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Distributed Temporal Coding of Visual Memory Categories
in Human Hippocampal Neurons Revealed by an

Interpretable Decoding Model
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Susan Shaw, Hui Gong, Christianne N. Heck, Gautam Popli, Daniel E. Couture,
Adrian W. Laxton, Vasilis Z. Marmarelis, Samuel A. Deadwyler, Charles Liu,

Theodore W. Berger, Robert E. Hampson, and Dong Song*

The hippocampus is crucial for forming new episodic memories. While its role
in encoding spatial and temporal information (where and when) is well
understood, how it encodes objects (what) remains unclear due to the high
dimensionality of object space. Rather than encoding each object separately,
the hippocampus may encode object categories to reduce complexity. Here,
an experimental-modeling approach to investigate how the hippocampus
encodes visual memory categories in humans is developed. Spikes are
recorded from hippocampal CA3 and CA1 neurons in 24 epilepsy patients
performing a delayed match-to-sample task involving five image categories.
An interpretable memory decoding model is employed to decode memory
categories from hippocampal spiking activity and identify the spatio-temporal
characteristics of hippocampal encoding. Using this model, the optimal
temporal resolutions for decoding each visual memory category per neuron
are estimated. Results indicate that visual memory categories can be decoded
from hippocampal spike patterns, supporting the presence of
category-specific coding. Hippocampal neuron ensembles encode memory
categories in a distributed manner, akin to a population code, while individual
neurons use a temporal code. Additionally, CA3 and CA1 neurons exhibit
similar and redundant memory category information, likely due to strong and
diffuse feedforward synaptic connections from CA3 to CA1 regions.

1. Introduction

The hippocampus is a brain region crit-
ical for the formation of new episodic
memories.'] Impairment to the hip-
pocampus due to diseases or injuries leads
to profound memory deficit.[*”! Therefore,
hippocampal neurons are naturally posi-
tioned to encode episodic memory-related
information such as what (object), when
(time), and where (space) of past events.
While the encoding of spatial (“where”)[3-12]
and temporal (“when”)"*™ information
by hippocampal neurons is relatively well
characterized-largely due to the low dimen-
sionality of these domains (e.g., 2D space,
1D time)-how high-dimensional object in-
formation (“what”) is represented remains
less understood.

Indeed, the space of objects has nearly
infinite dimensions. It is infeasible for
the hippocampus to encode every individ-
ual object separately. One possible strat-
egy is to encode categories and/or fea-
tures of objects to reduce the dimension-
ality of the object space. This is supported
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by rodent,'>'®l nonhuman primate (NHP),["”] and human
studies,["®211 showing that hippocampal neurons increased their
firing rates in response to visual stimuli (places and/or images)
within the same categories during a memory task.

These previous studies have primarily investigated hippocam-
pal encoding of objects at the single-neuron level by analyzing
averaged activity patterns.['”-?2] Perievent histograms of neurons
are calculated from spike patterns across many trials using a pre-
selected bin size (temporal resolution of encoding). Category-
specific neurons were then identified based on the correlation
between their perievent histograms and image categories. Al-
though this approach has provided valuable insights into hip-
pocampal neuronal encoding,!'>?! the precise nature by which
the hippocampus neuronal ensemble encodes category-specific
information through its spatio-temporal patterns of spikes is not
fully characterized. For example, it is unclear how the same hip-
pocampal neuron encodes multiple categories or whether hip-
pocampal neurons encode categories using the same or different
temporal resolutions.

To answer these questions, we developed and applied a com-
bined experimental-modeling approach to quantitatively inves-
tigate hippocampal encoding of visual memory categories in
human subjects using an interpretable decoding model. Hip-
pocampal CA3 and CA1l spikes were recorded from epilepsy
patients performing a visual delayed match-to-sample (DMS)
task involving multiple categories of images. To investigate how
visual memory categories are encoded in hippocampal spike
patterns, we applied an ensemble classification model operat-
ing across multiple temporal resolutions, which we previously
developed and validated.®>] This model enables the decoding
of high-dimensional spatio-temporal spike patterns and yields
interpretable representations of their spatio-temporal structure
(Figure 1). Notably, this decoding task presents a statistically un-
derdetermined problem, as the number of spatio-temporal fea-
tures extracted from neural recordings far exceeds the number
of available trials per subject. To mitigate this, the model incor-
porates regularization and ensemble learning techniques such
as bagging and stacking. Results show that visual memory cat-
egories can be decoded from hippocampal spike patterns with
significantly above chance-level accuracies, which strongly sup-
ports the existence of category-specific coding in the human hip-
pocampus. Hippocampal neuron ensembles encode visual mem-
ory categories in a distributed manner, similar to a population
code, while each neuron encodes visual memory categories with
atemporal code. In addition, hippocampal CA3 and CA1 neurons
contain similar and redundant information about visual mem-
ory categories, possibly due to the strong feedforward synaptic
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pathway between the two regions.?¢! We believe this study ad-
vances the understanding of the neural code underlying mem-
ory category representation and provides a foundational basis for
future development of stimulation applications in hippocampal
neuroprosthetics.!?’]

