Pentagon Fuel Use, Climate Change, and the Costs of War

Neta C. Crawford
Boston University

June 12, 2019

Summary

In its quest for security, the United States spends more on the military than any other country in the world, certainly much more than the combined military spending of its major rivals, Russia and China. Authorized at over $700 billion in Fiscal Year 2019, and again over $700 billion requested for FY2020, the Department of Defense (DOD) budget comprises more than half of all federal discretionary spending each year. With an armed force of more than two million people, 11 nuclear aircraft carriers, and the most advanced military aircraft, the US is more than capable of projecting power anywhere in the globe, and with “Space Command,” into outer-space. Further, the US has been continuously at war since late 2001, with the US military and State Department currently engaged in more than 80 countries in counterterror operations.2

All this capacity for and use of military force requires a great deal of energy, most of it in the form of fossil fuel. As General David Petraeus said in 2011, “Energy is the lifeblood of our warfighting capabilities.”3 Although the Pentagon has, in recent years, increasingly emphasized what it calls energy security — energy resilience and conservation — it is still a significant consumer of fossil fuel energy. Indeed, the DOD is the world’s largest

1 Neta C. Crawford is Professor of Political Science at Boston University and Co-Director of the Costs of War project. Crawford thanks Matthew Evangelista, Anna Henchman, Catherine Lutz, Nathan Phillips, Stephanie Savell, Adam Sweeting, and Alexander Thompson for their critical comments and helpful suggestions on an earlier draft of this paper. Crawford also benefited from feedback at Ohio State University in April 2019.

institutional user of petroleum and correspondingly, the single largest producer of greenhouse gases (GHG) in the world.4

This paper specifically examines military fuel usage for the US post-9/11 wars and the impact of that fuel usage on greenhouse gases emissions. The best estimate of US military greenhouse gas emissions from 2001, when the wars began with the US invasion of Afghanistan, through 2017, is that the US military has emitted 1,212 million metric tons of greenhouse gases (measured in CO2e equivalent, or CO2e). In 2017, for example, the Pentagon’s greenhouse gas emissions were greater than the greenhouse gas emissions of entire industrialized countries as Sweden or Denmark.

DOD emissions for all military operations from 2001 to 2017 are estimated to be about 766 million metric tons of CO2e. And of these military operations, it is estimated that total war-related emissions including for the “overseas contingency operations” in the major war zones of Afghanistan, Pakistan, Iraq and Syria,5 are more than 400 Million Metric Tons of CO2e.

The US military is preparing for threats of attack from human adversaries. The threats of terrorism, Russian, Iranian, Chinese or Korean aggression are all real, but terrorists and these countries are not certain to attack the US. Arms control and diplomacy can deescalate tensions and reduce threats. Economic sanctions can also diminish the capacity of states and non-state actors to threaten the security interests of the US and its allies.

Global warming is the most certain and immediate of any of the threats that the US faces in the next several decades. In fact, global warming has begun: drought, fire, flooding, and temperature extremes that will lead to displacement and death. The effects of climate change, including extremely powerful storms, famine and diminished access to fresh water, will likely make regions of the world unstable — feeding political tensions and fueling mass migrations and refugee crises. In response, the military has added the national security implications of climate change to its long list of national security concerns.

Unlike some elements of the present US administration, which is in various modes of climate denial, the US military and intelligence community act as if the negative security consequences of a warming planet are inevitable. The DOD has studied the problem for decades and begun to adapt its plans, operations and installations to deal with climate change.

The US military has an opportunity to reduce the risks associated with climate change — and the security threats associated with climate change — by reducing their role in

4 These emissions are a result not only of war, but also of on-going non-war operations and maintenance of military installations. For a discussion of the concept of greenhouse gas equivalencies, see Appendix 1. Also see https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator.
5 See Appendix 1. This is a conservative estimate. Not including biogenic sources or reductions from renewable energy use; the latter were less than 1 percent of emissions. In the most recent year for which statistics are available, total greenhouse gas emissions by the DOD for FY2017 were about 58.4 million metric tons of CO2 equivalent.
creating greenhouse gas emissions. While some sea level rise and mass extinction will certainly occur — these changes have already begun — the most dire consequences of climate change and the associated threats and consequences to national security are not already baked into the system. There is time to act to reduce greenhouse gas emissions and it is urgent to do so. If the US military were to significantly decrease its greenhouse gas emissions it would make the dire climate change caused national security threats the US military fears and predicts less likely to occur.

Part I of this paper outlines the scale and pattern of US military fuel use, including the oil that the US uses to protect access to Persian Gulf oil. Part II estimates greenhouse gas emissions by the US military and the portion of those emissions that are a consequence of the major post-9/11 US wars. The US military has begun greenhouse gas emissions reductions, but there is room for much steeper cuts. For readers interested in further detail, Appendix 1 elaborates on technical issues and summarizes the sources of data and assumptions for the best estimates of greenhouse gas emissions the US has made in war from 2001 to 2017.

Part III of the paper summarizes the way the US military understands the national security implications of the military’s oil dependency and climate change. The Pentagon views climate change as a threat to military installations and operations, as well as to national security, when and if climate change leads mass migration, conflict and war. Yet the Pentagon does not acknowledge that its own fuel use is a major contributor to climate change. The military uses a great deal of fossil fuel protecting access to Persian Gulf Oil. Because the current trend is that the US is becoming less dependent on oil, it may be that the mission of protecting Persian Gulf oil is no longer vital and the US military can reduce its presence in the Persian Gulf. The Pentagon can also reduce US military greenhouse gas emissions in other ways. These alternatives are discussed more in Appendix 2, which suggests specific measures Congress might consider to reduce DOD fossil fuel consumption.

Absent any change in US military fuel use policy, the fuel consumption of the US military will necessarily continue to generate high levels of greenhouse gases. These greenhouse gases, combined with other US emissions, will help guarantee the nightmare scenarios that the military predicts and that many climate scientists say are possible.

