of width 	k = k/2 (the horizontal bars show these bins), and
a radial survey width corresponding to 6 MHz (or 	z∼ 0.5). The vertical
dotted line shows the scale corresponding to this bandwidth; foreground
removal will likely prevent measurements at wavenumbers smaller than
this scale.

the experiments will rely on the former’s spectral smoothness and the latter’s
rapid variations with frequency (due to H II regions, density fluctuations, or
temperature variations). The essential idea is to fit a low-order function to each
pixel in the map (or Fourier mode) and subtract this mean variation over a wide
(several megahertz) frequency range. Provided the foregrounds are smoother
than the signal, this scheme will isolate the spin-flip background but with an
inevitable loss of information (i.e., any variations in the 21-cm background
over large frequency ranges will also be subtracted). Current estimates suggest
that this method will work very well at small scales but will prevent measure-
ments of any fluctuations on scales larger than those corresponding to the
several-megahertz bandwidth of each measurement. The vertical dotted line in
Figure 12.20 shows the scale corresponding to the assumed 6 MHz bandwidth;
modes to the left of this line are likely lost in the foreground removal process.
Unfortunately, this drastically reduces the dynamic range of the first-generation
experiments.

Because the sky noise increases rapidly with redshift (see equation 12.56),
the first generation of experiments lose sensitivity at z∼ 11–12. To reach these
high redshifts will likely require collecting areas approaching a square kilome-
ter. Such large instruments will also be necessary to measure the redshift-space
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distortions in the spin-flip background, because they require separate measure-
ments of power along the line of sight and across the plane of the sky. The
first-generation experiments are relatively small and do not have adequate sen-
sitivity to make high-resolution measurements on the plane of the sky, although
they can do so in the redshift direction with reasonably narrow frequency chan-
nels. Much larger instruments are necessary to build sensitivity to fluctuations
on the plane of the sky.

In addition to the unavoidable problems posed by foreground cleaning, there
are several other serious systematic challenges to reaching the limits suggested
by Figure 12.20. These include the ionospheric refraction described earlier, the
many bright astronomical point sources (and especially their sidelobe contam-
ination to the antenna beam), the variation of the instrument properties with
frequency, and the polarized component of the foregrounds (which can vary
rapidly with frequency and hence escape the typical foreground removal al-
gorithms). Fortunately, several experiment teams are tackling these problems
in unique ways, and the community hopes they can be overcome in the near
future.
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Chapter Thirteen

Other Probes of the First Galaxies

So far we have discussed four classes of observational probes of the first galax-
ies: direct observations of individual galaxies (over a variety of wavelengths), the
Lyman-α line (both as a test of the galaxy populations and the IGM), the spin-
flip line from intergalactic gas, and gravitational waves from black hole mergers
(see §7.7). However, there are many other, less direct, ways to probe structures
during the cosmic dawn. In this chapter, we discuss several of these:

• Secondary anisotropies of the CMB were generated as those photons passed
through gas during the cosmic dawn. CMB photons did not interact with
the IGM gas until it was ionized (with the exception of resonant lines);
however, once that occurred, the photons began to scatter off the free
electrons. The scattering process induced both large-scale polarization and
small-scale temperature anisotropies.

• Diffuse backgrounds from the cosmic dawn (other than the spin-flip back-
ground) could have resulted from the integrated emission of the entire
galaxy population. Typically, these backgrounds include galactic emission
lines, ranging from CO lines in the radio to the Lyman-α line itself, so
(like the spin-flip background) they contain not only angular structure but
also spectral structure. Measuring these integrated backgrounds via low-
resolution observations can be much easier than detecting individual galax-
ies (though of course also provides less information) and can quantify use-
ful properties of the global galaxy populations.

In the absence of detections from individual galaxies, the cross-correlation
of different probes can help isolate cosmological information in the pres-
ence of contaminants and can often isolate interesting aspects of these
diffuse signals.

• Fossil structure from early galaxies remains in (or can be deduced from) the
Milky Way or other nearby entities in the Local Group. This fossil structure
includes the residual effects of feedback (from the Lyman-Werner back-
ground, photoheating, or other processes) on the small satellite galaxies
or globular clusters of the Milky Way, old low-mass stars that may have
formed during the cosmic dawn and survive inside the Milky Way (or its
halo), and remnant signatures of the early merger history of the Milky Way.

13.1 Secondary Cosmic Microwave Background Anisotropies from the

Cosmic Dawn

The CMB indicates that hydrogen atoms formed 400,000 years after the Big
Bang, as soon as cosmological expansion cooled the gas below 3,000 K. Once
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neutral, the CMB photons could interact with the IGM gas only through its
resonant transitions—and after z ∼ 1000, when the photons redshift out of
the Lyman-α resonance, the only available transition is the 21-cm line, whose
effects we have already examined.

However, once the first stars or black holes began to ionize the IGM, the CMB
photons scattered off the free electrons. This scattering had several effects on
the CMB, which we describe in detail here.

13.1.1 Large-Scale Polarization of the CMB

The crucial parameter in determining these effects is the total CMB optical
depth to electron scattering,

τes =
∫
ne(z)σT (c dt/dz) dz, (13.1)

where σT = 6.65 × 10−25 cm2 is the Thomson scattering cross section, and
the integral is over the path taken by a photon; note that only redshifts where
the ionized fraction is nonzero will contribute (the residual ionized fraction fol-
lowing recombination produced only a very small contribution to τes, so the
integrand is significant only once reionization began). In the simplest approx-
imation, where we assume that the IGM was instantaneously ionized at zreion,
equation (13.1) can be integrated analytically for a flat universe with �� +
�m = 1:

τes = 4.44 × 10−3 × {[�� +�m(1 + zreion)
3]1/2 − 1

}
. (13.2)

The coefficient here assumes for simplicity that helium was singly ionized at
the same time as hydrogen; in reality, the second ionization of helium at z ∼ 3
(see §4.5) adds an additional τes,He ≈ 1.02 × 10−3.

The most obvious effect of this scattering on the CMB temperature anisotro-
pies is to partially wash them out, as a fraction e−τes of the photons that appear
(to the observer) to be incident from a particular direction actually come from
elsewhere. Each line of sight samples only photons from a finite surrounding
region, roughly a cylinder whose radius equals the causal horizon at the time
of scattering. Thus, the angular power spectrum of the CMB fluctuations, C�—
which contains two factors of temperature—is damped by a factor e−2τes on an-
gular scales smaller than the causal horizon at the time most scattering occurs,
as shown in Figure 13.1.1 (More precisely, electrons at each radius from the ob-
server damp fluctuations across their local horizon, with the damping propor-
tional to the scattering optical depth contributed by these electrons.) On larger
scales, the power spectrum is unaffected. Unfortunately, this slight change to
the slope of the temperature anisotropy power spectrum is strongly degenerate
with the intrinsic tilt of the matter power spectrum.

However, the scattering process also induces polarization, which is
observable.2 Consider photons that scatter off an electron toward the observer,
as shown in Figure 13.2 (where the observer coincides with the reader, out of
the page). Photons incident from the horizontal direction can scatter toward
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Surface of
last scattering

z ~ 6
horizon

Figure 13.1 Diagram of the damping of primordial CMB anisotropies after reionization
(not to scale). The observer is represented by the star at the center; the thick
outer circle represents the surface of last scattering of the observer. CMB
photons (arrows) propagate through a screen of parcels of free electrons at
z ∼ 6 (located at the dashed circle for the observer). Each parcel sees the
CMB out to its causal horizon, represented by the smaller circle surround-
ing it. The low optical depth of free electrons implies that most CMB pho-
tons propagate through without interaction (long arrows), but some pho-
tons are scattered into the line of sight from other directions, which partially
washes out the primordial anisotropies on scales smaller than the horizon
at the time of scattering.

the observer only if they are polarized along the plane of the page in the vertical
direction, because the other possible polarization state of the incident wave—
out of the page—would not produce a scattered transverse wave. In contrast,
to produce a transverse wave, photons incident from the vertical directions can
scatter toward the observer only if they are polarized horizontally in the figure
(along the plane of the page).

If we suppose that an electron scatters photons from all directions, it will
produce a mixture of these horizontal and vertical polarization states. How-
ever, if there is an asymmetry in the incident radiation field—in particular, a
quadrupole anisotropy between the intensity of the incident background along
the horizontal and vertical axes—the resulting mixture will have a net
polarization.

For the CMB, electrons during the cosmic dawn could scatter any photons
incident on them that originated within the causal horizon at that time. The net
polarization is3 P ∼ 0.1τesQ, whereQ is the primordial quadrupole anisotropy
on that horizon scale (the prefactor 0.1 comes from the detailed physics of the
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Figure 13.2 Cartoon of the generation of CMB polarization through Thomson scatter-
ing. The central electron scatters photons from the CMB. The scattering
process allows only photons polarized perpendicular to the plane defined by
the lines joining the observer and electron, and the photon’s source and the
electron. For photons from the left of the page, this is the vertical polariza-
tion, which corresponds to the vertical line at the lower right. For photons
from the top of the page, this is the horizontal component (light horizontal
line at lower right). If the incident photon field has a quadrupole anisotropy
(here, a larger intensity from the left), the resulting scattered field will be
polarized. Reprinted from New Astronomy, 2, 4, Hu, W., & M. White, “A
CMB polarization primer,” 323–344, Copyright 1997, with permission from
Elsevier.

Thomson scattering process). The overall amplitude of the polarization (or its
power spectrum) therefore provides a measure of τes and hence the integrated
column of ionized gas between us and the recombination surface.

The first such measurements have been made with the Wilkinson Microwave
Anisotropy Probe (WMAP) over the past several years. The current estimate is
τes = 0.087 ± 0.017, which would correspond to instantaneous reionization at
z ∼ 10.4 This value will be refined by forthcoming CMB data from the Planck
satellite.5 Unfortunately, τes on its own does little to distinguish different reion-
ization histories, as it simply measures the total probability of scattering be-
tween the present day and the surface of last scattering, without revealing how
long ago this scattering occurred.

To learn about this history, we must turn to the scale dependence of the po-
larization or, equivalently, the shape of its power spectrum. The polarization
anisotropies appear to us on the angular scale subtended by the horizon dis-
tance at the time of scattering, which occurs at � < 40. On much finer angular
scales, the postreionization scattering washes out any primordial polarization,
just as it does the temperature anisotropies. However, because there is no pri-
mordial polarization on large scales anyway, the “reionization bump” from the
late-time scattering is very clearly distinguishable from primordial anisotropies.

Interestingly, because this horizon scale evolves with redshift, there is some
information about the time history of x̄i (z) contained in the CMB polariza-
tion power spectrum. Figure 13.3 shows some example reionization models
(left) and their observable signatures (right). The models were generated with
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Figure 13.3 Left: Five example models of the reionization history. Models 1–3 are nor-
malized to have τes = 0.17, while models 4 and 5 have τes = 0.14 and 0.23,
respectively. Note that all these values are well above the current best esti-
mate. See text for a discussion of the input physics in these models. Right:
CMB polarization power spectra for these five models (shown is the EE
component, which includes scalar perturbations). All are normalized to
have the same power at � > 50, where reionization has no significant ef-
fect. The bold dashed, dashed, and solid lines correspond to models 1–3;
the last has cosmic variance error bars attached. The light solid lines rep-
resent models 4–5, while the light dashed lines show best-fit polarization
spectra for instantaneous reionization models. Holder, G., & Haiman, Z.,
Astrophys. J. 595, 13 (2003). Reproduced by permission of the AAS.

simple prescriptions for the physics of the first galaxies, but their particular
physical assumptions are not important for our purposes; they simply provide
a set of contrasting reionization histories to gauge its effects on the shape and
amplitude of the polarization power.i Models 1–3 hold τes = 0.17 but vary x̄i (z).
Models 4 and 5 show larger and smaller overall optical depths (of 0.23 and 0.14,
respectively). Note that all these values are considerably larger than the current
best estimate from WMAP but are shown here only to illustrate the dependence
of the polarization signal on the reionization history.

The right panel shows the corresponding power spectra of the polarization
anisotropies (in detail, it shows the EE, or scalar, component, which contains
most of the contributions from reionization). Models 1–3 have similar ampli-
tudes but different shapes, particularly around the trough at � ∼ 20–30; the
error bars, which give the ideal cosmic variance errors, show that these models
can at least in principle be separated at high confidence. It is much easier to
separate models with different optical depths: models 4 and 5 are shown by the
top and bottom solid lines. Here we can also see the effect of x̄i (z) on the power
spectrum: the light dashed lines show the best-fit instantaneous reionization

iModel 3 in particular is physically implausible, because a nonmonotonic x̄i (z) requires very
strong, instantaneous feedback to suppress galaxy formation.
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models, which provide relatively poor fits to the more complex reionization his-
tories used in these models.

The reionization era also generates anisotropies in the B-mode polarization
(so called because they have nonzero curl, as opposed to the E-modes, which
are curl free). This type of anisotropy is of particular astrophysical interest
because it is also generated by the gravitational wave background from the
inflationary era, and there are numerous efforts underway to measure the
background’s properties. Secondary fluctuations, like those generated by reion-
ization, are therefore important contaminants to understand. Fortunately, it
appears that the B-modes generated by reionization are small and have large
angular coherence in the polarization direction, which make them relatively
easy to isolate.6 Moreover, the 21-cm background can be used to reconstruct
the electron-scattering optical depth along different lines of sight and from that
information to reconstruct the expected polarization pattern (see §13.3).7 Thus,
B-mode anisotropies from reionization should not pose a substantial challenge
to the detection of primordial gravitational waves.