2. Experimental Section

2.1. Human Hippocampal Recording

All participants were diagnosed with refractory focal epilepsy
and underwent intracranial depth electrode implantation for
seizure localization and monitoring (Figure 2a). The number
and placement of electrodes were determined entirely by the
clinical team, based on clinical criteria. Typically, each subject
received 1-4 FDA-approved Ad-Tech (Medical Instrumenta-
tion Corporation or PMT Corporation) “Macro-Micro” depth
electrodes. The “macro”-electrodes recorded low-frequency
signals such as clinical electroencephalography (EEG), while
the “micro”-electrodes recorded higher-frequency signals like
single-unit activity (spikes). Throughout the experiment, brain
signals were recorded using the Blackrock Cervello system
concurrently with a clinical EEG recording system. Electrode
placement was performed intraoperatively using either a stereo-
tactic headframe or a frameless stereotactic system to align the
electrodes perpendicularly to the long axis of the hippocampus,
targeting both CA3 and CA1 regions. Post-operative MRI and
electrophysiological recordings confirmed the accuracy of the
electrode placements (Figure 2a) using the same techniques,
which were previously demonstrated for validation of elec-
trode placement.?®} In this study, each probe contained 10
micro-electrodes, with 6 in the CA3 region and 4 in the CAl
region (Figure 2b). Spikes were obtained by isolating single-
unit action potential waveforms from continuous recordings
through online (Blackrock Cervello system) and offline (Plexon
Offline Sorter) spike sorting procedures. A quality assess-
ment of recorded neuronal signals can be found in Section S1
(Supporting Information).

All procedures were reviewed and approved by the Institu-
tional Review Board of the University of Southern California
and Wake Forest University in accordance with the National
Institute of Health. All subjects provided voluntary written
informed consent prior to participation in this study. Experi-
ments were performed at Keck Hospital of the University of
Southern California (Keck), Rancho Los Amigos Rehabilita-
tion Center (Ranco), and Wake Forest Baptist Medical Center
(Wake).

2.2. Behavioral Task

Subjects were given a recovery period of 1-2 days from the anes-
thesia. Patients remained in the Intensive Care Unit (ICU) of
Keck and Rancho and the Epilepsy Monitoring Unit (EMU) of
Wake during the duration of their time in the hospital, where
all behavioral tasks were performed. Subjects performed the
memory-dependent DMS task with a touch-screen computer
while sitting either in a bed or in a chair next to the bed in the
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Figure 1. Decoding visual memory categories from spatio-temporal patterns of spikes recorded in the human hippocampus using an ensemble multi-
temporal-resolution classification model. This model provides interpretable model representations of spatio-temporal characteristics of spike patterns

for encoding specific memory categories.

ICU/EMU. Each DMS trial commenced with the display of a fo-
cus ring in the center of a touch screen (Figure 3a). Subjects
were instructed to click on the focus ring to initiate the Sample
phase. In the Sample phase, a sample image was presented at a
randomly selected location on the touch screen (Sample Presen-
tation event). Subjects were instructed to remember this sam-
ple image and subsequently click on it to trigger a Sample Re-
sponse event. Upon clicking, the sample image disappeared, and
the screen remained blank for 3-5 s (Delay Phase). Following the
Delay Phase, multiple images, including the sample image, were
simultaneously presented on the touch screen at different loca-
tions. Subjects were instructed to select and click on the sample
image based on their memories to generate a correct Match Re-
sponse. One DMS task session consisted of 100-150 trials. Each
subject completed 1-2 sessions of the DMS task.

Adv. Sci. 2025, €02047 02047 (3 of 14)

Sample images (n = 500) were obtained from the internet. Five
main categories (“Animal”, “Building”, “Plant”, “Tool”, and “Ve-
hicle”) of images were included in the DMS task (Figure 1c).
Note that “Building” stimuli depicted single, standalone struc-
tures without background context, and were treated as discrete
objects rather than as full scenes or navigational environments.
Additionally, due to the diversity within the “Tool” category, im-
ages in this group were limited to handicraft consumable items
such as pencils, pens, markers, crayons, thread, yarn, and similar
objects. Volunteers labeled the categories (1: in category, 0: not in
category) of these images using an online survey. Each image was
labeled 56 times on average. Only images with high scores (>0.9)
in their respective categories were included. Binary labels of cat-
egories of images were used as the output signal of the memory
decoding model.

© 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

25U901 SUOLLLLOD BA1IEBID 3[R0l [dde 3 Ag PauAC a2 SB[ 1LE YO 8N J0'S3INI J0J ARG I BUIIUO 3|1 UO (SUONIPUOD-PUE-SWBI LD B A ARe.q]1[BUIUO//STY) SUONIPUOD PUE SWLB | 31 395 *[SZ0Z/0T/G0] Uo AeIqiT8UIIUO AB1IA 801 BIS00 BURILR0D) Ad Z70Z0SZ02 SAPR/Z00T OT/10p/LL0"Aa | 1w AIeic)jpu|u0 PeoUeApe//SdIy LU Bapeojumod ‘0 ‘rvBE86TE


http://www.advancedsciencenews.com
http://www.advancedscience.com

ADVANCED
SCIENCE NEWS

ADVANCED
SCIENCE

Open Access,

www.advancedsciencenews.com

a Pre-Implantation

b

M .