Reductions in military fossil fuel use would be beneficial in four ways. First, the US would reduce greenhouse gas emissions. This would thereby mitigate climate change and its associated threats to national security. Second, reducing fossil fuel consumption would have important political and security benefits, including reducing the dependence of troops in the field on oil, which the military acknowledges makes them vulnerable to enemy attacks. If the US military were to significantly decrease its dependence on oil, the US could reduce the political and fuel resources it uses to defend access to oil, particularly in the Persian Gulf, where it concentrates these efforts. Third, by decreasing US dependence on

6 Keeping global warming to less than 1.5°C yields a much more livable planet than if the climate warms more than that. Intergovernmental Panel on Climate Change (IPCC), “Global Warming of 1.5°C,” Summary for Policymakers, (Switzerland: IPCC, 2018).
oil-rich states the US could then reevaluate the size of the US military presence in the Persian Gulf and reevaluate its relationship with Saudi Arabia and other allies in the region. Finally, by spending less money on fuel and operations to provide secure access to petroleum, the US could decrease its military spending and reorient the economy to more economically productive activities.

I. US Military Energy Consumption and Fuel

War and preparation for it are fossil fuel intensive activities. The US military’s energy consumption drives total US government energy consumption. The DOD is the single largest consumer of energy in the US, and in fact, the world’s single largest institutional consumer of petroleum.

Figure 1 tracks US Federal government energy use. From 1975 until 1990, the energy consumed by the DOD was essentially steady. During the 1991 Gulf War, US alliance partners, namely Saudi Arabia, provided much of the fuel used in that war. After the 1991 Gulf War, and with the end of the Cold War, US military energy consumption declined until the 9/11 attacks. In 2001, as a consequence of beginning a major war in Afghanistan, energy consumption by the DOD increased, and in 2005 hit its highest level in a decade. Since 2001, the DOD has consistently consumed between 77 and 80 percent of all US government energy consumption.

Figure 1. DOD and Total US Federal Government Energy Consumption, 1975-2017, in BTUs7

Since the 2007 Energy Independence and Security Act the US government has gradually decreased its overall energy use.\(^8\) Only in FY2013 did DOD energy consumption return to the level it was in 2000. The headline from the Energy Information Administration announcing the transition said “Defense Department Energy Use Falls to Lowest Level Since 1975.”\(^9\) Yet, even as it has realized significant reductions in fossil fuel use, the Pentagon’s consumption remains high. Indeed, the military annually consumes more fuel than most countries.

As the next figure illustrates, jet fuel, diesel fuel, and electricity production are the largest elements of DOD, and therefore US government, energy consumption.

Figure 2. Categories of Energy Consumed by the US Government and DOD\(^{10}\)

Why does the US military consume so much energy? It’s fighting “tooth” employs equipment that guzzles fuel at an incredible rate. The logistical “tail” and the installations that support operations are also extremely fuel intensive. Even the military’s non-armored vehicles are notoriously inefficient. For instance, the approximately 60,000 HUMVEEs remaining in the US Army fleet get between four to eight miles per gallon of diesel fuel.\(^{11}\)

Installation and Operational Energy Use

The DOD tracks its energy consumption in two baskets. Energy usage for installations is about 30 percent of Pentagon consumption. Although these military installations in the US and abroad necessarily support operations, the DOD tracks installation energy use separately. But, as the Pentagon notes, “In many ways, installation energy supports warfighter requirements through secure and resilient sources of commercial electrical energy, and where applicable, energy generation and storage, to support mission loads, power projection platforms, remotely piloted aircraft operations, intelligence support, and cyber operations.”

The installation tail that supports US operations and power projection capability includes more than 560,000 buildings at about 500 installations, located on over 27 million acres of land in the US and across the globe. In FY2017, the DOD spent $3.5 billion to heat, cool, and provide electricity to its facilities, down from the previous year, when it spent $3.7 billion. Each installation, of course, can produce greenhouse gas emissions. The Pentagon building itself emitted 24,620.55 metric tons of CO2e in 2013.

Despite the fact that in May 2018 the Trump administration rescinded the Obama administration’s federal energy efficiency goals, the DOD remains committed to reducing its energy consumption for pragmatic reasons. The Pentagon and each service branch have multiple projects underway to reduce installation energy use and the overall trend in installation consumption over the last ten years has been downward. Efforts to decrease energy consumption at installations include gradually replacing some non-tactical fleet vehicles with hybrid, plug in hybrid and alternative fuel vehicles, reducing engine idling, developing solar installations at some forts and bases, and concluding power purchase agreements for wind and solar energy. These efforts have borne fruit, but there the US military has room for more reductions.

14 Each installation consists of one or more sites, which may or may not be located contiguous to the installation.
18 The Department of Defense Energy Performance Master Plan was developed in FY2011.
As figure 3 below shows, while the Army is the most energy intensive at its installations, energy consumption at installations is relatively equally shared by the services.

Figure 3. DOD Installation Energy Consumption, in BTUs, by Service

The profile of fossil fuel energy consumption looks different when we consider “operational” energy. Operational energy use, defined as the energy “required for training, moving, and sustaining military forces and weapons platforms” accounts for 70 percent of DOD energy consumption. Most operational energy consumed is in the form of “bulk fuel” purchases of jet (JP-8 and JP-5) and diesel fuel. Operational use varies, of course, depending on what the US military is doing in any particular year — its ongoing and occasional missions. When the US is engaged in war, as one would expect, consumption of jet and diesel fuels increase. Their ratio will depend on the types of operations the military is performing — whether the war or particular phase of the war is land or air intensive.

The figure below shows operational energy use in FY2014, when DOD operational consumption was 87.4 million barrels of petroleum. Jet fuel consumption by all the armed services accounted for more than 70 percent of operational energy use that year. Although all services have aircraft, the Air Force is the largest user of petroleum jet fuel among the armed services. In 2014, the US was largely absent from Iraq, had reduced its forces in Afghanistan, and began its war against ISIS in Syria, which started in August 2014 with air strikes.

Figure 4. Operational Energy Use by Domain and Mission, FY2014

Because operational fuel use is greater than for installation fuel use, the US spends more on it. In FY2017 the DOD consumed over 85 million barrels of operational fuel to power ships, aircraft, combat vehicles, and contingency bases at a cost of nearly $8.2 billion.