The Planck satellite should be able to distinguish different reionization sce-
narios using the polarization anisotropies over the next several years. However,
this technique is sensitive only to the global reionization history, not to the de-
tails of the reionization process. To understand the growth and morphology of
the ionized regions, we must probe much smaller angular scales.

13.1.2 Secondary Temperature Anisotropies

On small scales, inhomogeneities in the density, ionized fraction, and velocity
field combine to produce temperature anisotropies during reionization. These
anisotropies are referred to as the kinetic Sunyaev-Zel’dovich (kSZ) effect, which
broadly encompasses two distinct physical components, the Ostriker-Vishniac
effect and the patchy reionization signal.

Let us first consider the general expression for the CMB temperature along a
line of sight n̂,8

�Tγ (n̂)
Tγ

=
∫
dη e−τes(η)ane(η)σT

n̂ · u(η)
c

, (13.3)

where η = ∫ t
0 dt

′/a(t ′) is the conformal time, u is the peculiar velocity of the
ionized gas, and τes(η) is the optical depth between the observer and a confor-
mal time η. (The extra factor a occurs because c dt = a dη.) Perturbations in
the temperature are then sourced by the product of the peculiar velocity along
the line of sight and the ionized gas density; we define q = u(1 + δb + δx) for
convenience. Here, we must be careful to include the baryonic density fluctu-
ation (rather than cold dark matter) because it is this material that scatters the
photons.

Suppose then that we work to linear order, so that q ≈ u (since the peculiar
velocity is itself a first-order quantity). Because the Fourier transform of this
velocity is parallel to the wave vector k (see equation 2.14), this implies that only
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Figure 13.4 Diagram of the kinetic Sunyaev-Zel’dovich effect. (a) We imagine a plane
wave perturbation oriented along the line of sight. The density pertur-
bations generate peculiar velocities as matter falls into the overdense re-
gions. CMB photons that scatter on the far side of these perturbations get
blueshifted (on average), but photons that scatter on the near side get red-
shifted. To linear order, there is a net cancellation of the two frequency
shifts. (b) However, at higher order the Doppler shifts do not cancel out, so
long as another density mode affects the scattering. Here, we imagine a re-
gion with a net velocity toward the observer and a density mode transverse to
the line of sight. Overdensities across the sky generate a stronger blueshift
than the underdensities owing to their larger optical depth. On small scales,
these do not cancel with other structures along the line of sight. This den-
sity modulation is called the Ostriker-Vishniac effect. (c) Alternatively, we
imagine another region with a bulk velocity directed toward the observer,
in which the ionized fraction varies spatially owing to discrete H II regions
during reionization. This modulation is associated with patchy reionization.
Both nonlinear effects (b) and (c) source CMB temperature fluctuations on
small angular scales.

those modes along the line of sight contribute. But for such waves oriented
along the line of sight, their troughs and crests will (nearly) cancel once we per-
form the integration, especially on small angular scales, where there are many
such troughs and crests. This is illustrated in Figure 13.4(a). (Modes transverse
to the line of sight do not suffer such a cancellation—but, of course, they do not
cause any Doppler shift either.)

Thus, angular correlations can be generated only by modes perpendicular to
the line of sight (which themselves would not contribute if only u appeared—it
is the nonlinear terms δbu and δxu that generate anisotropies). In that case, the
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components of q parallel to k also do not contribute to the anisotropy because
they are small after projection. The anisotropy is therefore generated only by
the component of q perpendicular to the wave vector, which we call q⊥. After
projection on the sky, the resulting angular fluctuation power spectrum is9

C� = (σT n̄
c
e)

2
∫
dη

r2
W(η)2Pq⊥(�/r, η), (13.4)

where n̄ce is the total comoving electron density, r is the comoving distance
from the observer to a conformal time η, W = x̄ie

−τes/a2, and Pq⊥ is the three-
dimensional power spectrum of the projection q⊥. This integral picks out the
physical scales corresponding to a given observed multipole moment, weight-
ing the contribution from each redshift by the factor W 2/r2, which includes
both the IGM ionized fraction (or the fraction of matter that can actually scatter
CMB photons at the relevant redshift) and the effect of subsequent scattering
that washes out the secondary anisotropies (via the exponential). We illustrate
the physics of this process in Figure 13.4.

The power spectrum Pq⊥ involves four-point functions (or correlations be-
tween four quantities) in many possible combinations, some of which are neg-
ligible. For example, in practice these four-point functions factor into pairs
of normal power spectra, because the “connected” higher-order correlations
vanish for Gaussian random fields. Moreover, terms like Pδbv (i.e., the cross–
power spectrum between baryon density and velocity) can be ignored because
of the scale mismatch between these two quantities (recall that in linear the-
ory, v ∝ δ/k, so it is driven by large-scale modes—while the δ fluctuations of
interest occur only on small scales).

In most models, the dominant contribution to Pq⊥ is10

POV = 1

3
v2

rmsPδbδb , (13.5)

or the Ostriker-Vishniac effect, which arises from scattering off ionized clouds
with bulk motions. The rms velocity is given by

v2
rms =

∫
dk

k2

2π2
Pvv(k), (13.6)

where Pvv is the power spectrum of the velocity (cf. equation 2.23). Because this
effect is most important on small scales, one must usually use the nonlinear
density power spectrum (filtered appropriately for small-scale baryonic struc-
ture) to evaluate the Pδbδb contribution—either through numerical simulations
or an approximation like the halo model.

The Ostriker-Vishniac effect has contributions from all redshifts at which
the IGM (or even gas near or within galaxies) is ionized, and it is strongest at
lower redshifts, where both the rms velocity field and the density fluctuations
are most significant. Its total amplitude does, however, depend on when reion-
ization began, and its shape depends very slightly on this as well (both because
of the changing angular diameter distance and the evolving characteristic scale
of structure formation).
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Figure 13.5 Left: Angular power spectrum of the Ostriker-Vishniac effect on the
CMB. The thick, solid curves take models in which reionization ends at
zreion = 8, 12, and 18, from bottom to top. The thin solid curve shows the
signal without any baryonic filtering, while the thin dashed curve shows the
signal assuming only a linear theory density field. Right: The patchy reion-
ization signal from the same models (lower left, thick curves) and the total
CMB anisotropy power spectrum (at upper right, including the primordial,
lensing, and Ostriker-Vishniac components as well); note the change in the
scale of the vertical axis on this panel. In addition, the dotted curve shows
the patchy signal from a model with extended reionization. The open circles
show the estimate from a seminumerical simulation of reionization, with
the thin line a corresponding analytic estimate with the same reionization
history; the two match very well. The error bars at upper right are repre-
sentative of existing instruments, assuming perfect foreground removal.
McQuinn, M., et al., Astrophys. J. 630, 643 (2005). Reproduced by permis-
sion of the AAS.

The left panel of Figure 13.5 shows some example angular power spectra
of the Ostriker-Vishniac effect in three different models of reionization; in
each case x̄i ∝ fcoll and the models are calibrated so that reionization ends at
zreion = 8, 12, and 18 (thick dashed, solid, and dot-dashed curves, respectively).
Note that even with these rather different histories, the Ostriker-Vishniac signal
changes by only ∼10%. Thus, deducing information about reionization from
this component of the CMB anisotropies will be challenging, requiring very
careful modeling of the dominant lower-redshift contributions.

The other two terms that contribute to Pq⊥ involve integrals over PvvPδxδx
and PvvPδbδx , which are known as the “patchy reionization” contributions.11 Be-
cause these involve fluctuations in the ionized fraction, they are relevant only
during the reionization era itself and so better isolate that period’s properties.
Physically, they originate from the peculiar velocities of the ionized bubbles
that appeared during reionization, which have biased velocities relative to the
background. They can actually be estimated analytically using the simple tools
describing the statistical properties of the ionization field developed from the
excursion set model of reionization in §9.7.
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The patchy reionization contribution therefore depends both on the structure
of the ionized bubbles and their relation to the density field; the right panel
of Figure 13.5 shows some example models. The thick curves at bottom left
show this component of the signal for the same models as in the left panel.
In all cases, the signal peaks at � ∼ 2000, which is simply the angular scale
corresponding to the projected physical sizes of the bubbles midway through
reionization (where the patchiness peaks). The different amplitudes of the con-
tribution come not from differences in the reionization models—nb(m) is very
similar in all three of these—but because of the different ionized gas densities
during reionization.

Actually, the duration of reionization is the most important factor determin-
ing the amplitude of the patchy signal: the longer the contrast between ionized
and neutral gas persists, the longer the patchiness continues to generate CMB
fluctuations. The thick dotted curve illustrates this condition: it takes a model
in which reionization lasts roughly twice as long as in the solid curve (but ends
at the same time). Note that the patchy signal increases by nearly a factor of 2.
Thus, CMB secondary anisotropies provide a tool for studying not only the tim-
ing of reionization but also its duration.

The upper right set of curves in the right panel of Figure 13.5 show the sum
of the Ostriker-Vishniac, patchy reionization, and primordial anisotropies (in-
cluding lensing); the inset zooms in on the most useful part of the spectrum
for studying the cosmic dawn. In this regime, the primordial anisotropies die
off very quickly owing to diffusion (Silk damping) inside the recombination
surface; nevertheless, they are still very large near the peak of the patchy reion-
ization contribution. Instead, it is the tail of this distribution, together with the
Ostriker-Vishniac effect generated by all structure past reionization, that can be
separated. The error bars here show estimates for ongoing ground-based CMB
surveys, whose early results are encouraging.12 Despite the apparently modest
differences among the models, such an experiment can still easily distinguish
them.

However, the primary challenge to making these measurements are contami-
nants: both lower-redshift point sources and other CMB secondary anisotropies
pose substantial problems. By far the strongest secondary at these angular
scales is the thermal Sunyaev-Zel’dovich effect, which describes the frequency
shift undergone by CMB photons scattering inside hot gas (in particular nearby
galaxy clusters). In principle, because this scattering process is frequency de-
pendent (and disappears entirely at 218 GHz), it can be separated from other
anisotropies (including the kinetic Sunyaev-Zel’dovich effect). Constraints on
the cosmic dawn from these secondaries will rely on accurate removal of these
“foregrounds” as well as accurate modeling of the Ostriker-Vishniac effect at
lower redshifts. A particularly insidious problem is the correlation between the
point sources and the thermal Sunyaev-Zel’dovich effect.

In principle, sources from the cosmic dawn may also contribute to this ther-
mal Sunyaev-Zel’dovich signal, which arises when hot electrons undergo
inverse-Compton scattering off the CMB photons, and transfer energy to the
photon field. The magnitude of this effect is parameterized by the Compton-y
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parameter, which is the typical energy transfer per scattering times the number
of scatterings. It also measures the resulting spectral distortion in a blackbody
spectrum: in the Rayleigh-Jeans limit, the temperature distortion is �Tγ /Tγ =
−2y. The contribution from a volume element with electron scattering optical
depth dτes is

dy = kB(Te − Tγ )

mec2
dτes. (13.7)

Thus, the total y-distortion depends on both the ionization and thermal his-
tories of the gas; importantly, however, it includes both gas inside and outside
galaxies.

The sources that reionized the Universe may very well make a nonnegligible
contribution to the overall y-distortion, owing to the supernovae that inevitably
accompany the massive stars able to ionize the IGM. Even though these super-
novae may remain confined to the ISM of their host galaxies, they still likely
lose a substantial fraction of their energy to the CMB, inducing a y-distortion.
Let us begin by computing the energy injection per baryon from such explo-
sions. We write ωSN for the supernova energy produced per solar mass in stars
formed; this is ∼1049 ergM−1

� for typical stellar IMFs (see §6.4.1). We then write
the fraction of baryonic mass in stars, ffcoll according to our usual definitions,
in terms of the number of ionizing photons produced per baryon in the Uni-
verse, QH II, and the number produced per baryon inside stars, Nion. Then, the
available thermal energy per baryon is

εSN

n̄b
∼ 10QH II

(
400

Nionfesc

ωSN

1049 erg/M�

)
eV. (13.8)

Interestingly, this energy produced in supernovae is quite close to the amount
actually needed to ionize the IGM (∼13.6 eV per baryon), though the amount
injected into the CMB may be much smaller.

Now, let us assume that this energy injection occurs at some redshift zSN.
The CMB spectral distortion satisfies

y = −1

2

�Tγ

Tγ
∼ −1

8

�Uγ

Uγ
∼ 10−6fcomp

(
10

1 + zSN

)(
εSN/n̄b

20 eV

)
(13.9)

where fcomp is the fraction of the supernova energy that is actually injected into
the CMB. This is a reasonably large number: the current observational limit,
from the FIRAS instrument on the Cosmic Background Explorer (COBE) is13

y ≤ 1.5 × 10−5, and models that predict signals from lower redshifts are just
a factor of about three times larger than equation (13.9). (However, the photo-
heating accompanying reionization does not make a substantial contribution:
typically just a fraction of an electron-volt is injected to the CMB per baryon,
which produces a very small signal compared with the much hotter gas at lower
redshifts.)

Such an observable signal hinges on the injection of the supernova energy
into the CMB, so that fcomp ∼ 1. As we saw in §6.4.2, many other processes
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help cool the remnants, especially if they remain confined to their galaxies. The
most important is radiative cooling in the dense shell plowing through the IGM
(or ISM). Simple estimates suggest that the energy contained in the explosion
blast wave must be very large and that the remnant must spend the bulk of its
time plowing through gas near the IGM density for more than just a few percent
of the energy to be lost to the CMB.14 This would require a strong superwind
to escape into the IGM and would have many other important consequences,
such as metal enrichment and mixing of the IGM gas (see §6.4 and §6.5.2).