' M
7o e Te Te
CHCEE B H E

t

Micro-Electrodes

C Animal

Building Plant Tool

www.advancedscience.com

Electrodes Implanted

Macro-Electrodes

Vehicle

Figure 2. Human experimental paradigm. a) 3T MRI showing pre-implantation hippocampal structures and post-implantation electrode locations in
one subject. The bulges visible in the probe are the location of the “macro” electrode sites. Inset: zoomed-in view of the probe in the hippocampus. b)
Layout of the micro-macro probe containing 6 macro-electrodes and 10 micro-electrodes. Six and four micro-electrodes were implanted in the CA3 and
CA1 regions, respectively. c) Sample Images of the five memory categories used in the DMS task.

2.3. Decoding Cases

Based on the behavioral task, two decoding cases and two nega-
tive control cases were designed (Figure 3b).

In the two decoding cases, spatio-temporal patterns of spikes
during “Sample Response” (memory encoding) events and
“Match Response” (memory retrieval) events were used as model
inputs, respectively. Binary (1 or 0) labels of the five memory cat-
egories of the sample images were used as model outputs. The
objective of these two cases was to assess the model’s ability to de-
code memory categories when memory was being encoded and
retrieved, respectively.

In the first control case (Time-Shifted), the time windows of
spike patterns were shifted to be before the “Sample Presenta-
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tion” events, so the input spike patterns contain no information
about the output memory categories. In the second control case
(Label-Shuffled), model outputs were randomly shuffled across
samples, thereby disrupting any potential correlation between
them and the input spike patterns. These two negative control
cases were included to verify that the model does not overfit the
data, thereby ensuring the reliability of the decoding results.

2.4. Memory Decoding Model
The memory decoding model decodes spatio-temporal patterns

of spikes into binary visual memory category labels (Figure 1). It
consists of two layers of learners (classifiers).
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Figure 3. Behavioral tasks and decoding cases are designed for decoding memory category information. a) DMS task paradigm. SP: Sample Presentation;
SR: Sample Response; MP: Match Presentation; MR: Match Response. b) decoding cases and control cases in the modeling.

In its first layer, a bank of base learners (L1-regularized logistic
regression classifiers)??! extracts spatio-temporal features from
spike patterns with a wide range of temporal resolutions using B-
spline functions with different numbers of knots.*3! Each base-
learner, using a single temporal resolution, acts as a weak classi-
fier on its own. L1-regularization is used to reduce feature dimen-
sionality and yield sparse estimation of model coefficients.*” The
bagging method is adopted to reduce estimation variances by
partitioning the data into multiple replicas and estimating mul-
tiple copies of the base learners with these replicas (ensemble
classifier).[3?!

In its second layer, a meta-learner combines outputs from the
base learners, each operating at a single temporal resolution, into
an ensemble model using another L1-regularized logistic regres-
sion classifier. It fuses multiple temporal resolutions into the
model to classify spatio-temporal patterns of spikes into memory
category labels. It renders the model multi-temporal resolution
and a stronger classifier.

The model can be mathematically expressed as

y=g (£ (x) (1)

where X is the input spike pattern, y is the output memory label,
fi°) is the base-learner, g(-) is the meta-learner, m is the number
of B-spline knots controlling the temporal resolutions, r is the
index of the bagging replica. Given a set of B-spline knots, the
temporal resolution of each base-learner is M/(m + 1), where M
is the length of the decoding window (2 seconds in this study).
Nested cross-validation is applied throughout the estimations
to prevent overfitting.>***) Model coeflicients are estimated using
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training data. Hyperparameters are optimized using validation
data. Model performance is evaluated with test data that are held
out from training and validation data.

This model was extensively evaluated using both synthetic and
rodent data.*®! Specifically, synthetic data results indicate that
the model could identify optimal temporal resolutions by appro-
priately assigning weights to base learners with different resolu-
tions. It can faithfully recover the ground truth temporal resolu-
tions and firing probability intensity functions of the model neu-
rons. When applied to the hippocampal spiking data recorded
from rats performing a memory-dependent delayed nonmatch-
to-sample task, the model highly accurately decodes spatial mem-
ory information.

One important advantage of this model is its interpretability.
It generates sparse classification functional matrices (SCFMs)
representing the spatio-temporal characteristics of hippocampal
spike patterns most relevant to classification. SCFMs are cal-
culated by nonlinearly integrating the predictions of the base-
learners using the meta-learners as

2 rJ !
F (n,7) = {1 + exp <—w’0 - Z [ b (z) w (n,])] w (m)}
m=1 | j=1

(2)

where bjf”(r) are the B-spline basis functions of each base-learner;
ware the model coefficients of base learners f{-); J is the total num-
ber of B-spline knots used in a specific base-learner. w’ are the
model coefficients of the meta-learner. Q is the total number of
base learners. Note that the baseline probability is computed as
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B™(r) = [1+ exp(—w,)]! when b;”(r) = 0. Regions where b;”(r)
exceeds b]?”* indicate areas where spikes increase the probability
of belonging to a specific label, whereas regions with values be-
low b indicate a decrease in this probability. More methodolog-
ical details of the model can be found in Section S2 (Supporting
Information) and a previous publication.*”]

When decoding a specific memory category, having spikes in
SCFM regions with positive values (i.e., regions with SCFM value
exceed the baseline b™) increases the probability of the pattern
belonging to the decoded category. By contrast, having spikes in
negative regions (i.e., regions with SCFM value below the base-
line bj‘,“*) of the SCFM decreases this probability. This allows for a
direct quantification of specific spatio-temporal regions that max-
imize the differences between patterns of the decoded category
and non-decoded patterns.