23 Office of the Assistant Secretary of Defense for Sustainment. The DOD notes that “Traditionally, the scope of operational energy excludes nuclear energy used for the propulsion of the U.S. Navy’s aircraft carriers and submarines, as well as the energy used for military space launch and operations. Operational energy does include the energy needed to operate the carrier’s embarked aircraft and helicopters.” Department of Defense, “Operational Energy,” [emphasis in the original] https://www.acq.osd.mil/eie/OE/OE_index.html. The US Navy uses more than 180 nuclear reactors to power over 140 submarines and surface ships including all 11 US aircraft carriers and 70 submarines. See Department of the Navy, “United States Naval Nuclear Propulsion Program,” September 2017. https://www.energy.gov/sites/prod/files/migrated/nnsa/2018/01/f46/united_states_naval_nuclear_propul
Operational fuel consumption varies more than installation fuel use. For example, operational fuel consumption in FY2017 was lower than in FY2016.²⁴

Unsurprisingly then, total US military fuel consumption tracks US engagement in wars and occupations. All told, from 1998 to 2017 the US purchased 2.4 billion barrels of petroleum fuel.²⁵ Since the 9/11 attacks, annual fuel purchases have averaged more than 120 million barrels of all types of fuel. Between 2010 and 2015, the armed services purchased an average of 102 million barrels of fuel per year from the DOD.²⁶ Purchases have declined in recent years as the US has reduced its operations in Iraq and Afghanistan, averaging about 100 million barrels a year from 2013-2017.

Figure 5. Defense Logistics Petroleum Product Purchases in Millions of Barrels, FY1998 - FY2017²⁷

²⁵ The 1999 spike in jet fuel purchases corresponds with the 78-day NATO air war in Kosovo to which the US contributed more than 500 aircraft. For statistics on the US role, see https://www.afhistory.af.mil/FAQs/Fact-Sheets/Article/458957/operation-allied-force/.
²⁶ The DOD thus likely itself emitted an average of 44 million metric tons of CO₂ from burning petroleum per year for this period from oil use alone. GAO, “Bulk Fuel: Actions Needed to Improve DOD’s Fuel Consumption Budget Data,” p. 9. Carbon emissions per barrel of oil are 0.43 metric tons. See US Environmental Protection Agency, Greenhouse Gases Equivalencies Calculator, https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references. (The average heat content of crude oil is 5.80 mmbtu per barrel (EPA 2018). The average carbon coefficient of crude oil is 20.31 kg carbon per mmbtu (EPA 2018). The fraction oxidized is 100 percent. 5.80 mmbtu/barrel × 20.31 kg C/mmbtu × 44 kg CO₂/12 kg C × 1 metric ton/1,000 kg = 0.43 metric tons CO₂/barrel.)
The DOD does not report fuel consumption information to Congress in its annual budget requests. Indeed, although the Pentagon calculates fuel consumption for internal planning purposes, this information is explicitly withheld by the DOD in its reporting to Congress.28 The Department of Energy, however, does report the fuel consumption data for mobile vehicle emissions by the US military from 1975 to 2017. Figure 6 illustrates the mix of fossil fuels, by type from 1975 to 2017.29

\textbf{Figure 6. DOD Vehicle Fuel Consumption, 1975-2017, in Millions of Gallons}30

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVY SPECIAL FUEL</td>
<td>6,329</td>
</tr>
<tr>
<td>JET FUEL</td>
<td>181,436</td>
</tr>
<tr>
<td>AVIATION GAS</td>
<td>592</td>
</tr>
<tr>
<td>LPG/PROPANE</td>
<td>14</td>
</tr>
<tr>
<td>DIESEL</td>
<td>37,918</td>
</tr>
<tr>
<td>GASOLINE</td>
<td>6,296</td>
</tr>
</tbody>
</table>

\textit{II. Estimating US Military Greenhouse Gas Emissions and Effects of Recent Wars}

How much greenhouse gas does the US military emit, and how are those emissions distributed between base and overseas contingency operations? There are many sources of greenhouse gases related to war and preparation for it. Specifically, there are seven major sources of greenhouse gas emissions one could consider.31

28 Actual and estimated future petroleum, oil and lubricants consumption and costs for aircraft are analyzed on the DOD’s OP-26A forms “POL Consumption and Costs” which explicitly states that fuel consumption data is not to be shared with Congress: “The OP-26A exhibit will not be included in justification material forwarded to Congress.” Emphasis in the original. Department of Defense, Comptroller, DOD Financial Management Regulation, Chapter 3, p. 3-108. \url{https://comptroller.defense.gov/Portals/45/documents/fmr/archive/02aarch/02a_03old.pdf}.

29 The US Air Force and Army use JP-8 fuel; the Navy uses JP-5 fuel. In 2017 jet fuel consumption accounted for about 394 Trillion BTU. This was a slight decrease from the previous fiscal year, when it accounted for about 398 trillion BTUs. See the US Department of Energy, Comprehensive Annual Energy Data and Sustainability Performance, \url{http://ctsedweb.ee.doe.gov/Annual/Report/SiteDeliveredEnergyUseAndCostBySectorAndTypeAndFiscalYear.aspx}.

30 Data from the Department of Energy, \url{https://ctsedweb.ee.doe.gov/Annual/Report/HistoricalFederalEnergyConsumptionDataByAgencyAndEnergyTypeFY1975ToPresent.aspx}.

31 Biogenic emissions are excluded in these calculations. The Department of Energy does track these for recent years.
1. Overall military emissions for installations and non-war operations.
2. War-related emissions by the US military in overseas contingency operations.
3. Emissions caused by US military industry — for instance, for production of weapons and ammunition.
4. Emissions caused by the direct targeting of petroleum, namely the deliberate burning of oil wells and refineries by all parties.
5. Sources of emissions by other belligerents.
6. Energy consumed by reconstruction of damaged and destroyed infrastructure.
7. Emissions from other sources, such as fire suppression and extinguishing chemicals, including Halon, a greenhouse gas, and from explosions and fires due to the destruction of non-petroleum targets in warzones.

I focus here on the first two sources of military GHG emissions — overall military and war-related emissions — and briefly discuss military industrial emissions.

Domestic and overseas military installations account for about 40 percent of DOD greenhouse gas emissions. As we see from Figures 5 and 6 above, jet fuel is a major component of US military fuel use and therefore of greenhouse gas emissions. During each air mission, aircraft puts hundreds of tons of CO2 in the air, not to mention the support activities of naval and ground based assets for these air missions. The US wars in Afghanistan and Iraq began with days of massive airstrikes. Moreover, in each case, material was flown to the war zones and bases were set up to prosecute the wars and occupations. Similarly, the US war against ISIS in Syria and Iraq, which began in August 2014 has entailed tens of thousands of aircraft sorties for various missions — from reconnaissance, to airlift, refueling, and weapons strikes. A B-2 Bomber on a mission from Whiteman Air Force Base in Missouri might be refueled many times. For example, on 18 January 2017, two B-2 B bombers, accompanied by 15 KC-135 and KC-10 aerial refueling tankers made a 30 hour round trip mission from Whiteman Air Force Base to Libya to drop bombs on ISIS targets in Libya.