If any of these mechanisms do cause a substantial y-distortion, the strong
clustering of early stellar sources would also induce substantial angular fluctu-
ations in the CMB temperature field through the thermal Sunyaev-Zel’dovich
effect, which would then also be observable once the contribution from nearby
hot galaxy clusters was subtracted. Again, the modeling of lower-redshift con-
taminants, which depends on uncertain factors like cluster cooling and turbu-
lence, AGN feedback, and the poorly understood properties of gas inside small
galaxy groups, will be crucial to disentangling any possible high-redshift contri-
bution.

13.2 Diffuse Backgrounds from the Cosmic Dawn

Although many of the large telescopes planned for the next decades can study
individual high-redshift galaxies and quasars in exquisite detail, one can also
learn a great deal about these objects—even without resolving them—by study-
ing the integrated radiation backgrounds generated by such sources. If one does
not attempt to identify individual galaxies, the telescope requirements are more
modest, and the characteristics of the entire galaxy population can be measured.
Crucially, unlike in a traditional galaxy survey, measures of the the integrated
emission are sensitive even to extremely faint galaxies—which may dominate
the cumulative luminosity density of the Universe if the luminosity function is
steep.

Of course, these benefits come with a price—diffuse backgrounds are much
more difficult to interpret in the presence of other astronomical (or terrestrial)
backgrounds that they overlap. Much as with the spin-flip background, the
observational challenge is typically to extract subtle cosmological information
from a much larger net signal. This task is easiest for a background generated
by an emission line, because it then has both angular and frequency structure
that clearly reflects the source population. Broadband backgrounds can be dis-
tinguished only by resolving other possible contaminants (as in the X-ray back-
ground discussed in §9.8.1); we therefore focus primarily on line backgrounds
here.

The first interesting aspect of such backgrounds is their amplitude as a func-
tion of redshift, which provides a measure of the total emissivity in this radia-
tion mechanism through the cosmic dawn. For an emission line, where each
observed frequency corresponds to a different distance, such a background is
even more useful because it allows us to measure redshift evolution.
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Let us assume that a source population has a specific emissivity ε(m, r, z)
(with units of energy per time per frequency per comoving volume). Neglecting
intervening absorption, the observed specific intensity Im at a frequency mobs

along a line of sight n̂ is the integral of the emissivity (cf. equation 4.43),

mobsImobs = c

4π

∫
dz m(z)

ε[m(z), n̂r(z), z]
H(z)(1 + z)2

, (13.10)

where m(z)= mobs(1 + z) is the emission frequency at a redshift z, and r(z) is
the comoving distance along the line of sight to the source. If εm extends over a
wide frequency range, Imobs will therefore sample a wide redshift range. But if εi
describes a line with rest wavelength mi , then the observed intensity will sample
only a specific redshift zobs = mi/mobs − 1. As with the spin-flip background,
we can use this relation between observed frequency and distance to map the
structure of the emission in three dimensions.

Without resolving individual sources, background measurements will be
sensitive to large-scale fluctuations in the emissivity, which we can easily pa-
rameterize with the galaxy power spectrum, either taken from simulations or
computed with the halo model (see §3.6.1). For example, let us assume that
the luminosity in line i of a halo with mass m is Li(m) and that a duty-cycle
fraction fduty (which may also be a function of mass) of dark matter halos with
m > mmin emit in this line. Then, the mean emissivity in the line is

〈εi〉(z) =
∫ ∞

mmin

dmLi(m)fduty(m)n(m). (13.11)

Note that this integral has units of energy per (comoving) volume per second
and is not a specific emissivity; rather, it includes all the emissions in the line.

The fluctuations also trace the population of massive halos, so it is natural
to use the halo model to estimate them. However, for a diffuse background
originating from unresolved sources, we are typically not concerned with the
signal structure on scales below the typical halo’s virial radius, which is in any
case likely to be simply a set of point sources generated by each galaxy residing
in the halo. We can therefore treat each halo as a single point source and ignore
the one-halo term.

In this case, the power spectrum of fractional emissivity fluctuations is Pi(k)
≈ P 2h

i (k), with

P 2h
i (k) = Plin(k)

[∫
dm

Li(m)fduty(m)n(m)

〈εi〉 beff(k|m)
]2

, (13.12)

where we have used the effective scale-dependent bias that incorporates non-
linear effects in the two-halo term (see §3.6.3) and assumed that we are on
sufficiently large scales that ugal(k|m) ≈ 1 for all the halos of interest. Mapping
the spatial fluctuations in this background will therefore inform us about the
number densities of these sources together with their scale-dependent bias; in
principle, the latter is separable because of its special shape, so these differ-
ent physical effects can be measured. (If the observations extend to scales fine
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enough to allow the one-halo term to be measured as well, they will allow a
similar separation.)

Even though the one-halo term itself is significant only on small scales, the
shot noise arising from the finite number of sources (see §3.6.4 and §10.4.1)
can be significant, because halos massive enough to host galaxies were still
relatively rare at these early times. Shot noise can be especially important if
a small duty cycle limits the fraction of time for which any individual halo is
luminous or if only very massive halos emit strongly in the relevant line. This
shot-noise term produces a white-noise spectrum (i.e., independent of k) with
the amplitude of the emissivity power spectrum equal to

Pshot,i (k) =
∫ ∞

mmin

dm
L2
i (m)

〈εi〉2
fduty(m)n(m). (13.13)

With equation (13.11) for the mean emissivity, the shot-noise term decreases
with increasing source density, just as in the simple counting case (see §10.4.1).
However, in contrast with our earlier discussion of shot noise (see
equation 10.22), in which we were concerned only with counting galaxies, for
a diffuse background the contribution from different sources to the observed
signal is weighted by their luminosity—thus, this expression has a factor of L2

i

inside the integral.
The shot noise is therefore dominated by the most luminous sources, and

one can often substantially decrease its amplitude by removing those bright
sources that can be individually detected. In that case the remaining diffuse
background is the sum of the emissions from galaxies below the detection limit
of the survey—which extends the “dynamic range” of measurements. Alterna-
tively, the shot-noise term can often be removed statistically, because its shape
(white noise) is precisely defined.

Note that we have expressed these fluctuation spectra in their fractional forms
—that is, Pi has units of volume, independent of the emissivity. This means
that they apply equally well to the emissivity or to the observed intensity—for
example, one simply multiplies by the mean observed intensity to recover the
latter in dimensional form.

13.2.1 The Near-Infrared Background

As an important example, we consider the integrated background from UV
photons emitted during the cosmic dawn. This background has two principal
components: first, a broadband background from stellar continua, and second,
line and continuum components from the reprocessing of ionizing photons—
which principally result in Lyman-α photons (see chapter 11). The latter is the
most useful, because the broadband component involves a mix of many emis-
sion redshifts for any given observed frequency, making tomography
impossible.

To estimate the monopole amplitude of this background and its spectrum,
we must estimate the contribution of all these different processes. Assum-
ing that the background is generated entirely by star formation, a convenient
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parameterization is

ε(m, z) = ρ̇(z)c
2
∑
i

〈f im 〉, (13.14)

where ρ̇ is the formation rate of stellar mass per comoving volume, the sum
extends over all radiation processes (labeled by i), and 〈f im 〉 is the fraction of the
stellar rest mass energy that is released in process i in the frequency interval
(m, m + dm) (for stars, it must therefore be averaged over both their IMF and
their lifetime). The nuclear burning efficiency for stars implies that m〈f im 〉 ∼
10−3. With this estimate, and assuming high redshifts for the integrand, equa-
tion (13.10) becomes15

mobsImobs ≈ 11 nW m−2 sr−1
∫

dz

1 + z
ρ̇(z)

(
10

1 + z

)5/2 ∑
i

(
m(z)〈f im(z)〉

10−3

)
,

(13.15)
where ρ̇ is measured in units of M� yr−1 Mpc−3.

The following processes contribute to this background:

• The stellar continuum, which (below the Lyman edge) can be roughly ap-
proximated as a blackbody with some effective temperature Teff that is a
function of stellar mass.

• Free-free and free-bound emission from H II regions. The total luminosity
of this component may be written as

Lff,fb
m = εff,fb

m QiṀ

nenpαB
, (13.16)

where εff,fb
m is the volume emissivities of these processes, Q̇i is the produc-

tion rate of hydrogen-ionizing photons per unit star formation rate, and
Q̇iṀ/nenpαB is simply the volume of the ionized regions, assuming the
Strömgren sphere limit. Because these processes are generated by colli-
sions of electrons and protons, the emissivity is

εff,fb
m = 4πnenpgeff

e−hm/kBT

T
, (13.17)

where the “Gaunt factor” geff ∼ 1 depends weakly on temperature and
density.16 Thus, the total luminosity is independent of the local density.
This means that for the purposes of estimating the diffuse background, we
do not need to worry about the internal structures of the galaxies, or even
whether the ionizing photons escape into the IGM: that will clearly affect
the small-scale spatial distribution of the photons, but it has no effect on
the overall luminosity, as long as the H II regions are unresolved and in
ionization equilibrium.

• Recombination line emission—and in particular the Lyman-α line (higher
Lyman-series photons are absorbed and cascade to either Lyman-α or the
two-photon continuum discussed next). In §11.1, we saw that the Lyman-α
profiles (both spatial and spectral) of individual galaxies depend strongly
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on the structure and physics of the galaxies and their local environments.
However, the integrated emission is much simpler to estimate; assuming
only that the mean free path of an ionizing photon is much shorter than the
Hubble length, and that ionization equilibrium applies, the net luminosity
of Lyman-α photons is simply (cf. equation 11.2)

Ldb
Lyα = 2

3
T ISM

Lyα QihmαṀ. (13.18)

Here, T ISM
Lyα accounts for absorption—and subsequent destruction—of

Lyman-α photons by dust; note that there is no corresponding factor for
absorption of the Lyman-α photons inside the IGM, because those pho-
tons are scattered but not destroyed. As with the free-free and free-bound
processes, there is no distinction between ionizations that occur inside a
galaxy and in the IGM, for both can produce Lyman-α photons through
recombinations (though we do assume here that recombinations instan-
taneously follow ionizations, which is not accurate at low IGM densities).
We ignore the Balmer series or longer-wavelength transitions because they
carry much less energy than the Lyman-α line.

• Two-photon emission from (forbidden) decays between the 2S and 1S lev-
els of hydrogen. The former level can be populated by radiative cascades
following recombinations. The luminosity of this process is again propor-
tional to the rate of ionizing photon production,

L2γ
m = 2hm

mα
(1 − fLyα)P (m/mα)QiṀ, (13.19)

where fLyα ≈ 0.64 is the fraction of cascades that result in Lyman-α pho-
tons (here we have assumed efficient mixing of the angular momentum
states), the factor 2 appears to account for the two photons produced in
each decay, and P(x)dx is the normalized probability per two-photon de-
cay of obtaining one photon in the range dx = dm/mα .17

Figure 13.6 shows some example (monopole) spectra containing all these
processes; they are normalized to the overall star formation rate density ρ̇.
These examples include only stars from z = 7–15. In the left and right pan-
els the metallicity varies (which has a significant effect on the rate of ionizing
photon production); within each panel, the different line styles take different
prescriptions for the IMF. The solid line corresponds to a standard Salpeter
IMF, with the number of stars forming per unit mass ∝ m−2.35. The dashed
line refers to a Larson IMF, with the mass spectrum ∝ m−1

 (1 + m/mc)
−1.35,

where the characteristic mass ismc = 50M�. Finally, in the left-hand panel the
dot-dashed curve takes a flat distribution by mass over the range 100–500M�.

The curves in each panel show the contributions of different processes to
the overall spectrum. The uppermost is of course the total background per unit
star formation rate. The straight line peaking at ∼ 1µm shows the contribu-
tion from Lyman-α photons; note that the shape is simply a consequence of
the assumption of a constant star formation rate and is not a robust prediction.
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Figure 13.6 Near-IR background spectrum (see Color Plate 31 for a color version of this
figure). This example includes star formation in the range z = 7–15, which
dominates the background between 1 and 2µm. The left panel assumes
metal-free stars, while the right panel takes a metallicity Z = 0.02Z�. The
different line styles show different IMFs (see text). The different curves
show the total emission, the Lyman-α contribution, the stellar continua,
the two-photon continua, the free-bound emission, and finally the free-free
emission (from top to bottom at 1µm). Fernandez, E. R., & Komatsu, E.,
Astrophys. J. 646, 703 (2006). Reproduced by permission of the AAS.

The next strongest process, which peaks near 1µm as well, is the stellar contin-
uum; the curves here continue through the Lyman series without taking into
account the sawtooth IGM absorption of these photons (see Figure 6.2). The
curve peaking at somewhat lower energy, but with a comparable amplitude,
comes from the two-photon decays: note that this is well below the Lyman-α
peak not because significantly less energy goes into this process but because
it is distributed over a wide frequency interval. Finally, the lowest amplitude
curves (visible at lower left) show the contribution from free-bound and free-
free emission, neither of which is significant.

Figure 13.6 shows several interesting points. First, in the most interesting
wavelength range (∼1–2µm here) the background is usually dominated by
the Lyman-α photons—especially for the (hotter) metal-free stars—because this
line contains a significant fraction of the entire ionizing luminosity of the
starlight. Nevertheless, other processes provide nontrivial corrections at higher
wavelengths. Note that stars at higher redshifts do not significantly affect the
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background in this band either, because their Lyman-α emission lies at longer
wavelengths and (unless the comoving star formation rate becomes much
higher at high redshifts) the stellar continua are quite weak. The near-IR back-
ground therefore offers a relatively clean probe of the ionizing photon budget
during the bulk of the cosmic dawn era.