Model performance is assessed using the Matthews corre-
lation coefficient (MCC), which effectively handles imbalanced
data. The MCC is calculated from the confusion matrix compo-
nents, such as true positives (TP), true negatives (IN), false pos-
itives (FP), and false negatives (FN), using below given formula

_ TPX TN — FPX FN
V(TP + FP) x (TP + FN) X (TN + FP) x (TN + FN)

McCcC

3)

This coefficient provides a value between —1 and 1, where —1,
0, and 1 indicate opposite, random, and perfect classification, re-
spectively. Models that predict all outputs as a single class (i.e., all
1 or all 0), or randomly (chance level) will result in an MCC of 0.
Additional metrics, such as Informedness and Markedness, were
also calculated to better quantify the modeling performances.

Permutation feature importance (PFI) analysis quantifies the
contribution of individual or groups of features to the predic-
tive power of a model by evaluating the impact of their random
alteration.3*3¢] The process involves permuting each input fea-
ture or each group of input features independently and observing
the resultant increase in model loss (e.g., cross-entropy*’] in this
study). This increase is a direct indicator of the feature’s impor-
tance; a significant rise in model loss suggests a high dependency
of the model on that feature for accurate predictions. Thus, the
importance of each feature is assessed based on the degree to
which randomizing the feature degrades model performance.

The entire modeling procedure for each subject was achieved
in tens of hours by using a parallel computing strategy.**]

2.5. Supplementary Analyses

To evaluate whether decoding performance relied on meaning-
ful spatio-temporal patterns, two additional control tests based
on surrogate spikes were implemented. In the first control, the
spike train of each neuron was circularly shifted by a random off-
set (with wrapping), preserving firing rate and inter-spike interval
distribution while disrupting the temporal coordination across
neurons. In the second control, each spike within a trial was in-
dependently jittered by a random offset sampled uniformly from
—20 to +20 ms, maintaining overall firing rates but disrupting
the fine temporal precision of spike timing. Detailed methodol-
ogy can be found in Section S4 (Supporting Information).
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Table 1. Demographics and experimental characteristics for study partici-
pants.

Variable Value

Total number of subjects 24

Age [years] 36.6 + 12.2 (range: 20-62)
Sex [M/F] 13/1

Recording Sites

— Bilateral anterior & posterior HC 11 subjects
— Bilateral anterior HC only 8 subjects
— Unilateral anterior HC only 5 subjects
Number of neurons recorded per subject 30.0+15.7
DMS Trials per subject 149.5 + 25.4
Task performance [%] 99.0+22

“HC: hippocampus; DMS: delayed match-to-sample task.

In addition, to better evaluate the advantage of incorporating
multi-temporal resolution, four rate-coding based models, each
using a different fixed bin size: 20, 50, 100, and 2000 ms (the
full decoding window) were implemented. The modeling per-
formance of the multi-temporal-resolution model was compared
with these rate-coding-based models in Section S5 (Supporting
Information).

3. Results

3.1. Human Subjects

Twenty-four patients with medically refractory focal epilepsy and
mild-to-moderate memory abnormalities were enrolled in the
study (Table 1). The age of subjects ranged from 20 to 62 years,
with an average age of 36.6 + 12.2 years. The subjects comprised
13 males and 11 females, ensuring a balanced gender distri-
bution. Among the 24 subjects, 11 had bilateral recordings on
both the anterior and posterior regions of the hippocampus; 8
had bilateral recordings on the anterior region of the hippocam-
pus; 5 had unilateral recordings on the anterior region of the
hippocampus. The average number of recorded neurons was
30.0 + 15.7 per subject. During the memory tasks, subjects com-
pleted an average of 149.5 + 25.4 trials. Task performance was
high (99.0% + 2.2%), and our analyses focused on correct trials
to ensure that the decoded neural signals reflected successfully
encoded memory representations, while also maintaining a suf-
ficient number of trials for reliable model training.

3.2. Decoding Memory Categories Using a
Multi-Temporal-Resolution Classification Model

We apply the memory decoding model to test whether hippocam-
pal spiking activities contain visual memory category-specific
information. This model decodes memory categories (outputs)
from hippocampal spatio-temporal patterns of spikes (inputs)
recorded at different phases of the memory-dependent DMS task.