For purposes of illustration, Table 1, below, shows the capacities and relative fuel efficiency of several Air Force aircraft and emissions without aerial refueling. Note that the fuel economy of these aircraft is measured not in miles per gallon, but gallons per mile.

35 Fuel use depends on the flight profile of the aircraft and other factors, such as load. By contrast with military aircraft, a commercial Boeing 747 gets about 5 gallons per mile, and can carry over 500 passengers.
Table 1. Examples of US Military Aircraft Jet Fuel Consumption and CO2 Emissions

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Mission</th>
<th>Internal Fuel Capacity pounds and in gallons</th>
<th>Range in nautical miles on internal fuel</th>
<th>Fuel consumption, gallons per nautical mile</th>
<th>Metric Tons of CO2e Emissions, without aerial refueling</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>Bomber</td>
<td>167,000 lbs / 25,692 gal</td>
<td>6,000</td>
<td>4.28 gallons/mile</td>
<td>251.4 Metric Tons</td>
</tr>
<tr>
<td>F-35A (CTOL)</td>
<td>Fighter bomber</td>
<td>18,499 lbs / 2,846 gal</td>
<td>1,199</td>
<td>2.37 gallons/mile</td>
<td>27.8 Metric Tons</td>
</tr>
<tr>
<td>A-10</td>
<td>Close Air Support</td>
<td>11,000 lbs / 1,692 gal</td>
<td>500</td>
<td>3.38 gallons/mile</td>
<td>17.5 Metric Tons</td>
</tr>
<tr>
<td>KC-135R</td>
<td>Refueling Tanker</td>
<td>50,000 lbs / 7,692 gal (loaded with 150,000 lbs of transfer fuel)</td>
<td>1,500</td>
<td>4.9 gallons/mile</td>
<td>75.3 Metric Tons</td>
</tr>
<tr>
<td>KC-46A</td>
<td>Refueling Tanker and Cargo</td>
<td>Estimated 16,000 gal (loaded with 210,000 lbs of transfer fuel)</td>
<td>6,385</td>
<td>Estimated 2.9 gallons/mile</td>
<td>156.5 Metric Tons</td>
</tr>
</tbody>
</table>

The Pentagon does not publicly and regularly report its fuel consumption or greenhouse gas emissions, and there is no official publicly available DOD source for all military greenhouse gas emissions. It is possible, however, to estimate the overall greenhouse gas of the US military using publicly available emissions data from the Department of Energy for recent years, FY2008 and FY2010-2017 and fuel consumption

36 Calculated by the author from data about each aircraft. For instance, the B-2 carries 167,000 pounds of jet fuel (almost 25,000 gallons) to travel 6,000 nautical miles (c. 6,900 miles) and is capable of mid-air refueling, taking on an additional 99,000 pounds of fuel at each refueling. The F-35A, with a combat radius estimated to be about 584 nautical miles has an internal fuel capacity of 2,761 gallons. The A-10 has an internal fuel capacity of 1,642 gallons of jet fuel has a combat radius of about 250 nautical miles. Assuming each pound of jet fuel weighs an average of 6.5 pounds.

37 Assuming each pound of jet fuel weighs an average of 6.5 pounds.

38 See the Appendix.

39 The KC-46A can refuel itself. Boeing has not released data on its internal fuel capacity. The estimate here for fuel capacity and consumption is based on the Boeing 767-400ER range and fuel capacity.

40 Some have tried to estimate the greenhouse gas emissions of the Pentagon in war. See, for instance, Nikki Reisch and Steve Kretzman, “A Climate of War: The War in Iraq and Global Warming,” Oil Change International [March 2008], http://priceofoil.org/content/uploads/2008/03/A%20Climate%20of%20War%20FINAL%20(March%202017 %202008).pdf.
data for the period of 1975 to 2017. This data allows an estimate of how much of these emissions may be attributable to war.

While the DOD categorizes its energy use into installations and operations, the Department of Energy uses different categories, dividing government departments CO2 equivalent emissions into three categories — standard operations, non-standard operations and biogenic emissions.41 Because the paper focuses on greenhouse gas emissions resulting from fossil fuel use, biogenic emissions are not included in the estimates; biogenic emissions are much smaller than standard and non-standard emissions.

By Department of Energy definition, non-standard operations are “vehicles, vessels, aircraft and other equipment used by Federal Government agencies in combat support, combat service support, tactical or relief operations, training for such operations, law enforcement, emergency response, or spaceflight (including associated ground-support equipment). Non-Standard operations also include the generation of electric power produced and sold commercially to other parties.”42 Standard operations appear to be everything else that a department does to accomplish its functions, roles and missions. The Department of Energy reports that the US DOD has produced a total (standard and non-standard) of 527 million metric tons of CO2 equivalent from 2010 to 2017, an average of about 66 million metric tons per year in this period, roughly the same greenhouse gas emissions of 14 million passenger cars driven for one year.43

Department of Energy data, were used to estimate the total greenhouse gas emissions for standard and non-standard operations of the DOD from FY2001-2017 to be a total of 1,212 million metric tons of CO2 equivalent. In any one year, the Pentagon’s emissions are greater than many smaller countries total greenhouse gas emissions. For example, in 2017, US DOD greenhouse gas emissions were 59 million metric tons (not including biogenic emissions) of CO2e. In that same year, Pentagon emissions were greater than Finland, which emitted 46.8 million metric tons, Sweden which emitted 50.8 million metric tons, and Denmark which emitted 33.5 million metric tons of CO2e.44

43 There were about 268 million passenger vehicles in the US in 2016. See the EPA, passenger vehicles per year, https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references#vehicles.
How much of the total GHG emissions should be attributed to US post-9/11 wars? As discussed in Appendix 1, there are various ways to estimate this. The estimate of greenhouse gas emissions in the major wars is based on the proportion of fuel use by Central Command, which is the command responsible for operations in Afghanistan and Iraq and Syria. In FY2014 (see figure 4) this was about 24 percent of the total non-standard operational fuel consumption by the DOD. But because the US counterterror operations are underway all over the world (in about 80-90 countries) the Central Command is not the only war zone in the global war on terror. The portion of all greenhouse gas emissions related to Central Command including overseas contingency operations, and the Global War on Terror, is estimated to be about 35 percent of total greenhouse gas emissions for non-standard and standard operations.