Unfortunately, measuring this signal is extremely difficult: like the spin-flip
background, it suffers severe contamination from “local” sources, IR emission
from lower-redshift galaxies and zodiacal light from our own solar system,
which is roughly three times the expected signal. This background arises from
dust particles inhabiting the ecliptic plane that scatter sunlight and has proved
very difficult to model with sufficient precision to extract the high-redshift sig-
nal reliably.

Fortunately, as with the spin-flip background, fluctuations in the near-IR back-
ground light may be easier to detect than this monopole spectrum, because vari-
ations in the foreground contaminants have different spatial and spectral struc-
ture than the high-redshift light. In fact, the current best estimates of the mono-
pole background come from measurements of the fluctuations themselves; they
indicate that the excess over the known backgrounds cannot be much larger
than ∼ 1 nW m−2 sr−1. This value provides an interesting limit on the cosmic
star formation rate at z ∼ 10.18

However, for higher-frequency diffuse backgrounds like this one, it is very
difficult to recover fluctuations along the line of sight, as that requires an in-
tegral field spectrograph with sufficiently high spectral resolution to separate
the features. To date, no such instruments are available over the wide fields
of view necessary to measure this background in the near-IR. Instead, these
backgrounds are integrated over a finite frequency interval, and, typically, the
angular fluctuations are measured (just as in the CMB) rather than the three-
dimensional structure. This makes the foreground subtraction somewhat more
difficult (unless several contiguous filters are used), because the spectral infor-
mation is lost. Most often, the subtraction relies on modeling of the foreground
structures.

In this case, we measure the band-averaged intensity I (n̂),

I (n̂) = c

4π

∫
dz

ε̃[n̂r(z), z]
H(z)(1 + z)2

, (13.20)

where ε̃ is the integral of the comoving specific volume emissivity over the
emission frequency range corresponding to the observed band.

To construct the angular fluctuation spectrum, we take the spherical har-
monic transform of equation (13.20). We begin with Rayleigh’s formula for the
spherical decomposition of a plane wave,

e−ik·x = 4π
∑
�m

(−i)�j�(kx)Y ∗
�m(k̂)Y�m(n̂), (13.21)

where j� is the spherical Bessel function of order �, and Y�m are the spherical
harmonics. As a reminder, � fixes the angular scale of variations in the function,
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andm chooses among the possible configurations on that scale. This decompo-
sition determines the expansion coefficients of

I (n̂) =
∑
�m

a�mY�m(n̂) (13.22)

in terms of the three-dimensional Fourier transform of the emissivity, ε̃(k, z),

a�m = c(−i)�
∫

dz

H(z)(1 + z)2

∫
d3k
(2π)3

ε̃(k, z)j�[kr(z)]Y ∗
�m(k̂). (13.23)

The angular power spectrum is usually expressed as the ensemble average of
the spherical harmonic coefficients, C� = 〈|a�m|2〉. The ensemble average acts
on the two factors of the (band-averaged) emissivity to give the three-dimen-
sional power spectrum of the emissivity, Pε̃ (which we define relative to the
mean emissivity, 〈ε̃(z)〉, so that Pε̃ has units of volume, just like the matter
power spectrum). Thus, the angular power spectrum is

C� = c2

8π3

∫
dz

H(z)(1 + z)2

∫
dz′

H(z′)(1 + z′)2

×
∫
k2dk〈ε̃(z)〉2

Pε̃(k, z)j�[kr(z)]j�[kr(z′)]. (13.24)

This form has units of (flux per solid angle) squared, because we have integrated
the flux density over a narrow band.

Fortunately, the inner integral can be simplified in the small-angle limit
(� � 1). The integral of a product of two spherical Bessel functions is∫

k2dk j�(kx)j�(kx
′) = π

2

δ(x − x ′)
x2

. (13.25)

In the large � limit, j� oscillates very rapidly, and the integral is dominated by
k ≈ �/r . Thus, provided that Pε̃ is a slowly varying function, we can extract it
from the integral and evaluate its argument at k = �/r . This Limber’s approxi-
mation allows us to write

C� ≈ c

(4π)2

∫
dz

H(z)r2(z)(1 + z)4
〈ε̃(z)〉2

Pε̃

(
k = �

r(z)
, z

)
. (13.26)

In other words, if we use the simple conversion � ≈ kr , the angular power
spectrum is simply the projection of the three-dimensional power spectrum.
Note that if the observed band is very thin, so that the line component of the
background arises from only a narrow redshift window, we can easily invert
the angular power spectrum to obtain the three-dimensional version, at least
on scales larger than the width of the redshift window (on smaller scales the
angular power is damped by cancellations along the line of sight). However,
even with such a narrow window, the broadband component still arises from a
wide range of redshifts, so it still requires modeling to invert properly.

The cumulative near-IR background fluctuations are again built from the
Lyman-α emission, stellar continua, two-photon continua, and free-free/free-
bound emission. However, unlike for the mean signal, the spatial location of
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Figure 13.7 Comparison of recent observational data with theoretical predictions (taken
from a numerical simulation of reionization) for the angular power spec-
trum of near-IR background fluctuations. The two panels also show mea-
surements of angular fluctuations in the 3.6-µm IRAC band and the 1.6-µm
NICMOS band (see text). In each one, the dot-dashed curve shows predic-
tions for the IGM emission, while the solid curves show the range of pre-
dictions for the total angular power spectra; these two limiting cases take a
light, metal-poor population with high f and small fesc (light) and a heavy,
metal-free population with low f and high fesc (dark curve), both normal-
ized to have the same overall IGM ionization. The dotted curves show the
associated shot-noise terms. Fernandez, E. R., et al., Astrophys. J. 710, 1089
(2010). Reproduced by permission of the AAS.

this emission (within or outside galaxies) is important, because recombinations
that occur over the ∼10 Mpc ionized bubbles in the IGM change the spatial
scales of the fluctuations (and create such low surface-brightness features that
they are all but unobservable in practice). In most circumstances, the fluctua-
tions trace the galactic component and diminish as the escape fraction of UV
photons, fesc, approaches unity.

Figure 13.7 shows some predictions of this fluctuating background in a range
of models of star-forming galaxies during the reionization era. These examples
all use a numerical simulation of reionization to predict the signal; the sim-
ulation fixes only the total ionizing efficiency ζ , so there remains a good deal
of freedom in the amplitude of the near-IR background, which has a different
dependence on fesc in particular. The two models shown here span the range
of possibilities in this simulation (though it is worth noting that there is even
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more variation outside of its particular star formation history). The light solid
line corresponds to a low-metallicity stellar population with a Salpeter IMF (a
mass spectrum ∝ m−2.35

 , ranging from 3 to 150M�), a very high f = 0.5, and
a relatively small fesc = 0.19. The dark solid line refers to very massive Popu-
lation III stars (with the Larson IMF described previously and a characteristic
mass mc = 250M�), a low f = 0.01, and an escape fraction fesc = 1. Since
the latter model has no line emission from inside galaxies, the fluctuations seen
here are almost entirely due to the stellar continua.

The wide range of amplitudes for the angular power spectrum between these
two extreme models illustrates how sensitive the near-IR background is to the
parameters of star formation in high-redshift galaxies. In combination with an
independent measure of the IGM ionization state, this probe can help break
important degeneracies in the ionization efficiency. For a given ζ , the signal is
maximized with a large star formation efficiency and small fesc (so that more
stars form, increasing both the stellar continuum and the overall production
rate of ionizing photons without affecting the IGM) and a low-mass stellar popu-
lation (which also boosts the stellar continuum as compared with the ionization
rate).

The shapes of the power spectra are set by a combination of the two-halo
term and the shot-noise contribution (which is shown separately by the dot-
ted curves). The latter is characterized by a white-noise power spectrum with
C� ∝ �0. The former mirrors the linear power spectrum multiplied by the
bias—in this case, nonlinear corrections are quite significant; otherwise, the
power spectrum would have peaked at � ∼ 103. Instead, in the two-halo term,
�(�+ 1)C� ∝ �1/2 when the nonlinear bias is included.

Interestingly, current observations are starting to pose interesting limits on
these models: the two sets of points in the left-hand panel show independent
estimates of the residual fluctuations due to unresolved sources in images from
the Infrared Array Camera on the Spitzer satellite at 3.6 µm.19 From our pre-
ceding discussion of the mean background, this is most sensitive to Lyman-
α at very high redshifts and (most importantly in these models) continuum
processes at a range of redshifts. The right panel shows data from the NIC-
MOS camera on the Hubble Space Telescope, which operates at 1.6µm and
so is sensitive to Lyman-α emission at z ∼ 12 (and continuum processes at all
redshifts).20

The aim of all these efforts is to find fluctuations near the upper limits of
theoretical expectations; however, note that the observed fluctuations may very
well include other currently unresolved populations, such as faint low-redshift
galaxies. In fact, the solid line in these models corresponds to a mean inten-
sity of 15 and 60 nW m−2 sr−1 in these two bands, well above current limits,
which suggests that, in fact, most of the observed fluctuations are due to lower-
redshift or local contamination. The dashed line represents a mean background
of 0.2–0.8 nW m−2 sr−1 in these two bands, which can easily be accommodated
by estimates of the mean intensity.

The dot-dashed curves in these plots show the prediction for the angular fluc-
tuations generated inside IGM H II regions. Given a particular simulation of
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reionization, this component is fixed by the densities and locations of the ion-
ized bubbles. In any case, it is very small—almost always negligible compared
with the halo contribution—because of the very low IGM density (and hence
recombination and collision rates).

In summary, the near-IR background offers an intriguing view of the evo-
lution of early stellar populations that is highly complementary to other ap-
proaches focusing on measuring the ionization state of the IGM or on detecting
individual bright objects. The primary challenges to understanding the back-
ground are, as in so many other areas, foregrounds: learning how to separate
the relatively featureless angular and spectral behavior from other low-redshift
contaminants and the zodiacal light. A combination with other, complementary
probes may very well prove to be the best way to accomplish this goal.

13.2.2 Diffuse Backgrounds of Radio Lines

Another set of interesting diffuse backgrounds arise from radio and submil-
limeter lines: the same strong emission lines we discussed in §8.9.4. Two par-
ticularly interesting examples are CO, which has a forest of rotational lines
with rest frequencies J mCO for a transition from excited state J to J − 1 (here,
mCO = 115.3 GHz), and the fine-structure line of singly ionized carbon C II,
which has a rest wavelength of 158µm (or frequency 1.9 THz). Unlike
Lyman-α, these lines fundamentally trace the fuel for star formation rather than
the feedback exerted by young stars on their surroundings. [C II] is a common
line from neutral gas (because the ionization potential of C I lies below that of
H I), and it is an important coolant in the outskirts of gas clouds. CO, however,
forms in the molecular complexes out of which stars form, and it is an impor-
tant coolant in that gas. Table 8.1 lists the most prominent interstellar emission
lines in star-forming galaxies, along with their characteristic luminosity per star
formation rate [in units of L�(M� yr−1)−1].

Some of these lines are particularly strong; for example, the [C II] line may
carry as much as a percent of the total luminosity of nearby quiescent galaxies
like the Milky Way. Another advantage of these lower-frequency lines, which
owing to the cosmological redshift are observed in the centimeter or millime-
ter range, is the relative ease of building instruments with both large fields of
view and good spectral resolution to measure a diffuse background. Such mea-
surements are then ideally suited for cross-correlation with other lines or the
spin-flip background (see §13.3).

Moreover, cross-correlation is likely necessary to recover any of these line
backgrounds, because a single observed frequency will pick up emission from
many different lines at many different redshifts. For example, an observed band
around 30 GHz will be sensitive to CO(2–1) at z = 6.7 and to CO(1–0) at z = 2.8.
One can isolate the high-redshift signal by comparing two different lines at the
proper observed frequencies. For example, CO(1–0) at 10.5 GHz and CO(2–1)
at 21 GHz both sample z = 10 galaxies. So long as no other emission lines have
the same spacing, the cross-correlation between these two measurements will
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Figure 13.8 The cross–power spectrum of O I(63 µm) and O III(52µm) at z = 6 mea-
sured from mock simulation data for a hypothetical IR space telescope (see
text). The solid line is the cross–power spectrum measured when only line
emission from galaxies in the target lines is included. The points with error
bars are the recovered power spectrum when detector noise, contaminat-
ing line emission, galaxy continuum emission, dust in our Galaxy, and the
CMB are included (see equation 13.29). Visbal, E., Trac, H., & Loeb, A.,
J. Cosm. Astropart. Phys. 11, 16 (2011). Copyright 2011 by the Institute of
Physics.

pick up information from z = 10 while eliminating all the contaminants, which
simply contribute to the overall noise.