Results show that in both “Sample Response” and “Match Re-
sponse” cases, the model yields significant classification accura-
cies, indicated by the Matthews correlation coefficients (MCCs)
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Figure 4. Categories of sample images can be decoded from spatio-temporal patterns of spikes recorded during Sample Response and Match Response
events of a delayed DMS task in human subjects (n = 24). Pentagon plots show the decoding performance of the five memory categories in a) Sample; b)
Match; and c) Time-Shifted decoding cases. Color lines: MCCs of individual subjects; Black thick lines: average MCCs across all subjects; White shades:
distributions of MCCs within categories. Note that the Label-Shuffle control case is omitted for clarity, as it yielded zero MCC values.

between true labels and predicted labels, in most categories and
subjects (Figure 4a,b). Average MCCs of the “Sample Response”
case are 0.29 + 0.16, 0.39 + 0.23, 0.47 + 0.19, 0.29 + 0.16,
0.40 + 0.19 for the five memory categories, respectively (Table S1,
Supporting Information); note the chance-level MCC = 0). In the
“Match Response” case, MCCs of the five memory categories are
0.38 +0.17, 0.43 + 0.18, 0.5 = 0.15, 0.43 + 0.18, and 0.36 + 0.20,
respectively (Table S2, Supporting Information). These results in-
dicate that spatio-temporal patterns of spikes during both mem-
ory encoding and memory retrieval periods contain image cate-
gory information that can be decoded by the classification model.

In both control cases, the model yields near-zero MCCs. The
mean MCCs of the “Time-Shifted” case (Figure 4c) for the five
categories are 0.06 = 0.11, 0.04 + 0.09, 0.03 + 0.10, 0.04 + 0.11,
and 0.03 + 0.10, respectively (Table S7, Supporting Information).
The mean MCCs of the “Label-Shuffled” case are all 0. These re-
sults affirm that the classification model effectively avoids overfit-
ting and decodes real memory-related information from the hip-
pocampal spiking activities.

Moreover, when tested on surrogate spike trains generated
by either circular time shifting control or spike time jittering
control, decoding performance dropped to near chance level
(Tables S8-S11, Supporting Information). The original model
significantly outperformed both control conditions across all sub-
jects and categories (paired t-test, p < 0.0001). Detailed results, in-
cluding subject- and category-level p values, percentile real-data
MCC values relative to surrogate distributions, are provided in
Section S4 (Supporting Information).

3.3. Decoding Memory Categories Using Rate-coding Based
Classification Models

We implemented rate-coding-based models using several tempo-
ral bin sizes (20, 50, 100, and 2000 ms). These models are essen-
tially “single-resolution” models, as described in the manuscript
and compared in our previous study.**! Each bin size corre-
sponds to a specific temporal resolution, and the binning and av-
eraging process effectively implements a zeroth-order B-spline.
This differs slightly from the single-resolution model described
in our manuscript, which employs a third-order B-spline.

Adv. Sci. 2025, €02047 02047 (7 of 14)

We evaluated these rate-coding models on both Sample Re-
sponse and Match Response decoding tasks and compared their
performance to that of our multi-temporal-resolution model
using statistical analyses. The results showed that the multi-
temporal-resolution model significantly outperformed all rate-
coding models across all bin sizes (p < 0.001 for all paired com-
parisons). Among the rate-coding models, those using 20, 50,
and 100 ms bin sizes achieved significantly above-chance decod-
ing performance (MCC > 0). A general trend emerged whereby
smaller bin sizes yielded better performance, suggesting that
finer temporal granularity enhances decoding accuracy. In con-
trast, the model using a single 2000 ms bin (i.e., averaging firing
rate across the entire decoding window) did not perform signif-
icantly better than chance (Figure S3 and Tables S12-S19, Sup-
porting Information).

3.4. Spatio-Temporal Distribution of Category Information in
Hippocampal Spikes

The classification model used in this study is designed to be
biologically interpretable.*] It characterizes the mapping be-
tween input spikes to output categories by explicitly represent-
ing it in the form of sparse classification functional matrices
(SCFMs), which quantifies spatio-temporal regions that maxi-
mize the differences between patterns of the decoded category
and non-decoded patterns (i.e., patterns of other categories). The
SCFM has the same dimension as the spatio-temporal pattern to
be decoded. In an SCFM of a given category, zero-valued (white-
baseline) areas do not contribute to the prediction of the memory
category; positive (red-exceed the baseline) areas represent spatio-
temporal regions where observing spikes increases the likelihood
of the decoded category; negative (blue-below the baseline) areas
represent regions where spikes decrease the likelihood of the de-
coded category.

A representative model is presented to illustrate how the
model decodes the spatio-temporal patterns of spikes (Figure 5).
Itis evident that the five categories cannot be easily distinguished
from either the averaged spiking activities (Figure 5a) or the
single-trial spiking activities (Figure 5b). The SCFM highlights
the spatio-temporal regions most informative for category encod-
ing (Figure 5c) and offers a direct means to examine the model’s
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Figure 5. Spatio-temporal distributions of category information in hippocampal spike patterns are revealed by the classification model. a) peri-event
histogram of spike patterns of the five categories during the Sample Response events. b) raster plots showing a single trial of the spatio-temporal patterns
of spikes during the Sample Response event. The five categories cannot be easily distinguished in either (a) or (b). c) SCFMs of the five categories in the
classification model. The red box marks the neuron shown in (e) and (f). Based on the SCFMs, this neuron contributes to encoding the five categories.
d) spike counts of each category with (top panel) and without (bottom panel) using SCFMs as masks. SCFMs reveal the spatio-temporal regions of
the spike patterns that encode the category information. e) spike raster plots of trials within each category of the neuron marked in (a), (b), and (c).
f) peri-event histograms of trials of the decoded category (top panel) and other (non-decoded) categories (bottom panel) of this neuron. Dashed lines
represent the baseline firing rates. Significant differences in firing rates between decoded categories and non-decoded categories exist in time intervals
consistent with the SCFMs (bins marked with asterisks, p < 0.05).
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Table 2. Spatial and temporal sparseness of neural memory representation of five decoding memory categories across subjects (n = 24).