Table 2. Estimated DOD and War Related Overseas Contingency Operation Greenhouse Gas Emissions, Millions of Metric Tons CO2e, 2001-2017

<table>
<thead>
<tr>
<th></th>
<th>Total DOD CO2e Emissions in Millions of Metric Tons</th>
<th>OCO-related CO2e Emissions in Millions of Metric Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>445</td>
<td>155.84</td>
</tr>
<tr>
<td>Non-standard (directly support combat)</td>
<td>766</td>
<td>268.21</td>
</tr>
<tr>
<td>Total Emissions by Category</td>
<td>1,212</td>
<td>424.06</td>
</tr>
</tbody>
</table>

45 Based on Department of Energy data. Methods are detailed in the Appendix.
46 Based on Department of Energy data.
The estimate above focuses on DOD emissions. Yet, a complete accounting of the total emissions related to war and preparation for it, would include the GHG emissions of military industry. Military industry directly employs about 14.7 percent of all people in the US manufacturing sector.\(^4^7\) Assuming that the relative size of direct employment in the domestic US military industry is an indicator for the portion of the military industry in the US industrial economy, the share of US greenhouse gas emissions from US based military industry is estimated to be about 15 percent of total US industrial greenhouse gas emissions.\(^4^8\) If half of those military related emissions are attributable to the post-9/11 wars, then US war manufacturing has emitted about 2,600 million megatons of CO\(_2\) equivalent greenhouse gas from 2001 to 2017, averaging 153 million metric tons of CO\(_2\)e each year.

Figure 8. Greenhouse Gases Attributable to Military Industry from 2001-2017\(^4^9\)

Finally, other emissions sources that are not calculated or estimated here may be significant sources of greenhouse gasses. Specifically, it was not possible to estimate the emissions due to the burning of oil by sabotage and destruction of oil infrastructure by

\(^{48}\) This does not include indirect jobs and therefore indirect military related emissions.

belligerents, the energy consumed by reconstruction, in particular in making cement, and emissions from other sources. Of these, the emissions from burning oil infrastructure in Iraq and Syria may be the largest. In the 2003 invasion of Iraq, oil wells were set alight by the Iraqi military and burned for several months. Oil infrastructure was targeted again in 2015, when the US bombed oil infrastructure in Iraq and Syria as a means of reducing ISIS revenue. And when ISIS retreated, it set oil wells and pipelines on fire in Iraq and Syria. In many cases, these fires burned for several months. For instance, starting in September 2014 the US targeted tanker trucks, and oil refinery and storage sites controlled by ISIS as a means of cutting off their revenue stream. In October 2015, the US attacked more oil producing ISIS controlled oil infrastructure. Further, NATO tankers were often attacked by militants and burned during their transit through Pakistan into Afghanistan.

In addition, it would be possible, using the methods used here for US military greenhouse gas emissions, to calculate the emissions of other belligerents. More than 60 countries joined the US in their war in Afghanistan, 37 fought with the US in the Iraq War, and more than 60 were allied with the US in the war against ISIS. These emissions may be substantial.

In addition to accounting for greenhouse gas emissions, a full assessment of the climate change consequences of war would include the loss of actual and future carbon sequestration due to deforestation. Deforestation may occur as people displaced by war use forests for shelter and fuel. In some wars, such as the US Civil War and the Vietnam War, forests were deliberately burned to deprive adversaries of places to hide. In Afghanistan, war caused migration and illegal logging appear to be the chief cause of deforestation. The causes of deforestation in Iraq are complex but include war.

52 This was known as Operation Tidal Wave II. See Matthew Reed, “Blowing up the Islamic State’s Oil Company,” Foreign Policy, 26 October 2016, https://foreignpolicy.com/2016/10/26/blowing-up-the-islamic-states-oil-company-isis-abu-sayyaf/.

III. National Security Threats Posed by Oil Dependency and Climate Change

Three national security concerns overlap. First, the US government has long been concerned about dependency on Persian Gulf Oil. At the same time, some portion of the military’s operational fuel consumption is related to missions associated with protecting access to oil and protecting the regimes that assure US and global access to oil. Some believe this mission is vital, while others question whether it is still necessary. Whether or not this mission is essential, operations to ensure access to oil are expensive, not to mention, fuel intensive. By one estimate, the annual incremental cost of US operations to protect against threats against Persian Gulf oil is about $5 billion. By another estimate, at a minimum the US spends about $81 billion annually defending the global oil supply.

Second, the DOD has become increasingly concerned that climate change poses threats and challenges to the military as an institution, specifically to military installations and operations. This is coupled with a concern that fuel dependency makes the US military vulnerable. The US has reduced fuel consumption so that it is less dependent on fossil fuel.

And third, the Pentagon is concerned with the threats climate change pose to international security, namely massive migration and potentially war. However, the military seems unaware of how much its efforts to protect access to Persian Gulf Oil, its other military operations including war, and consumption at installations are a major driver of greenhouse gas emissions, and therefore ultimately of climate change.

In sum, the DOD assumes that climate change will be a disaster for the institution and the planet no matter what they do, even as they believe that they must continue to protect access to Persian Gulf oil so that the US and the rest of the world can burn as much oil as it wants at as low a price per barrel as possible. The Pentagon focuses their efforts on adapting to climate change and preparing for climate caused insecurity, even as they continue to ensure that Americans continue to have relatively inexpensive access to imported oil.

Protecting Persian Gulf Oil: Is this Still a Vital Mission?

The concern about access to oil is twofold. The US economy remains heavily reliant on oil. The military has defended against several scenarios regarding a cut-off of Persian Gulf oil. The first scenario is the threat that a hostile power would gain control of oil in the Persian Gulf — for instance by occupying Saudi Arabia and Kuwait or by blocking the Strait of Hormuz — and be able to control world supply and increase the price of oil. In response to the first fear, the US created the Strategic Petroleum Reserve in 1975 and the Rapid Deployment Force (RDF) in 1979, whose specific mission was to defend US interests in the

Middle East, including oil. In January 1983, when US commands were reorganized, the RDF became US Central Command (CENTCOM).