For unresolved point sources emitting in a pair of lines labeled 1 and 2, the
cross–power spectrum at a wavenumber k can be approximated as

P1,2(k) = S̄1S̄2b̄
2Plin(k)+ Pshot, (13.27)

where S̄1 and S̄2 are the average fluxes in lines 1 and 2, respectively; b̄ is the
average bias factor of the sources; Plin(k) is the (linear) matter power spectrum;
and Pshot is the shot-noise power spectrum due to the discrete nature of galaxies
(see equation 13.13). The rms error in the cross–power spectrum at a particular
k-mode is given by

δP 2
1,2 = 1

2
(P 2

1,2 + P1totalP2total), (13.28)

where P1total and P2total are the total power spectra of the individual line mea-
surements. Each of these includes terms for the power spectra of the target
line, detector noise, and any contaminating lines that fall in the same band.
Figure 13.8 shows the expected errors in the determination of the cross–power
spectrum using the O I(63 µm) and O III(52µm) lines at a redshift z = 6 for an
optimized spectrometer on a 3.5-m space-borne IR telescope, providing
background-limited sensitivity for 100 diffraction-limited beams covering a
square on the sky 1.7◦ across (corresponding to 250 Mpc) and a redshift range
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Figure 13.9 Three-dimensional power spectrum of CO(2–1) fluctuations in a simulation
of reionization at several different epochs (z = 6.8, 7.3, 8.8, and 9.8). The
CO emissivity of each galaxy is calibrated to local relations, and the total
star formation rate density at z = 6.8 is fixed to the critical value required
to maintain ionization (see text). The short-dashed line assumes that only
massive galaxies emit CO radiation (possibly because the CMB dominates
the dust temperature in smaller galaxies). For this scenario, we also show a
simple model that includes shot noise (long-dashed curve) and an estimate
of the two-halo term using the bias from the simulations (dot-dashed curve).
Lidz, A. et al., Astrophys. J. 741, 70 (2011). Reproduced by permission of the
AAS.

of �z = 0.6 (280 Mpc) with a spectral resolution of (�m/m) = 10−3 and a total
integration time of 2 × 106 seconds.

Figure 13.9 shows another example of a diffuse background in the radio,
the autocorrelation of CO(2–1). (Again, this would likely be observable only if
cross-correlated with another CO line, but that would only marginally affect
the amplitude). The predictions are derived from a numerical simulation of
reionization, and we show results for several different redshifts from the early
to late stages of reionization (in the simulation, QH II = 0.82 at z = 6.8, and
0.21 at z = 8.8).

The key assumptions to such a model are the mean intensity of the CO emis-
sion (which sets the overall normalization of the curves) and the luminosity–
mass relationship of the source halos (which affects the shape of the curve by
weighting the halos differently). The overall normalization requires two ingre-
dients: an estimate of the total star formation rate (SFR) density and a recipe
for estimating the CO luminosity as a function of SFR (and possibly other fac-
tors, like the metallicity). Here, the latter is simply calibrated to low-redshift,
rapidly star-forming galaxies following equation (8.16). As described in §8.9.4,
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this means that we assume that the local dust (and hence CO) excitation tem-
perature is much larger than the CMB temperature even at these high redshifts
and that the metallicity is not extremely small inside the molecular clouds.

The overall SFR density is fixed by requiring that at z = 6.8 it is sufficient to
keep the Universe ionized, according to equation (9.44). Note that in the simula-
tion, the Universe is not fully ionized at this time, but this nevertheless provides
a reasonable fiducial value. At higher redshifts, the simulation assumes that the
SFR is proportional to the collapse fraction fcoll.

As discussed in §8.9.4, the expected brightness of the CO lines depends on
the detailed physics of the ISM of high-redshift galaxies, which is currently
essentially unconstrained by observations. Thus, the overall amplitude of this
signal is very uncertain. The short-dashed line in Figure 13.9 illustrates this
with a model in which galaxies with M < 1010M� are invisible in CO (but still
produce stars), possibly because their relatively small SFRs are not enough to
excite the gas temperature above the CMB temperature. In this case the sig-
nal declines by roughly a factor of 1,000 on large scales, simply because of the
drastically reduced overall emissivity of the gas.

Figure 13.9 reports the observed fluctuation amplitude in brightness temper-
ature units, for which the typical value is ∼1µK2 on moderately large scales.
The shape of the power spectrum depends on both the large-scale clustering
(or two-halo term in equation 13.12) and shot-noise variations in the galaxy
number counts (equation 13.13), with the former dominating on large scales
and the latter on small scales. The figure also shows the division between these
two components for the case in which only massive galaxies emit; note that
the halo-model decomposition given by these two equations provides a very
good description of the signal. When less massive galaxies contribute to the CO
emissivity, the shot-noise term becomes less important (because the existence
of many more sources implies smaller fractional fluctuations). However, the
shape of the power spectrum remains nearly the same, because the nonlinear,
scale-dependent bias is important for such galaxies.

While this signal is therefore thousands of times smaller than the spin-flip
background, its appearance at much higher frequencies (observed at ∼10–
50 GHz rather than ∼50–200 MHz) means that the sky noise is also much,
much smaller—in fact, at these frequencies the ∼10 K noise inside the detec-
tors dominates. Moreover, these frequencies are near those already used for
CMB experiments, so this technology is well developed, with both interferome-
ters and large focal plane arrays available on the near-term horizon.

These properties enable CO mapping with much more modest instruments
than those aiming to observe the spin-flip background. Equation (12.57) sug-
gests that a single 3.5-m dish can reach a noise level of ∼1µK per 10′ pixel
(its diffraction limit) in a spectral channel of a fractional width �m/m = 0.01
at 30 GHz after an integration time of just a few days. Thus, a survey over sev-
eral tens of square degrees could be accomplished relatively easily. In com-
bination with detailed radio observations of individual galaxies from instru-
ments like ALMA, such surveys would provide a complete census of molecular
emission from the cosmic dawn. The [C II] line, at even higher frequencies,
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can provide a complementary view of the lower-density neutral ISM and its
cooling mechanisms.

13.3 The Cross-Correlation of Different Probes

These diffuse backgrounds can be relatively easy to measure in absolute terms
but often very difficult to isolate from the many contaminants that occupy the
same wave bands. One way around this problem is to cross-correlate one mea-
surement with another; such a correlation eliminates any foreground contam-
inant that is not shared by both signals, greatly easing the extraction problem.
We discussed in the previous section how the cross-correlation of different ra-
dio lines can help isolate them from other radio line contaminants. Here, we
consider the correlation of two very different physical probes.

Crucially, such a cross-correlation can help isolate interesting physical in-
formation as well as ease the signal processing. As an example, consider the
cross-correlation of a galaxy survey with the spin-flip background. If we ignore
redshift-space distortions, the cross–power spectrum will be (cf. equation 12.54,
recalling that the 21-cm signal is shaped by the baryon density and ionization
fields)

�2
21,g(k) = T0〈xH I〉[�2

δ,g(k)+�2
x,g(k)+�2

xδ,g(k)], (13.29)

where the subscript g refers to the fractional overdensity in the galaxy field, and
x and δ denote the same for the neutral fraction and baryon density, respec-
tively. On the relevant (large) scales, the first of these terms, �2

δ,g , is simply
proportional to the matter power spectrum multiplied by a bias factor (for the
galaxy component).

Similarly, the second term is simply the cross-correlation between matter
density and ionization, multiplied by the same bias factor. We studied the be-
havior of this term in §9.7 and found two important results. First, on large
scales, it is negative because the ionized bubbles appear where there are many
galaxies, or conversely, the gas is neutral only where there are no galaxies. Thus,
the neutral gas and galaxy fields trace opposite ends of the dark matter density.
However, �2

x,g approaches zero on scales below the bubble size, because the
IGM bubble is entirely ionized regardless of its small-scale density structure
(at least at the level probed by the spin-flip background). Importantly, there is
a relatively sharp transition to zero in this field, though that is hidden in the
spin-flip background by the other terms.

However, in the cross-correlation the turnover is more apparent, because the
final term in equation (13.29) cancels �2

δ,g on small scales.21 To see this, note
that the sum of these two terms is the Fourier transform of the quantity

xH I(1)δ(1)ng(2)= 〈xH I〉[1 + δx(1)]δ(1)ng(2) (13.30)

= 〈xH I〉δ(1)ng(2)+ 〈xH I〉δx(1)δ(1)ng(2), (13.31)

where the labels 1 and 2 refer to the two spatial positions, and these two terms
are respectively proportional to the Fourier transforms of �2

δ,g and �2
xδ,g .
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However, we can explicitly write the corresponding two-point function:

〈xH I(1)δ(1)ng(2)〉 =
∫
dxH I(1) dδ(1) dng(2)xH I(1)δ(1)ng(2)

×p[xH I(1), δ(1)|ng(2)]p[ng(2)], (13.32)

where we have simply expressed the correlation through a conditional proba-
bility function and noted that the mean of y is the integral of y times its overall
probability distribution. On separations much smaller than a typical bubble, the
two points 1 and 2 either will be within the same ionized bubble or both will be
neutral. In the former case, xH I(1) = 0, and so the integral gets no contribu-
tion at all. In the latter case, outside ionized bubbles, there must be no galaxies,
so ng(2) = 0. In this simple model, the cross-correlation therefore probes only
the cross term �2

x,g , which contains a clear feature on the scale of the typical
bubble.

One way to extract this information is therefore to conduct a galaxy red-
shift survey in the same volume as a 21-cm survey. However, such a project
would be very difficult, because the coarse resolution and huge fields of view
of the radio telescopes (typically dozens or hundreds of square degrees, with
several arcminutes of resolution) provide a very poor match to near-IR galaxy
surveys (which, at these high redshifts, typically subtend at best several square
arcminutes, but with exquisite angular resolution). A diffuse probe of the galaxy
field therefore would provide a much better match; in particular, the diffuse CO
or [C II] backgrounds are excellent candidates, because they also produce spec-
tral fluctuations (note that broadband fluctuations, like the stellar continuum
component of the near-IR background, would not correlate as well, because
each wavelength comes from multiple redshifts). Figure 13.10 illustrates how
such a probe would work.

The top panel of Figure 13.11 shows the resulting cross–power spectrum for
the CO(2–1) line in a numerical simulation of reionization. The bottom panel
shows the cross-correlation coefficient, which is defined as

r21,CO(k) = P21,CO(k)√
P21(k)PCO(k)

. (13.33)

This quantity will be unity for perfectly correlated fields, equal to −1 for per-
fectly anticorrelated fields, and zero for uncorrelated fields.

The figure shows predictions for three different stages of reionization. At
every stage, the cross–power spectrum is negative on large scales, and reaches
near-perfect anticorrelation at sufficiently small k. But this anticorrelation grad-
ually turns into a nearly random association (r21,CO = 0) on small scales, with
the turnover scale increasing as QH II increases, reflecting the rapidly growing
ionized bubbles. This kind of cross-correlation therefore offers a clear measure-
ment of the size of the H II bubbles, which affects the spin-flip power spectrum
but in a way that is much more difficult to extract in a model-independent
manner (compare Figures 12.16 and 13.11).

Another interesting cross-correlation is between the CMB and the spin-flip
background. On degree scales—much larger than the size of each ionized
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Figure 13.10 Schematic illustration of the cross-correlation between the spin-flip back-
ground and galaxy probes (see Color Plate 32 for a color version of this
figure). Each panel shows a slice from a numerical simulation ∼ 185 Mpc
across. Upper left: Map of the ionized fraction midway through reioniza-
tion (ionized regions are shown in white). Upper right: Map of the galaxy
field. White squares show regions ∼ 4 × 8 arcmin across; these are each
equivalent to four adjacent pointings of the James Webb Space Telescope.
Lower left: Spin-flip background from this slice. Lower right: Galaxy map
smoothed over a 6-arcmin beam, as might be observed in an intensity map-
ping measurement. Note the strong large-scale anticorrelation between
the bottom two figures. Courtesy of A. Lidz.

bubble—the cross-correlation is relatively easy to estimate. Qualitatively, a
cross-correlation should arise because fluctuations in the density field source
fluctuations in the ionized fraction (and hence 21-cm background) as well as in
the baryon velocity field (which Doppler shifts CMB photons through scatter-
ing off free electrons). As we have already seen, the Doppler contribution to the
CMB usually cancels out, because photons traveling across an overdense region
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Figure 13.11 Cross-correlation between CO(2–1) emission and the spin-flip background
in a numerical simulation of reionization (as in Figure 13.9). The solid
curves take z = 9.8, 7.3, and 6.8 (or QH II = 0.21, 0.54, and 0.82 in this
model), assuming that all galaxies emit CO(2–1). The dashed curve takes
z = 7.3 but assumes that only massive galaxies emit CO. The top and
bottom panels show the absolute value of the cross–power spectrum and
the cross-correlation coefficient, respectively. Lidz, A., et al., Astrophys. J.
741, 70 (2011). Reproduced by permission of the AAS.

will be upscattered when they encounter gas falling toward the observer (on the
far side of the overdensity) but will be downscattered when they encounter gas
falling away from the observer. However, if the ionized fraction changes across
the overdensity, the cancellation will be imperfect.22

If reionization were homogeneous, this would lead to an anticorrelation be-
tween the 21-cm brightness temperature and the CMB temperature. In this
case, an overdensity would increase the 21-cm brightness but cool the CMB,
as Thomson scattering would be more effective on the near side than the far
side. But in the case of “inside-out” inhomogeneous reionization, we generi-
cally expect a positive correlation, because overdense regions host ionized bub-
bles (decreasing the spin-flip signal) and still cool the CMB. Unfortunately, this
correlation—which in principle provides a clean probe of the evolution of the
average QH II—is still quite weak, with a cross-correlation coefficient <3%, be-
cause the primary CMB anisotropies dominate so strongly on the relevant scales
(multipoles � ∼ 100). Only in the case that reionization occurs at very high
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redshifts (z > 15) will we be able to detect that there is a correlation, and even
then at low confidence.23

On smaller angular scales, the spin-flip background and CMB should anti-
correlate in the case of inhomogeneous reionization. Because the variations
in the kinetic Sunyaev-Zel’dovich effect described in §13.1.2 appear where the
21-cm signal vanishes—on scales comparable to (or smaller than) the bubble
size—the sign of the correlation is driven not by the velocity modes along the
line of sight but by the projection q⊥ of the product of the velocity and elec-
tron density (see equation 13.4 and Figure 13.4). In principle, this small-scale
correlation provides a clean probe of the ionized bubble properties. Unfortu-
nately, the cross-correlation is again dwarfed by the primary CMB anisotropies:
although the kinetic Sunyaev-Zel’dovich signal peaks at quite large angular
scales, the cross-correlation component is confined to � < 8,000 (where the
primary CMB signal is still large), largely because of cancellation of the struc-
tures in the integrated CMB map. Thus, although the CMB temperature-21 cm
cross-correlation contains interesting physical information, it does not appear
to be a useful observable in practice.24

13.4 The Fossil Record of the Local Group

The focus of this book is on studies of the distant Universe: direct observations
of galaxies (and the objects in them) or indirect probes of their environment.
But, of course, these early generations of galaxies are the progenitors of today’s
galaxies, including the Milky Way, which must therefore contain remnants and
signatures of these first structures. Here, we briefly discuss the prospects for
stellar archaeology and its utility in understanding the cosmic dawn.