Animal Building

Plant Tool Vehicle

28.2 +27.0%
78.8 +26.1%

Spatial Sparseness (Mean + STD)

Temporal Sparseness
(Mean + STD)

28.1+27.3%
75.8 +28.1%

Spatial Sparseness (Mean + STD)

Temporal Sparseness
(Mean + STD)

24.1+28.3%
69.8 +35.3%

21.8+18.7%
77.9 + 28.0%

Sample Response
21.1+27.2%
71.5 +33.4%

21.5+23.1%
65.2 + 34.9%

20.1+18.3%
69.6 + 33.5%

Match Response
19.2 +£21.5%
74.4 +30.0%

18.9 +20.2%
69.8 +30.2%

24.9 + 27.6%
76.9 + 28.2%

classification decisions. For example, there is no significant dif-
ference in the total spike counts within the patterns across the five
categories (Figure 5d, top). However, after applying the SCFMs of
the five categories identified by the model (Figure 5c) as masks
to the spike patterns, i.e., calculating the inner product of the
patterns and the SCFMs, these patterns show significant differ-
ences in spike counts within the SCFM regions across the five
categories (Figure 5d, bottom). Note that this inner product op-
eration projects the spike pattern onto the SCFM, producing a
weighted summation across neurons and time points. This yields
a scalar value that quantifies how well the current trial matches
the learned spatio-temporal pattern associated with a given cat-
egory. Summing over this weighted matrix provides the model’s
predicted probability for the target memory label. As such, this re-
sult shows that the model identifies the spatio-temporal regions
critical for encoding the five categories of visual memories and
further decodes these categories at the neuronal population level.

Based on the model, neurons with non-zero values in their
SCFM contribute to the encoding of categories. This can be ver-
ified at the single-neuron level by comparing the firing patterns
of the trials of the decoded category and non-decoded categories
of these neurons (Figure 5e). As shown in one example neuron,
there are significant differences in firing rates between decoded
categories and non-decoded categories in time intervals consis-
tent with the non-zero regions of the SCFM (Figure 5f).

3.5. Sparseness of Spatio-temporal Encoding of Categories

Encodings of the five categories are further characterized regard-
ing spatial and temporal sparseness using classification models
of all subjects (n = 24). Spatial sparseness refers to the propor-
tion of neurons with only zero values in the SCFMs (i.e., no con-
tribution to encoding) relative to the total number of neurons in
each neuron ensemble. Temporal sparseness represents the pro-
portion of zero-valued time intervals of each neuron within its
decoding window.

Results show that hippocampus neurons encode the five cat-
egories with similar levels of spatial and temporal sparseness
(Figure 6a,b, and Table 2). Additionally, our results indicate that
hippocampal neuron ensembles encode visual memory cate-
gories in a distributed manner (population coding), such as with
lower spatial sparseness, while individual hippocampal neurons
encode visual memory categories with temporal codes, such as
with high temporal sparseness.

Adv. Sci. 2025, €02047 €02047 (9 of 14)

3.6. Temporal Coding of Visual Memory Categories

The ensemble multi-temporal-resolution model incorporates a
large range of temporal resolutions in its base learners, and the
meta-learner further chooses the optimal subset of base learners
to decode the memory categories. Using the PFI analysis on the
base learner of the model, we directly quantify the contribution of
each temporal resolution to the encoding of visual memory cat-
egories by calculating the reduction of loss caused by permuting
the features associated with each temporal resolution.

Results show that a wide range of temporal resolutions is uti-
lized in encoding the five categories, with high temporal reso-
lutions playing a more important role than low temporal reso-
lutions (Figure 6¢). Similar distributions of different temporal
resolutions’ contributions are observed in all five categories dur-
ing both the Sample Response and Match Response events of the
DMS task. These results are consistent with the temporal sparse-
ness results above and strongly suggest a temporal code, as op-
posed to a rate code, of hippocampal neurons in encoding visual
memory categories.