Figure 9. Zones of US Military Commands

When Iraq invaded Kuwait in 1990, the Bush Administration reiterated the importance of oil in the region in National Security Directive 45. "U.S. interests in the Persian Gulf are vital to the national security. These interests include access to oil and the security and stability of key friendly states in the region. The United States will defend its vital interests in the area, through the use of U.S. military force if necessary and appropriate, against any power with interests inimical to our own."56 In 1991 the US evicted Iraq from Kuwait not only because the Iraqi invasion of Kuwait was illegal, but also in part because it feared that Iraq posed a threat to Saudi Arabia, and thus to American access to oil.

Since then, the US has stationed large numbers of troops in the Persian Gulf at Army, Navy, and Air Force bases. The Afghan and Iraq wars increased the US presence in the region, as well as US military petroleum consumption. In late 2008, in addition to the concern that a local state might try to control the flow of oil from the Persian Gulf, President George W. Bush added the concern that extremists might control oil and try to blackmail the US: "You can imagine them saying, ‘We’re going to pull a bunch of oil off the market to run your price of oil up unless you do the following. And the following would be along the lines of, well, ‘Retreat and let us continue to expand our dark vision.”57

The idea that the US has to protect the global flow of oil, and more specifically oil from the Persian Gulf, has largely been taken for granted by the US military and national security

experts. A report by the Council on Foreign Relations noted in 2006, "Until very low levels of dependence are reached, the United States and all other consumers of oil will depend on the Persian Gulf." 58

Perhaps in part because dependence on Persian Gulf oil has declined significantly since 2006, some analysts have recently questioned whether the large US presence in the Persian Gulf region, and the infrastructure in Europe that supports it, is necessary. 59 The argument is that the US is less dependent on Persian Gulf oil than in the past, that price shocks will not necessarily be as severe if oil flows were disrupted, and that even if a single country controlled supplies, they would still want to sell the oil. The exception to the latter is Iraq, which burned Kuwaiti Oil fields when they retreated from Kuwait in 1991 and the Islamic State, which burned oil facilities as they retreated from 2015-2018. In any case, the argument goes, even if the US were completely absent from the Gulf, the US could return to the Gulf and restore oil flow at some later point. US forces in the region have already declined from their peak of about 230,000 troops in 2008. 60

What would happen in the worst-case scenario — if oil flows from the Persian Gulf were curtailed or ceased for a week or several months? There would be some disruption to the US economy, but the economy would not collapse if oil flows from the Middle East were disrupted for some time. It is arguable that a total loss of Gulf oil for up to three months, would be, at worst, quite expensive. In the short term, it is likely that the US would adapt — as it did when the oil imports from Iraq and Kuwait were halted after Iraq’s invasion of that Kuwait in 1990. The principle reaction of world markets would be an increase in the price of oil.

This would not be a devastation for three reasons. First, the US is less dependent on Persian Gulf oil than in the past; the US has a more diverse supply network of petroleum, including increases in domestic production and increased imports from Canada and other countries. Second, the US has a strategic oil reserve containing 727 million barrels of oil, which could carry the US through several months of shortages in supply. And third, and perhaps most important, overall demand for oil has decreased in the US. Petroleum consumption peaked in 2005 at 40 percent of total US energy consumption and has

declined 10 percent since then. In 2017, petroleum accounted for 37 percent of US energy consumption.61 China is more vulnerable than the US to Persian Gulf oil supply disruptions.

Nevertheless, economists tend to associate oil price shocks due to restrictions on the flow of oil (such as the Arab Oil Embargo) with recessions. This is true. Yet, because military spending is less productive compared to other forms of spending — say on education, health care, infrastructure, or renewable energy — military spending is arguably an overall drag on the US economy because it produces fewer jobs than spending on other sectors. Which raises the question of whether, in protecting against a potential oil price increase, the US does more harm than it risks by not defending access to Persian Gulf oil. In sum, the Persian Gulf mission may not be as necessary as the Pentagon assumes.

National Security Implications of Climate Change

The US military, the intelligence community, and scholars of international security have been warning of the dangers posed by climate change for several decades. The military and intelligence community tend to cluster the national security implications of global warming induced climate change into two overlapping areas: how climate change will affect US installations and military operations, including how responding to climate disasters will stress military operations and potentially detract from other military missions; and how climate change poses political and national security threats, up to and including war.62

The military has emphasized how climate change challenges military systems, operations, and infrastructure. For instance, in May 1990, Terry P. Kelly produced a paper for the Naval War College, “Global Climate Change Implications for the United States Navy” emphasizing threats to Navy “naval operations, facilities, and systems” in coming decades. The analysis focuses its recommendations on monitoring and adapting to climate change.63 More recently, the DOD offered a “Climate Change Adaptation Roadmap” in 2014 that stressed the necessity of preparing for and adapting to climate change.64 In early 2018, the DOD reported that about half of their installations had already experienced climate change related effects.65 A year later, the DOD reported that the US military is already experiencing the effects of global warming at dozens of installations.66 These include recurrent flooding

(53 installations), drought (43 installations), wildfires (36 installations) and desertification (6 installations). Vulnerability will only increase over the next twenty years unless the world begins to dramatically reduce all greenhouse gas emissions and sequester carbon dioxide.67

The most urgent threat to infrastructure has perhaps been the Navy’s on-going concern that rising sea levels and major storms will inundate coastal infrastructure and limit the use of naval bases.68 For instance, melting permafrost in the Arctic threatens the physical stability of the US military facilities there, Norfolk Naval Base is being inundated, and Keesler Air Force Base is regularly flooding. The National Climate Assessment released in late 2018 showed images of the US Naval Base at Norfolk Virginia as particularly vulnerable.

Figure 10. US Military Assets with Climate-Related Vulnerabilities.69

The Pentagon’s response to the infrastructural and operational challenges of climate change has been to urge military preparations. These include potentially moving or closing military bases, developing training and equipment to operate in hotter and wetter or drier climates to meet climate change related threats to operations and resiliency.