The hierarchical structure formation paradigm implies that the small dark
matter halos, in which the first stars and galaxies formed, merged to form in-
creasingly larger galaxies over time. During these violent merger events, exist-
ing gas reservoirs in galaxy cores would likely have undergone compression and
formed stars, and continuing accretion at late times would have formed even
more stars. Thus, the large majority of stars in today’s galaxies formed long
after the cosmic dawn.

But what of the existing stars within the merging halos, that may have formed
in pristine conditions (Population III) or shortly after, with very low metallicity?
Recent large multiobject spectroscopic surveys have uncovered several hundred
extremely metal-poor stars, characterized as having a relative abundance of iron
to hydrogen at least three orders of magnitude smaller than that in the Sun (de-
noted as [Fe/H]< −3). Stellar archaeologists hope to use these stars to uncover
information like the IMF and efficiency of second-generation star formation
and the nucleosynthetic yields of the very first stars, which may have provided
the heavy elements for the extremely metal-poor stars.

A related question is whether the small galaxies that surround the Milky
Way—many containing so few stars that they remained hidden until the most
recent generation of large surveys—can be traced back to the cosmic dawn. If
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so, they may carry imprints of important feedback mechanisms, such as initial
metal enrichment, the growth of the Lyman-Werner background, or reioniza-
tion. For example, galaxies with halo masses Mh ∼ 108M� may have formed
some stars before reionization and then been shut off by the photoheating that
accompanied that event (see §9.9.2). Because these systems would then have
undergone relatively little star formation in the past 10 gigayears, they may carry
more obvious records of these events than large galaxies like the Milky Way.

13.4.1 Stellar Archaeology

To successfully use metal-poor stars to understand the earliest generations of
structure requires a number of inputs. First, one must find such stars, which
is no easy task and is becoming possible only with large spectroscopic surveys
that can identify very rare objects. Second, one must understand the dynam-
ics of these stars and where they may have originated. Finally, one must relate
their chemical abundances to the stars that enriched them, which requires de-
tailed models of massive star supernovae, metal mixing in the ISM, and second-
generation star formation.

• Where are the extremely metal-poor stars? So far, observations have found
most of these stars in the outer halo of our Milky Way, which appears to
have a somewhat lower mean metallicity (centered at [Fe/H] ∼ −2.2) than
the inner halo (by a factor of 3).25

Numerical simulations are consistent with this picture, showing that
extremely metal-poor stars should appear throughout the Galaxy. This is
largely because metal enrichment throughout the IGM is highly inhomo-
geneous, so that pockets of metal-free gas may have persisted until rela-
tively late in the Universe’s history, from z ∼ 5–3. These relics would then
have been incorporated into the outer halo of the galaxy.26

• Where are the oldest extremely metal-poor stars? If galaxies were composed
solely of dark matter and stars, numerical simulations of hierarchical struc-
ture formation models would provide a fairly robust answer to this ques-
tion: near the centers of galaxies. These simulations show that galaxies
form “inside-out,” with the first objects to be accreted (i.e., the most over-
dense nearby regions, where the first stars would also have formed) re-
siding closest to the bottom of the galaxy’s potential well, and later addi-
tions located increasingly farther out in the galaxy’s halo. Thus, although
extremely metal-poor stars may be spread throughout the halo, the old-
est will be located near the center.27 This presents significant problems
for surveys, as these few old stars would be buried in the much more
numerous stars of our Galactic bulge and be subject to relatively large
extinction.

However, baryonic processes may mitigate this difficulty to some ex-
tent. In particular, spiral perturbations driven by accretion events can cause
stars to migrate over large radial distances and get deflected to much larger
orbits.28 If so, such stars may be much more accessible to searches in the
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outskirts of galaxies, although their spatial distribution after a sequence of
such events has not been well quantified.

• What are the “chemical fingerprints” of the first stars? Once a set of such stars
is found, stellar archaeologists hope to use the stars, abundance patterns
and other properties to learn about star formation in the early Universe—
both at the time these objects formed and in the earlier generations that
enriched their fuel supply. The simplest approach is to use the “chemi-
cal fingerprints” present in these stars’ abundance patterns to deduce the
properties of the precursor stellar populations’ supernovae.

Such efforts have a long tradition in astronomy, dating to efforts to un-
derstand abundance patterns within our own solar system and in nearby
stars. However, although the general problem is well posed, extracting
quantitative information remains difficult. Astrophysicists have a good
qualitative understanding of the nuclear pathways through which heavy
elements form. Broadly, there are two different processes: In the r-process,
which occurs during supernovae, neutrons are added to seed nuclei (usu-
ally 56Ni) much more rapidly than β decay can occur. The resulting nuclei
form a distinct pattern set by the locations of closed neutron shells, where
the cross section for continued neutron capture drops rapidly. However,
the shells that form during the r-process are overabundant in neutrons
and so suffer a sequence of β decays before they reach stability. The con-
trasting s-process occurs when neutrons are added over long timescales, so
that the nuclei can undergo β decay and grow through a sequence of stable
nuclei. This process occurs largely in the atmospheres of asymptotic giant
branch stars, over longer timescales than supernova nucleosynthesis.

Interestingly, the chemical patterns produced in supernovae depend
strongly on the properties of their progenitors.29 As discussed in §5.5, stars
of ∼140–260M� are subject to a pair-production instability, in which much
of the star’s internal energy is lost when photon collisions create electron–
positron pairs, locking up much of the thermal energy in the rest mass of
those particles. The star then explodes violently. Before the explosion of
pair-instability supernovae, the star has only a very small excess of neu-
trons, which strongly suppresses the formation of elements with an odd
atomic number as compared with an even one. Moreover, these stars have
large oxygen-fusing regions, which leads to an overproduction of silicon
and sulfur compared with the composition of more normal supernovae.

Assuming that the extremely metal-poor stars were formed from gas en-
riched by only one or a few supernovae in the early generation of stars, one
might therefore expect to see such fingerprints in their abundance pat-
terns. However, to date this has proved not to be the case: instead, these
stars—just like most of those in the Milky Way—appear to have been en-
riched by supernovae from stars with masses ∼10–40M�, based largely
on their overabundance of so-called α elements. These are nuclei made up
of integer multiples of helium nuclei and are synthesized in the silicon-
burning phase before such stars explode. Thus, there is so far little evi-
dence for earlier generations of very massive (>100 M�) stars in these
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Galactic searches, although there are extragalactic clues for possible pair-
instability supernova explosions30 and their odd–even abundance pattern
in damped Lyman-α systems.31.

There are also several interesting anomalies that currently remain to be
understood in the abundances of particular elements within the extremely
metal-poor population. One interesting feature is the large scatter in car-
bon and nitrogen, which can be greatly enhanced relative to iron. Many
(but not all) of these stars also have enhanced s-process abundances; most
likely, they were therefore polluted by an intermediate-mass binary com-
panion, which makes it difficult to tease out the abundances of the precur-
sor supernovae.

The cooling rate by atomic carbon and oxygen dominates that of mole-
cular hydrogen once their abundances exceed ∼10−3.5 of the solar values.
If such enhanced cooling is a prerequisite for the ability of the gas to frag-
ment into low-mass stars, then one would expect all low-mass stars in the
Milky Way halo to show carbon or oxygen abundances above this thresh-
old (see §6.5). Figure 13.12 shows that existing data are consistent with this
theoretical expectation.

• What can we learn about the IMF of the earliest stars? The mere fact that
no metal-free stars have been found—despite the relatively large number
of extremely metal-poor stars—suggests that the very first generation of
stars was skewed toward high masses, with no evidence for Population III
stars with a mass <0.8 M�. The relatively common carbon enhancement
found in these stars also points to a higher characteristic mass, since a
large fraction of the binary companions would have had to be of relatively
large mass as well to evolve so as to donate some of their material to the
observed stars.

However, the lack of clear signatures of pair-instability supernovae, with
masses >100M�, and the relative success of “normal” supernovae at re-
producing the abundance patterns of extremely metal-poor stars, argues
against very massive stars’ having been common even in the earliest
phases of structure formation—in contrast with the results of most nu-
merical simulations. However, such an interpretation assumes that the
heavy-element products of the supernova mix efficiently with the ISM of
the galaxy; if, instead, the mixing occurs only slowly, the second-generation
stars may actually have relatively high metallicities and so lie outside the
target area of existing surveys. A great deal remains to be learned from
these surveys, and improved modeling of the transition from one stellar
population to the next will be a crucial element of extracting the best pos-
sible information.

• What additional information can we extract from these surveys? It has become
increasingly clear that in the local Universe, star formation generally pro-
ceeds inside massive star clusters of uniform abundance (albeit of widely
varying masses). If similar processes occurred during the early generations
of star formation, we would expect to find “clumps” in the abundance pat-
terns characteristic of these star clusters, even if the stars themselves have
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Figure 13.12 Measure of the carbon and oxygen abundance for metal-poor stars,
Dtrans ≡ log

(
10[C/H] + 0.3 × 10[O/H]

)
, as a function of the iron abundance

relative to hydrogen, [Fe/H]. Top panel: Galactic halo stars. Bottom panel:
Stars in dwarf spheroidal galaxies and globular clusters. G and SG indicate
giants and subgiants. The critical limit marked with a dashed line was pre-
dicted theoretically by comparing the cooling rate for carbon and oxygen
lines with H2 cooling (which controls the formation of massive Popula-
tion III stars). Without metal-line cooling, no low-mass stars should be
found below this line. The dotted lines define the uncertainty in the theo-
retical prediction without dust cooling. If dust cooling is added, the dashed
line is lowered by two orders of magnitude. Interestingly, all data points
are well above the theoretical lines for metal and dust cooling so far. Frebel,
A., Johnson, J. L., & Bromm, V., Mon. Not. R. Astron. Soc. 380, L49 (2007).
Copyright 2007 by the Royal Astronomical Society.
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dispersed on widely varying orbits. Such clumps could tell us about the
environments in which early stars formed and the processes that regulated
their birth; they would also provide “uniform” samples of stars over which
we could average to study metal abundance across larger scales than in-
dividual stars, and with which we could account for anomalies like mass
transfer between binary companions.

13.4.2 Ultrafaint Dwarf Galaxies around the Milky Way

Recent large spectroscopic surveys have revealed a wealth of information about
the structure of our Milky Way galaxy and its immediate neighbors. In particu-
lar, they have enabled the discovery of a sizable class of “ultrafaint” dwarf galax-
ies, with a total luminosity <105 L�. These are particularly intriguing objects,
because they appear to have undergone only one or a few star formation events
(rather than the rich history common to larger galaxies), so the current stel-
lar populations offer relatively clean tracers of the first generations of stars in
these particular dark matter halos. Moreover, these galaxies are small enough
that one can realistically imagine obtaining a fairly complete census of their
stars.

The present data show that these dwarf galaxies have low average metallic-
ities, some as small as [Fe/H] ∼ −2.6, and substantial scatter in the abun-
dances (at least an order of magnitude). Overall, the abundance patterns resem-
ble those in the extremely metal-poor Galactic halo stars described in §13.4.1.32

Thus, it seems that one of the feedback mechanisms that we described ear-
lier was responsible for shutting down ongoing star formation in these galax-
ies. Three possibilities immediately come to mind: (1) UV feedback from the
first stars that photodissociated H2 and terminated cooling in minihalos be-
low the atomic cooling threshold; (2) the supernova feedback generated by the
first wave of star formation in the dwarf galaxy itself; and (3) photoheating
from reionization (or an even earlier stage) that suppressed accretion onto these
small halos, or possibly even evaporated any existing gas.

The canonical theoretical picture assumes that the initial burst of star forma-
tion in an isolated region contained only very high mass Population III stars.
If the ultrafaint dwarfs—which contain low-mass stars—were then to form in
the same dark matter halos, those galaxies must have been able to retain their
gas (or at least reaccrete it) after these stars died. This process generally argues
against extremely low mass halos with shallow gravitational potential wells for
the dwarfs. It also poses a challenge for any models that attribute the end of
star formation in these galaxies to supernova winds: although such winds could
have arisen from a later generation of star formation, the binding energy of the
halo scales as ∝ M2

h , so one naively expects halos to become more stable as they
grow.

The Lyman-Werner background on its own is also unlikely to be the factor
stopping star formation in these galaxies. It is important only when H2 domi-
nates the cooling function; thus, because the stellar populations in these dwarfs
have nonzero metallicity, it must not have been the dominant coolant in these
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populations (even if it was responsible for slowing down or stopping star for-
mation in earlier phases).