3.7. Contribution of Hippocampal CA3 and CA1 Neurons to
Encoding of Categories

To investigate how CA3 and CA1 neurons contribute to the en-
coding of memory categories, we further apply the PFI analysis
to calculate the contribution of these neurons using their corre-
sponding model features. First, the total contribution of each re-
gion, such as CA3 and CAl, is calculated as the reduction of the
normalized cross-entropy loss by permuting all features associ-
ated with all neurons in that region. Redundancy is calculated as
the contribution shared by the two regions, such as the summa-
tion of the individual contributions of the two regions subtracts
the total contribution of the two regions combined. The unique
contribution of each region is then calculated as the individual
contribution of each region, subtracting the redundancy. Results
show that CA3 and CA1 neurons contribute similarly to encod-
ing the five visual memory categories with a significant amount
of redundancy (Figure 7a). The unique contribution of CA3, the
redundancy, and the unique contribution of CA1 averaged across
all five categories are 31.5 + 4.9%, 22.5 + 3.0%, and 46.0 + 4.9% in
the Sample phase, and 33.0 + 3.2%, 19.8 + 2.7%, and 47.2 + 2.7%
in the Match phase.
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Figure 6. Sparseness of spatio-temporal encoding of visual memory categories during Sample Response and Match Response events of the DMS
task. a) spatial sparseness of all neuron ensembles (n = 24). b) temporal sparseness of all neurons (n = 721). Bars: mean sparseness; error bars:
standard deviation (STD) of sparseness. c) Contribution of temporal resolutions to the encoding of visual memory categories. Colored dots (left y-
axis): contribution of temporal resolutions to the encoding of categories in each subject. Colored lines (right y-axis): averaged contribution of temporal
resolutions across all subjects (n = 24). Black line (right y-axis): averaged contribution of temporal resolutions across all five categories. Left: Sample

Response; Right: Match Response.

To balance the unequal numbers of CA3 and CA1 neurons in
each subject, the averaged contributions of individual CA3 and
CA1 neurons are calculated by normalizing the overall contribu-
tions of CA3 and CA1 ensembles to encoding with the number
of CA3 and CA1 neurons in each region. Results show no sig-
nificant difference between CA3 and CA1 neurons in all five cat-
egories during both the Sample Response and Match Response
events of the task (Figure 7b). These results indicate that CA3 and
CA1 neurons contain similar information about visual memory
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categories, possibly due to the strong and divergent synaptic con-
nections from CA3 to CA1 regions.%®]

4, Discussion

This study combines human electrophysiology and computa-
tional modeling to investigate how the hippocampus encodes vi-
sual memory categories with its spiking activities.
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Response (paired t-test).

The first main finding of this study is that visual memory cat-
egories can be successfully decoded from hippocampal CA3 and
CA1 spikes during both the Sample (encoding) and Match (re-
trieval) phases of the DMS task. This result confirms the pivotal
role of the hippocampus in integrating sensory information, such
as the “what” information of objects, for the formation of episodic
memories. It strongly suggests that, due to the very high dimen-
sionality of the object space, the hippocampus uses categories to
reduce the dimensionality and parsimoniously encode object in-
formation using its neuronal ensembles.

In addition, we demonstrate that memory categories can be de-
coded from single trials of hippocampal ensemble spike patterns
using a classification model, while the traditional decoding meth-
ods often rely on averaged neuronal firing patterns across many
trials.['’-22] In this study, spatio-temporal patterns of the neuronal
ensemble are used as the input signals, allowing all neurons to
contribute collectively to decoding output signals (i.e., memory
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categories). While each session included 20-30 trials per category,
our approach operates on high-dimensional spatio-temporal fea-
tures, often numbering in the thousands, to fully capture the
temporal dynamics of neuronal spiking activities. Sparse clas-
sifiers and ensemble learning techniques, such as bagging and
stacking?323! are used to effectively avoid overfitting and enable
decoding memory categories from very high-dimensional input
signals using relatively short data lengths. Importantly, this clas-
sification does not rely on a predefined temporal resolution in de-
coding. Instead, it incorporates a broad range of temporal resolu-
tions in its base learners to extract multi-scale temporal features
from spike patterns. The optimal temporal resolutions are then
determined using a data-driven stacking method by the meta-
learner. This approach enables us to quantify the temporal reso-
lution of decoding and address the key questions of which coding
strategy, temporal or rate coding, is employed in the hippocam-
pus. A key distinction between our approach and previous ap-
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proaches is that we do not preselect neurons based on their firing
rate or trial-averaged activity patterns. Instead, our model ana-
lyzes the ensemble neuronal activity to identify important spatio-
temporal patterns contributing to memory categories. In addi-
tion, while some previous studies have also used modeling ap-
proaches to decode memory from neural signals,[1*204041] thege
methods often use simple linear models, including a single, fixed
temporal resolution.

Moreover, in contrast to many machine learning models that
operate as “black boxes,” the classification model used in this
study is highly interpretable. It offers intuitive representations
of the spatio-temporal characteristics of spike patterns, in the
form of SCFMs, that are most relevant for decoding. This inter-
pretability has been rigorously validated through both simulated
data and experimental results from rodent studies,* enabling
further meta-analysis of the SCFMs to gain additional insights
into hippocampal memory encoding.