In addition to the concern that a decline in access to oil would hurt the US and the global economy, the DOD has long been concerned that the US military itself, by requiring enormous quantities of fuel for its operations, is too dependent on oil. Specifically, high fuel consumption rates during war — for weapons, equipment, heating and cooling tents — increase the need to transport fuel to conflict zones, which is itself a vulnerability and a loss of efficiency. Further, fuel has to be protected in transit and is vulnerable to disruptions in supply.

For example, during the US occupation of Afghanistan, US and NATO forces were dependent on the transit of fuel through Pakistan. Importing fuel into Afghanistan through Pakistan — where it comprised between 30 and 80 percent of each convoy — made the tankers vulnerable to attack. Between 2008 and 2014 convoys were attacked en route through Pakistan to NATO bases in Afghanistan 485 times, causing 167 deaths and 450 injuries. As the then Secretary of the Navy, Ray Mabus said, “Fossil fuel is the No. 1 thing we import to Afghanistan and getting that fuel is keeping the troops doing what they were sent there to do, to fight or engage the local people.”

Further, tanker convoys through Pakistan were disrupted from late 2011 to early 2012 after the US inadvertently killed Pakistani troops and Pakistan halted those convoys for several months.

In 2003, then Marine Corp General John Mattis said that the US had to be “unleashed from the tether of fuel.” In 2011, when asked by Congress member Adam Smith during Armed Services Committee Hearings Mattis elaborated.

On the fuel, it is a significant Achilles heel for us when you have to haul the amounts of fuel that we have to haul around the battlefield for the generators and for the vehicles. We are working with DARPA [Defense Advanced Research Projects Agency], we are working with a number of civilian organizations to try and find solutions. There are efforts under way to make more expeditionary bases which would actually generate some of their own energy requirements using, for example, solar power. In many of these places, there is a lot of sunshine. If we can get expeditionary capability to capture that and then basically recharge our batteries. I mean, it is an amazingly complex effort to maintain the fuel lines. And it also gives the enemy an ability to choose the time and place of attacking us. We are engaged with Science and Technology, we are engaged with DARPA, and we are looking at very pragmatic ways of doing this. We are also looking at what we can do to actually change how we distribute fuel, to reduce the enemy’s opportunities to come after us.

The Pentagon’s response to concerns about fuel use has been to track fuel consumption, and to find ways to decrease consumption of fossil fuels through conservation and increased investment in renewable energy. The military efforts to reduce dependency have included reducing energy used at military installations and educating soldiers about the need to minimize idling vehicles — from Humvees to tanks, to jets.

For example, in 2009 the newly created Marine Corps Expeditionary Energy Office began to collect data on Marine Corp energy usage from bulk distribution to the unit level. The Marines have gone quickly from analysis to action. In 2009, the Marines made their first study of fuel use in Afghanistan and in the following year the Marine Corps sent solar panels and chargers to their forces there. A few months later, the solar panels deployed in the Ground Renewable Expeditionary Energy System (Greens) had reportedly cut generator fuel consumption by nearly 90 percent, from 20 to 2.5 gallons per day. In 2010 the DOD established a Senior Sustainability Council. All of this work on efficiency has

been accelerated and would not only save money, the military emphasizes, but also increase the resilience of the armed forces.76

In addition, the Pentagon uses other fuels and has continued to diversify its energy supplies. The US military relies on nuclear power for some important uses — most notably to power its fleet of 11 aircraft carriers. It is possible to substitute some alternative fuels for military applications and research on using bio-fuel in military vehicles, including jets.

The Pentagon has increased its use of renewable energy since 2009. The military has made a massive investment in solar generation and other renewable energy, doubling renewable power generation between 2011 and 2015.77 But so far, switching to renewable sources has yielded the savings in emissions offsets less of than 1 percent of US DOD Greenhouse Gas emissions.78 Taken together, these efforts have borne fruit; the military has significantly reduced fuel use — even while waging war in Afghanistan, Iraq, and Syria — and there is enormous scope for reducing emissions even further. In 2017, the military's push to reduce energy consumption ran into politics when the Trump administration decided to deny climate change. The Pentagon was put in an awkward position; a headline in Fortune magazine framed the issue nicely “The Military is Getting Greener, but That Clashes with Trump’s Promises.”79

The other operational concern is the threat climate change poses to the military's capacity to perform its core missions. National security officials anticipating a growing role supporting civil authorities in disaster relief missions are concerned that natural disasters, made worse as a consequence of climate change, will stress the operational capacities of the US military. As sea levels rise, critical civilian infrastructure will be at risk. In September 2016, President Obama issued a National Security Memorandum that said, “Climate change and associated impacts on U.S. military and other national security-related missions and operations could adversely affect readiness, negatively affect military facilities and training, increase demands for Federal support to non-federal civil authorities, and increase response.”80

Climate Chaos and War

The military has become increasingly concerned that climate change poses a threat to international security. In the 2015 National Security Strategy, the Obama Administration said, “Climate change is an urgent and growing threat to our national security, contributing to increased natural disasters, refugee flows, and conflicts over basic resources like food and water. The present day effects of climate change are being felt from the Arctic to the Midwest. Increased sea levels and storm surges threaten coastal regions, infrastructure, and property. In turn, the global economy suffers, compounding the growing costs of preparing and restoring infrastructure.”

In the most recent National Security Strategy, the Trump administration ignored climate change. In response, more than 100 members of Congress wrote to the President in January 2018 to underscore the risks and to urge the President to include climate change in the National Security Strategy. And at the same time, Retired Admiral James Stavridis argued that climate change was arguably the most pressing national security challenge the US faced. Stavridis said, “What makes climate change so pernicious is that while the effects will only become catastrophic far down the road, the only opportunity to fix the problem rests in the present. In other words, waiting ‘to be sure climate change is real’ condemns us to a highly insecure future if we make the wrong bet. We are in danger of missing not only the vast forest of looming climate change, but the ability to see some of the specific trees that will cause us the most problems.”

The military has been concerned that climate change will lead to a more chaotic and dangerous world. They are concerned for instance that the Arctic Sea is now open, leading to questions about the need to patrol it. National security analysts now frequently suggest that drought in Syria from 2007 to 2010, and the subsequent mass migration to cities, created the conditions that contributed to the emergence of the civil war there in 2011.