The other key question is then how the first and second generations of star
formation are related spatially. If minihalos could either retain or reacquire
their gas after the initial burst of Population III star formation, they may have
been able to form low-mass Population II stars that survive to the present day.
If, however, these halos instead lost their gas for a long period of time, larger
objects—possibly above the atomic cooling threshold—would have held the
bulk of the second generation of stars. Moreover, because in that case these new
stars formed in a different halo than their Population III progenitors, it is easier
to imagine that they formed in a burst mode that was able to evacuate the galaxy
of its remaining gas, shutting down later star formation. Thus, understanding
the dynamics and contents of these ultrafaint dwarfs offers the tantalizing pos-
sibility of constraining the large-scale pathways that enabled high-redshift star
formation.

More detailed information is also available from these objects: for example,
if an initial starburst did clear out the dwarf’s gas, the stellar population should
have little evidence of “self-enrichment.” Rather, the stars might all have abun-
dances characteristic of core collapse (and possibly Population III) supernovae,
without any substantial s-process elements. The observed scatter in the metal-
licity within individual dwarfs also suggests that metals must not have been
efficiently mixed across galactic scales, at least if the picture of a single burst of
star formation is correct. Interestingly, old globular clusters have little or no ap-
parent scatter in their abundances, which implies much more efficient mixing
in such systems.

The recent discovery of these dwarfs, and the rapidly increasing samples of
metal-poor stars inside them and inside our own Galaxy, have opened a new
window into studies of the impact of star formation in the early Universe. The
implications of these studies are now only beginning to be understood, and a
great deal of work on both the observational and theoretical ends is needed to
disentangle the clues lying within. Stellar archaeology promises to remain a
fascinating frontier for many years to come.
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Appendix A

Useful Numbers

Fundamental Constants

Newton’s constant (G) = 6.67 × 10−8 cm3 g−1 s−2

Speed of light (c) = 3.00 × 1010 cm s−1

Planck’s constant (h) = 6.63 × 10−27 erg s
Electron mass (me) = 9.11 × 10−28 g ≡ 511 keV/c2

Electron charge (e) = 4.80 × 10−10 esu
Proton mass (mp) = 1.67 × 10−24 g = 938.3 MeV/c2

Boltzmann’s constant (kB ) = 1.38 × 10−16 erg K−1

Stefan-Boltzmann constant (σSB) = 5.67 × 10−5 erg cm−2 s−1 K−4

Radiation constant (arad) = 7.56 × 10−15 erg cm−3 K−4

Thomson cross section (σT ) = 6.65 × 10−25 cm2

Astrophysical Numbers

Solar mass (M�) = 1.99 × 1033 g
Solar radius (R�) = 6.96 × 1010 cm
Solar luminosity (L�) = 3.9 × 1033 erg s−1

Hubble constant today (H0) = 100h km s−1 Mpc−1

Hubble time (H−1
0 ) = 3.09 × 1017h−1 s = 9.77 × 109h−1 yr

= 3h−1 Gpc/c
critical density (ρc) = 1.88 × 10−29h2 g cm−3

= 1.13 × 10−5 h2mp cm−3

Unit Conversions

1 parsec (pc) = 3.086 × 1018 cm
1 kiloparsec (kpc) = 103 pc
1 megaparsec (Mpc) = 106 pc
1 gigaparsec (Gpc) = 109 pc
1 astronomical unit (AU) = 1.5 × 1013 cm
1 year (yr) = 3.16 × 107 s
1 light year (ly) = 9.46 × 1017 cm
1 eV = 1.60 × 10−12 ergs ≡ 11, 604 K × kB
1 erg = 10−7 J
Photon wavelength (λ = c/m) = 1.24×10−4 cm (photon energy/1 eV)−1

1 nanoJansky (nJy) = 10−32 erg cm−2 s−1 Hz−1

1 Angstrom (Å) = 10−8 cm
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Unit Conversions

1 micron (µm) = 10−4 cm
1 km s−1 = 1.02 pc per million years
1 arcsecond (′′) = 4.85 × 10−6 radians
1 arcminute (′) = 60′′

1 degree (◦) = 3.6 × 103′′

1 radian = 57.3◦
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Appendix B

Cosmological Parameters

We list here the cosmological parameters assumed throughout the text. These
choices are based on Komatsu, E., et al. Astrophys. J. Suppl. 180, 330 (2009).

Cosmological Parameters

Matter density �m = 0.28
Baryon density �b = 0.05
Dark energy density �� = 0.72
Dark energy equation of state w = −1
Hubble constant h = 0.7
Scalar index ns = 1
Power spectrum normalization σ8 = 0.82
Helium mass fraction Yp = 0.24
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–200 T (µK) +200

Plate 1 Image of the Universe when it first became transparent, 400,000 years after the Big Bang,
taken over 5 years by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite (see Figure 1.1
and associated discussion for more information). Slight density inhomogeneities at the level of
one part in ∼105 in the otherwise uniform early Universe imprinted hot and cold spots in the
temperature map of the cosmic microwave background on the sky. The fluctuations are shown in
units of microkelvins, and the unperturbed temperature is 2.725 K. The same primordial inhomo-
geneities seeded the large-scale structure in the present-day Universe. The existence of background
anisotropies was predicted in a number of theoretical papers three decades before the technology
for taking this image became available. Courtesy of NASA and the WMAP Science Team.

125 h−1 Mpc

Plate 2 Slice through the Millennium Simulation, a massive computer simulation of cosmological
structure formation (see Figure 4.1 and associated discussion for more information). The color
scale shows the dark matter density; note how matter is organized into dense filaments (in many
cases, these are actually slices through sheets of matter) separating nearly empty voids. Massive
galaxies and galaxy clusters form at the intersections of these filaments. Courtesy of V. Springel
(2005).
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Plate 3 Observed spectra of 19 quasars with redshifts 5.74 < z < 6.42 from the Sloan Digi-
tal Sky Survey (see Figure 4.6 and associated discussion for more information). For some of the
highest-redshift quasars, the spectra show no transmitted flux shortward of the Lyman-α wave-
length at the quasar redshift, providing a possible hint of the so-called Gunn-Peterson trough and
indicating a slightly increased neutral fraction of the IGM. It is evident from these spectra that
broadband photometry is adequate for inferring the redshift of sources during the epoch of reion-
ization. Fan, X., et al., Astron. J. 132, 117 (2006). Reproduced by permission of the AAS.

(c) Newborn protostar

25 R

(d) Fully molecular part

10 AU

(a) Cosmological halo

300 parsec

(b) Star-forming cloud

5 parsec

300 pc 5 pc

Plate 4 Projected gas distribution around a primordial protostar from a numerical simulation (see
Figure 5.6 and associated discussion for more information). Shown is the gas density of a single
object on different spatial scales: (a) the large-scale gas distribution around the cosmological mini-
halo; (b) the self-gravitating, star-forming cloud; (c) the central part of the fully molecular core; and
(d) the final protostar. Reprinted from Science, 321, 5889, Yoshida, N., K. Omukai, & L. Hernquist,
“Protostar Formation in the Early Universe,” Copyright 2008, with the permission of the American
Association for the Advancement of Science.
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Plate 5 Density evolution in a 120 AU region around the first protostar in a numerical simulation
of Population III star formation, showing the buildup of the protostellar disk and its eventual frag-
mentation at the times labeled in the diagram (see Figure 5.7 and associated discussion for more
information). Reprinted from Science 331/6020, Clark, P.C., et al., “The formation and Fragmen-
tation of Disks Around Primordial Protostars,” 1040, Copyright 2011, with the permission of The
American Association for the Advancement of Science.

0.1 1 10 1000.01
Stellar mass (M. )

Γ

–1

–2

1

0

2

Chabrier (2005)
Kroupa (2002)

Salpeter
Associations

Clusters
Field

Associations
Dense clusters

ρ oph
σ Ori

λ Ori

0 1–1–2 2
log m (M. )

lo
g(

dN
/d

m
) +

 c
on

st
an

t

–8

–10

–4

–6

–2

2

0

0 1–1–2 2
log m (M. )

lo
g(

dN
/d

m
) +

 c
on

st
an

t

–8

–10

–4

–6

–2

2

0

ONC
Taurus

Cham
aleon I

Field
IC 348

Star forming

Open clusters
Globular clusters

Pleiades

M35

PraesepeHyades

NGC 6397NGC 2298

NGC 6712

Plate 6 Upper panel: The derived power-law index, �, of the IMF in nearby star-forming regions,
clusters, and associations of stars within the Milky Way galaxy, as a function of sampled stel-
lar mass (points are placed in the center of the log m� range used to derive each index; the
dashed lines indicate the full range of masses sampled). The colored solid lines represent three
analytic IMFs. Bottom panel: The present-day IMF in a sample of young star-forming regions,
open clusters spanning a large age range, and old globular clusters. The dashed lines represent
power-law fits to the data. The arrows show the characteristic mass of each fit, the dotted line
indicates the mean characteristic mass among the clusters in each panel, and the shaded re-
gion shows the standard deviation of the characteristic masses in that panel. The observations
are consistent with a single underlying IMF. (See Figure 5.9 and associated discussion for more
information.) Bastian, N., Covey, K.R., & Meyer, M.R., Ann. Rev. Astr. & Astrophys. 48 (2010).
Copyright 2010 by Annual Reviews.
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Plate 7 Illustration of a long-duration gamma-ray burst in the popular collapsar model (see Figure
5.18 and associated discussion for more information). The collapse of the core of a massive star
(which lost its hydrogen envelope) to a black hole generates two opposite jets moving out at a speed
close to that of light. The jets drill a hole in the star and shine brightly toward an observer who
happens to be located within the collimation cones of the jets. The jets emanating from a single
massive star are so bright that they can be seen across the Universe out to the epoch when the first
stars formed. Courtesy of NASA E/PO.

Plate 8 The “sawtooth” modulation of a uniform, spectrally flat radiation background in the Lyman-
Werner frequency band when the IGM is still predominantly neutral (see Figure 6.2 and associated
discussion for more information). The three curves are for z = 19.2, 15.7, and 9.2, from top to
bottom; the horizontal lines show the unattenuated spectrum, while the curves with features show
the effect of Lyman-series absorption. The vertical lines at the bottom of the figure show some of
the Lyman-Werner transitions, with the height equal to 1% of the oscillator strength. Ahn, K., et al.,
Astrophys. J. 695, 1430 (2009). Reproduced by permission of the AAS.
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Plate 9 Temperature maps from a numerical simulation of a supernova explosion (see Figure 6.7
and associated discussion for more information). The supernova of a 200M� star is set off at z ≈ 20
in a halo with M = 5 × 105 M� and rvir ≈ 100 pc. The snapshots are 1, 10, 50, and 200 million
years after the explosion. In the first panel on the top left, the supernova is the central hot region;
the star’s H II region fills most of the box (fading with time as the gas recombines and cools).
The supernova remnant expands over the four panels, gradually becoming more anisotropic as it
encompasses the filamentary structure surrounding the halo. Greif, T., et al., Astrophys. J. 670, 1
(2007). Reproduced by permission of the AAS.

Plate 10 Stages in a plausible scenario for the birth of the first stars and galaxies (see Figure 6.12
and associated discussion for more information). (1) The first Population III.1 stars form in small
halos via H2 cooling. (2) These stars empty their hosts of gas via photoevaporation and supernova
blast waves. (3) This feedback triggers Population III.2 star formation in nearby minihalos. (4) The
Lyman-Werner background from these stars suppresses star formation in small minihalos, grad-
ually increasing the characteristic mass scale of star-forming objects. (5) The first self-sustaining
galaxies eventually form in halos above the atomic cooling threshold, Tvir ∼ 104 K.
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Plate 11 Results from a numerical simulation of the formation of a metal-free stars and their feed-
back on the surrounding environment (see Figure 6.13 and associated discussion for more infor-
mation). Radiative feedback around the first star involves ionized bubbles (blue) and regions of
high molecule abundance (green). The large residual free-electron fraction inside the relic ionized
regions, left behind after the central star died, rapidly catalyzes the re-formation of molecules and
a new generation of lower-mass stars. Reprinted from Nature 459, 7243, Bromm, V., N. Yoshida,
L. Hernquist, & C. F. McKee, “The formation of the first stars and galaxies,” Figure 4, Copyright
2007, with permission from Nature Publishing Group.