Through meta-analyses of the SCFMs, we found that the
hippocampus encodes memory categories in a spatially dis-
tributed yet temporally sparse manner. Across all five categories,
~70%-80% of neurons were involved in encoding. However,
within each neuron, only 20%-30% of the temporal window
contributed to encoding these categories. This pattern is con-
sistent with previous human studies on episodic memory using
non-visual stimuli such as words?*! and aligns with recent
human single-neuron studies using visual stimuli,[**! which
similarly reported that a large proportion of hippocampal neu-
rons respond to stimuli via brief, sharply timed bursts of activity
during memory encoding. From a computational modeling
perspective, such an encoding strategy may be optimal, as it
balances two competing demands: maximizing the capacity to
store diverse memories while minimizing energy consumption,
which is positively correlated with the number of spikes.[*?] Fur-
thermore, this temporally sparse activation supports a temporal
coding strategy that has long been associated with hippocampal
function.

The hippocampus is well established as a key structure for
encoding episodic memory,*3] which involves representing se-
quences of events and binding information across time. Two pri-
mary neural coding strategies have been proposed to explain how
such information is encoded in spike trains: rate coding and tem-
poral coding. Rate coding suggests that information is conveyed
by the average firing rate of a neuron over a defined time win-
dow, typically on the order of hundreds of milliseconds. In this
framework, stronger or more salient stimuli elicits higher fir-
ing rates. In contrast, temporal coding posits that the precise
timing of individual spikes, often at the millisecond scale, car-
ries meaningful information, enabling more efficient and higher-
capacity neural representations. Building on this framework, our
study contributes new insights to the long-standing debate over
the relative importance of rate versus temporal coding strategies
in neural information representation, particularly in the context
of memory.[21#2443-46] \While hippocampal neurons may employ
both strategies,[?*] our findings suggest that fine-grained tem-
poral resolution plays a more prominent role in encoding visual
memory categories. This is also consistent with the temporal
sparseness findings and suggests a temporal code, as opposed to
a rate code, of hippocampal neurons in encoding visual memory
categories.
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This study also investigated the role of the hippocampal CA3
and CA1 regions in encoding memory categories. We found
that neurons in both the hippocampal CA3 and CA1 regions
contribute similarly and contain redundant information about
memory categories. This is expected given the strong and dif-
fuse synaptic projections from CA3 pyramidal neurons to CA1l
pyramidal neurons.[?] As a result, information in the CA3 re-
gion likely mirrors that in the CA1 region. In our previous stud-
ies on developing hippocampal memory prostheses, we demon-
strated that the spiking activity of CA1 neurons can be accurately
predicted from CA3 neuron activity using a multi-input, multi-
output machine learning model.*”~* The presence of similar in-
formation in both regions enables the success of such a model,
even when utilizing nonlinear dynamical models capable of cap-
turing complex input-output transformations.

In this study, the decoding model was primarily used as a
tool to investigate how memory categories are encoded in spatio-
temporal spike patterns. While the model maps memory content
to neural activity, it also holds potential for future applications
in facilitating memory encoding through model-based stimula-
tion strategies. However, it is important to recognize that decod-
ing and stimulation are not inherently bidirectional processes.
Ensemble-level decoding can tolerate some loss of single-neuron
specificity (e.g., using multi-unit or unsorted spikes), whereas
effective stimulation typically requires highly targeted interven-
tions within neuronal circuits. Therefore, the development of fu-
ture models capable of extracting spatio-temporal structure from
unsorted spikes would be highly valuable. Nonetheless, the cur-
rent findings offer important insights into the spatio-temporal
nature of memory coding in the hippocampus and provide a
foundational step toward the long-term goal of developing hip-
pocampal memory prostheses aimed at restoring or enhancing
memory function.[?731:5%]

Several limitations of this study should be acknowledged,
along with opportunities for future research. First, our exper-
imental paradigm, the DMS task, was specifically designed to
model memory encoding over short timescales. Accordingly, the
form of memory examined in this study is best characterized
as working memory, given the minimal delay between stimulus
presentation and retrieval. As a result, our computational frame-
work primarily addresses the mechanisms underlying short-term
memory encoding and decoding, without explicitly modeling
processes related to episodic memory retrieval or memory forget-
ting. Given the brief retention interval (on the order of seconds),
we assumed that memory traces remained stable with negligible
decay. However, other processes such as episodic retrieval and
long-term forgetting, potentially involving distinct neural mech-
anisms such as pattern replay or memory degradation,>=>* were
not captured by the current framework. Future extensions could
incorporate these processes by examining how memory repre-
sentations evolve over longer timescales, ultimately providing a
more comprehensive understanding of memory-related neural
dynamics in the human hippocampus.

Additionally, due to practical constraints inherent in clinical
studies, we used a relatively small set of images spanning five
largely independent categories. In everyday life, however, hu-
mans encounter a vast array of diverse objects belonging to
numerous, often interrelated, categories. While our decoding
model focused on distinguishing memory content at the cate-
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gorical level, it remains possible that hippocampal neurons en-
code rich, high-dimensional visual features, with category infor-
mation emerging as a latent property. One consideration is that
due to the brain’s hierarchical coding architecture,>>="! objects
with similar visual features may naturally cluster together, giv-
ing rise to category-like representations. Our current study does
not allow us to fully disentangle this possibility. Future investi-
gations could address this by using stimuli that orthogonalize
low-level visual features and categorical labels. To fully explore
memory encoding in naturalistic settings, future studies will also
benefit from advanced neural recording techniques and model-
ing approaches capable of capturing the complexity of real-world
stimuli and neural responses.
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