Plate 12 Simulated image of an accretion flow around a black hole spinning at half its maxi-
mum rate, from a viewing angle of 10◦ relative to the rotation axis (see Figure 7.2 and associated
discussion for more information). The coordinate grid in the equatorial plane of the spiraling flow
shows how strong lensing around the black hole bends the back of the apparent disk up. The left
side of the image is brighter owing to its rotational motion toward the observer. The bright arcs
are generated by gravitational lensing. A dark silhouette appears around the location of the black
hole because the light emitted by gas behind it disappears into the horizon and cannot be seen
by an observer on the other side. Recently, the technology for observing such an image from the
supermassive black holes at the centers of the Milky Way and M87 galaxies has been demonstrated
as feasible [Doeleman, S., et al., Nature 455, 78 (2008)]. To obtain the required resolution of tens
of micro-arcseconds, interferometers operating at millimeter wavelengths across the earth are nec-
essary. Broderick, A., & Loeb, A. Journal of Physics Conf. Ser. 54, 448 (2006); Astrophys. J. 697, 1164
(2009). Reproduced by permission of the AAS.
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Plate 13 Multiwavelength images of the highly collimated jet emanating from the supermassive
black hole at the center of the giant elliptical galaxy M87 (see Figure 7.3 and associated discussion
for more information). The X-ray image (top) was obtained with the Chandra X-ray observatory,
the radio image (bottom left) was obtained with the Very Large Array (VLA), and the optical image
(bottom right) was obtained with the Hubble Space Telescope (HST). Courtesy of CXO/NASA.
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Plate 14 Numerical simulation of the collapse of an early dwarf galaxy with a virial temperature just
above the cooling threshold of atomic hydrogen and no H2 (see Figure 7.6 and associated discussion
for more information). The image shows a snapshot of the gas density distribution 500 million years
after the Big Bang, indicating the formation of two compact objects near the center of the galaxy
with masses of 2.2×106 M� and 3.1×106 M�, respectively, and radii<1 pc. Sub-fragmentation into
lower mass clumps is inhibited because hydrogen atoms cannot cool the gas significantly below its
initial temperature. These circumstances lead to the formation of supermassive stars that inevitably
collapse to make massive seeds for supermassive black holes. The simulated box size is 200 pc on
a side. Bromm, V., & Loeb, A., Astrophys. J. 596, 34 (2003). Reproduced by permission of the AAS.
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Plate 15 Dynamical measurements of the correlation between supermassive black hole mass,MBH,
and velocity dispersion of stars in the spheroid of its host galaxy, σ� (see Figure 7.7 and associated
discussion for more information). The symbol indicates the method of black hole mass measure-
ment: dynamics of stars (pentagrams), dynamics of gas (circles), dynamics of maser sites (asterisks).
Arrows indicate 3σ upper limits to black hole mass. The shade of the error ellipse indicates the
Hubble type of the host galaxy: elliptical, S0, or spiral. The line is the best-fit relation to the
full sample: MBH = 108.12M�(σ�/200 km s−1)4.24. The mass uncertainty for NGC 4258 has been
plotted much larger than its actual value to show on this plot. Gültekin, K., et al., Astrophys. J. 698,
198 (2009). Reproduced by permission of the AAS.
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Plate 16 Sensitivity of the future gravitational wave observatories, LISA and Advanced-LIGO, to
equal-mass (M1 = M2 = M/2) binaries (see Figure 7.8 and associated discussion for more infor-
mation). Left panel: Root-mean-square noise amplitude of LISA hrms from the detector only (dashed)
and from the detector combined with the anticipated foreground confusion (dash-dotted), along
with the characteristic amplitudes hchar of three binary masses M (solid). The locations on each
hchar curve correspond to the peak amplitude (circle), 1 hour before the peak (filled circle), 1 day
before the peak (circle with inscribed cross), and 1 month before the peak (circle with inscribed
square) in the observer frame, as well as times of 25rSch/c (square) and 500rSch/c (diamond) before
the peak in the source frame. Middle panel: Contour plot of the signal-to-noise ratio (SNR) with bi-
nary mass and redshift dependence for LISA. Right panel: SNR contour plot with mass and redshift
dependence for Advanced-LIGO. Reprinted Figures 16, 17, and 19 from Baker, J., et al., Phys. Rev.
D75, 4024 (2007). Copyright 2007 by the American Physical Society.



plates August 31, 2012

<0.3 >2.0

xH  I = 0.72 xH  I = 0.45

fN

xH  I = 0.18 xH  I = 0.00

Plate 17 IGM absorbers in a “seminumerical” simulation of reionization (see Figure 9.8 and as-
sociated discussion for more information). In each panel, we set (by hand) the mean free path of
ionizing photons to 10 comoving Mpc; the four columns show different H II fractions at a fixed
redshift z = 10. The upper panels show the ionizing flux (arbitrary normalization) inside ionized
zones according to the color scale. The lower panels show the locations of halos (dark points inside
the white regions) and absorbers (green points). Crociani, D., et al., Mon. Not. R. Astron. Soc. 411,
289 (2011). Copyright 2011 by the Royal Astronomical Society.

Plate 18 A portion of the first Hubble Deep Field (HDF) image taken in 1995 (see Figure 10.1
and associated discussion for more information). The HDF covers an area 2.5 arcmin across and
contains a few thousand galaxies (with a few candidates up to a z ∼ 6). The image was taken in
four broadband filters centered on wavelengths of 3000, 4500, 6060, and 8140 Å, with an average
exposure time of ∼1.27 × 105 s million seconds per filter.
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Plate 19 A full-scale model of the James Webb Space Telescope (JWST), the successor to the
Hubble Space Telescope (http://www.jwst.nasa.gov/; see Figure 10.2 and associated discussion
for more information). JWST includes a primary mirror 6.5 m in diameter and offers instru-
ment sensitivity across the IR wavelength range of 0.6 to 28µm, which will allow detection of
the first generations of galaxies. The size of the Sun shield (the large flat screen in the im-
age) is 22 in × 10 m (72 ft × 29 ft). The telescope will orbit 1.5 million km from Earth at
the Lagrange L2 point. Courtesy of NASA/EPO.

Plate 20 Artist’s conception of the designs for three future giant ground-based telescopes that will
be able to probe the first generation of galaxies (see Figure 10.3 and associated discussion for more
information): the European Extremely Large Telescope (EELT, top), the Giant Magellan Telescope
(GMT, middle), and the Thirty Meter Telescope (TMT, bottom). Courtesy of the European Southern
Observatory (ESO), the GMT Partnership, and the TMT Observatory Corporation.
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Plate 21 Image of the core of the cluster Abell 383, including known multiply imaged sources
(marked 1 to 5) and the noncircular critical lines for sources at zs = 6 (see Figure 10.7 and asso-
ciated discussion for more information). The two images of a galaxy with zs = 6.027 are marked
by circles. The long slit used for spectroscopic follow-up is shown in white. Richard, J., et al., Mon.
Not. R. Astron. Soc. 414, L31 (2011). Copyright 2011 by the Royal Astronomical Society.
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Plate 22 Rest-frame UV luminosity functions derived for galaxies at z ∼ 7 (large filled circles) and
z ∼ 8 (large open circles) compared with lower-redshift data (from z = 6 to z = 4; the density
increases as redshift decreases; see Figure 10.9 and associated discussion for more information).
The vertical axis gives the number of galaxies per comoving cubic megaparsecs per AB magnitude
at a rest-frame wavelength of 1600 Å, as a function of this magnitude on the horizontal axis. Note
the sharp decline in the number density of bright galaxies with redshift and tentative evidence
for a steepening faint-end slope. Bouwens, R., et al., Astrophys. J. 737, 90 (2011). Reproduced by
permission of the AAS.
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Plate 23 Luminosity function of LAEs for the range z = 3–6.6 (see Figure 10.11 and associated
discussion for more information). The light solid circles show the measured luminosity function
at z = 6.6, while the darker solid circles show the same for z = 5.7. The solid lines show Schechter
function fits to these as well as the best fit at z = 3.1 (light blue curve). The LAE density drops
substantially from z = 5.7 to z = 6.6, much faster than that of LBGs, but is nearly constant at lower
redshifts. Finally, the open symbols show the number densities measured in the five subfields of
the z = 6.6 survey, illustrating the substantial variance between fields. Ouchi, M., et al., Astrophys.
J. 723, 869 (2010). Reproduced by permission of the AAS.
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Plate 24 Halo of scattered Lyman-α line photons from a galaxy embedded in the neutral IGM
prior to reionization (also called a Loeb-Rybicki halo; see Figure 11.10 and associated discussion for
more information). The line photons diffuse in frequency owing to the Hubble expansion of the
surrounding medium and eventually redshift out of resonance and escape to infinity. A distant
observer sees a Lyman-α halo surrounding the source, along with a characteristically asymmetric
line profile. The observed line should be broadened and redshifted by ∼1000 km s−1 relative to
other lines (such as Hα) emitted by the galaxy.
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Plate 25 Left: A false-color image of a Lyman-α blob (LAB) at redshift z = 2.656. The hydrogen
Lyman-α emission is shown in blue, and images in the optical V-band and the near-IR J and H
bands are shown in green and red, respectively. Note the compact galaxies lying near the northern
(top) end of the LAB. The Lyman-α image was obtained using the SuprimeCam imaging camera on
the Subaru Telescope, and the V, J, and H band images were obtained using the ACS and NICMOS
cameras on the Hubble Space Telescope. This LAB was originally discovered by the Spitzer Space
Telescope. Prescott, M., & Dey, A. (2010). Right: A false-color image of a LAB at redshift z = 6.6,
obtained from a combination of images at different IR wavelengths. (see Figure 11.12 and associ-
ated discussion for more information) Ouchi, M., et al., Astrophys. J. 696, 1164 (2009). Reproduced
by permission of the AAS.
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Plate 26 Overview of the expected 21-cm signal (see Figure 12.2 and associated discussion for more
information). Top panel: Time evolution of fluctuations in the 21-cm brightness from just before the
first stars form to the end of reionization. This evolution is pieced together from instantaneous red-
shift slices through a (100 Mpc)3 numerical simulation volume. Coloration indicates the strength
of the 21-cm brightness as it transitions from absorption (blue) to emission (red) and finally dis-
appears (black) owing to ionization. Bottom panel: Expected evolution of the sky-averaged 21-cm
brightness from the dark ages at z = 150 to the end of reionization sometime before z = 6. The
frequency structure is driven by the interplay of gas heating, the coupling of gas and 21-cm temper-
atures, and the ionization of the gas. The considerable uncertainty in the exact form of this signal
arises from the poorly understood properties of the first galaxies. Pritchard, J. R., & Loeb, A., Nature
468, 772 (2010). Copyright 2010 by Nature Publishing Group.
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Plate 27 Monopole of the spin-flip brightness temperature (the so-called global 21-cm signal) in
several models of early structure formation (see Figure 12.9 and associated discussion for more
information). Left: Major variations around our fiducial model (solid curve with several turning
points), as indicated. Each curve either eliminates a physical process (like heating or ionization) or
maximizes it. Right: Suites of models in which the Lyman-α (lower panel) and X-ray heating (upper
panel) efficiencies are varied by a factor of 104. Pritchard, J. R., & Loeb, A., Phys. Rev. D82, 023006
(2010). Copyright 2010 by the American Physical Society.
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Plate 28 Cartoon of the different phases of the 21-cm signal (see Figure 12.10 and associated dis-
cussion for more information). The signal transitions from an early phase of collisional coupling to
a later phase of Lyman-α coupling through a short period where there is little signal. Fluctuations
after this phase are dominated successively by spatial variation in the Lyman-α, X-ray, and ionizing
UV radiation backgrounds. After reionization is complete, there is a residual signal from neutral
hydrogen in galaxies. Pritchard, J. R., & Loeb A., “21 cm Cosmology in the 21st Century,” Reports
on Progress in Physics, 75, 086901 (2012). Reproduced with permission from IOP Publishing Ltd.
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Plate 29 Slices through a “seminumerical” simulation (left), and the corresponding spherically av-
eraged power spectra (right), for a model of the spin-flip background at z = 30.1, 21.2, 17.9, 10.0
(top to bottom; see Figure 12.14 and associated discussion for more information). The slices were
chosen to highlight various epochs in the cosmic 21-cm signal (from top to bottom): the onset of
Lyman-α pumping (here the blue regions show the cold gas around the first galaxies); the onset
of X-ray heating (here the blue regions are cold gas, while the compact red regions represent hot
gas around the first black holes); the completion of X-ray heating (where all the gas is hot); and the
midpoint of reionization (where black regions are ionized bubbles). All slices are 1 Gpc on a side
and 3.3 Mpc deep. Mesinger, A., Furlanetto, S. R., & Cen, R., Mon. Not. R. Astron. Soc. 411, 955
(2011). Copyright 2011 by the Royal Astronomical Society.

Plate 30 One of the antenna “tiles” used in the Murchison Widefield Array (MWA)
experiment in Western Australia (see Figure 12.19 and associated discussion for more informa-
tion). Each such tile is composed of 16 crossed-dipole antennae, with their signals combined
through hardware at the station. The full telescope combines the signals from ∼128 tiles interfer-
ometrically. This allows for a large (several hundred square degree) field of view with a moderately
large collecting area. The antennas operate in the range 80–300 MHz, corresponding to z ≈ 6–15
(although the telescope will be sensitive to the spin-flip background only at z < 10). C. Lonsdale.
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Plate 31 Near-IR background spectrum (see Figure 13.6 and associated discussion for more
information). This example includes star formation in the range z = 7–15, which dominates the
background between 1 and 2µm. The left panel assumes metal-free stars, while the right panel
takes a metallicity Z = 0.02Z�. The different line styles show different IMFs (see text). The differ-
ent curves show the total emission, the Lyman-α contribution, the stellar continua, the two-photon
continua, the free-bound emission, and finally the free-free emission (from top to bottom at 1µm).
Fernandez, E. R., & Komatsu, E., Astrophys. J. 646, 703 (2006). Reproduced by permission of the
AAS.

Plate 32 Schematic illustration of the cross-correlation between the spin-flip background and galaxy
probes (see Figure 13.10 and associated discussion for more information). Each panel shows a slice
from a numerical simulation ∼185 Mpc across. Upper left: Map of the ionized fraction midway
through reionization (ionized regions are shown in white). Upper right: Map of the galaxy field.
White squares show regions ∼ 4 × 8 arcmin across; these are each equivalent to four adjacent
pointings of the James Webb Space Telescope. Lower left: Spin-flip background from this slice. Lower
right: Galaxy map smoothed over a 6-arcmin beam, as might be observed in an intensity mapping
measurement. Note the strong large-scale anticorrelation between the bottom two figures. Courtesy
of A. Lidz.
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