Indeed, strategists paint nightmare scenarios where climate change leads to armed conflict — such as when crop failures produce famine and drought lead to conflicts over water and other natural resources. The White House said in 2016 that “The national

security implications of climate change impacts are far-reaching, as they may exacerbate existing stressors, contributing to poverty, environmental degradation, and political instability, providing enabling environments for terrorist activity abroad. For example, the impacts of climate change on key economic sectors, such as agriculture and water, can have profound effects on food security, posing threats to overall stability."86 Similarly, in September 2016, the National Intelligence Council listed a range of concerns from increased migration, to food shortages, to greater conflict and war caused by shortages of fresh water and access to arable land.87 The intelligence community has kept its eyes on climate change even as President Trump denies that global warming is a problem. In January 2019, Daniel R. Coats, Director of National Intelligence told the Senate Select Committee on Intelligence that, “Global environmental and ecological degradation, as well as climate change, are likely to fuel competition for resources, economic distress, and social discontent through 2019 and beyond. Climate hazards such as extreme weather, higher temperatures, droughts, floods, wildfires, storms, sea level rise, soil degradation, and acidifying oceans are intensifying, threatening infrastructure, health, and water and food security. Irreversible damage to ecosystems and habitats will undermine the economic benefits they provide, worsened by air, soil, water, and marine pollution.”88

Part of the Pentagon’s response to concerns about climate change has been to create new organizations within the DOD and to study the issue.89 For instance, the Navy created the “Task Force Climate Change” (TFCC) in 2009. However, the Pentagon does not acknowledge that its own fuel use is a part of the problem or that reductions in Pentagon fuel use are a potentially significant way to reduce the risks of climate caused national security risks. But the Pentagon could make the same connections that Henry Waxman made more than two decades ago. In May 1998, Congressman Henry Waxman said, “the Kyoto Protocol will improve the national security of the United States by reducing the risk of catastrophic climate change, which would create upheaval and unrest throughout the world, including the potential for millions of environmental refugees.” Waxman also argued that “measures to implement the Kyoto Protocol can improve our security by reducing our dependence on imported oil through improved energy efficiency and increased reliance on domestic renewable energy resources.”90

Conclusion

Even as the US says it will scale back the size of its military presence in Afghanistan, Iraq, and Syria, the US has begun a massive build-up of its military capacities. The US military budget is larger than it has ever been since the end of the Cold War. The US seems to be on track to continue policing the Persian Gulf even as it turns to what it perceives is an emerging threat from China and has an increasing military presence in Africa. All of these activities demand fuel consumption and are hence greenhouse gas emission intensive.

The US has an important public policy decision to make. Do we continue to orient our foreign policy and military force posture toward ensuring access to fossil fuels? Or do we dramatically reduce the use of fossil fuels, including the military’s own dependency, and thus reduce the perceived need to preserve access to oil resources?

Reductions in military fuel use would be beneficial in four ways. First, if the US were to decrease its dependence on oil, the US could reduce the political and fuel resources it uses to defend access to oil. If the US further reduced its imports of oil from the Persian Gulf, including fuel used by the military to protect those imports, it could then reevaluate the size of the US military presence in the region and reevaluate its relationship with Saudi Arabia and other allies in the region. The US would reap political and security benefits, including reducing the dependence of troops in the field on oil and decreasing dependence on oil and those who provide it.

Second, by dramatically decreasing fossil fuel consumption, the US military would reduce overall US greenhouse gas emissions and perhaps promote carbon sequestration (taking carbon out of the atmosphere and fixing it in the soil and trees). There are many ways to do this, from more modest measures such as increasing fuel economy and using alternative fuels, which the Pentagon has begun to do. Some base closures will be necessitated by climate change itself. More significant reductions in greenhouse gas emissions will be gained by restructuring the US military posture, including reducing US military operations and installations worldwide, and closing bases in the US. Base closures could also lead to significant carbon sequestration if those public lands are reforested. See Appendix 2 for modest suggestions for Congressional action.

Third, by reducing the use of greenhouse gas-emitting fuels (coupled with emission reductions in other sectors) the Pentagon would decrease its contribution to the associated climate change threats to national security. Indeed, the Pentagon could play a major role in reducing the worst effects of climate change, and any potential security consequences of global warming, rather than reacting or cleaning up after those effects have occurred.

Fourth, as a consequence of spending less money on fuel and operations to provide secure access to petroleum, the US could, in the long run decrease US military spending and reorient its economy to more economically productive activities. Indeed, if the US military converted more of its energy consumption to renewable energy, this would stimulate the
renewable energy industry in the US, with important economic benefits for the entire US economy.91

In sum, reducing Pentagon fossil fuel use could have enormous positive implications for the climate.

\textit{Appendix 1. Calculating US Military Greenhouse Gas Emissions}

Due to gaps in reporting and accounting, it is impossible to provide a precise calculation of the total greenhouse gas emissions of the US military. Most US government accounting of US greenhouse gas emissions omit figures on how much the military and military industry contributes to US emissions. This is in part because the Pentagon does not release petroleum fuel consumption data. Further, as discussed below, emissions from international bunker fuels (for military aircraft and ships) and multilateral wars were excluded from national accounts in the Kyoto Protocol negotiations in 1998. The US does not appear to count most bunker fuels in its Greenhouse Gas Inventory national totals.92

Absent a full Pentagon accounting of their fuel consumption and emissions by operation there are various ways to estimate DOD greenhouse gas emissions in the post-9/11 wars. One could base an estimate of the proportion of total greenhouse gas emissions that should be attributed to the war on the proportion of the total military budget spent on Overseas Contingency Operations. In other words, one can use the average portion of the DOD budget spent on Overseas Contingency Operations as an approximate measure of energy use related to the war effort and assume that some portion of the base budget, and therefore base/non-war operations and installation energy use is correlated to war related spending. The Overseas Contingency Operations budget for the major war zones accounted for an average of 17 percent of the entire DOD (top line) budget from 2001 to 2017. But this rule of thumb would give an estimate of war related emissions that would be too low since non-standard emissions account for such a high proportion of all DOD fuel use.

A better way to estimate greenhouse gas emissions due to war would be to focus on non-standard fuel consumption and to estimate total greenhouse gas emissions for Overseas Contingency Operations. For example, on average, between 2010-2017 the

91 The author thanks Alexander Thompson for raising this point.
Department of Energy attributed 65.9 percent of all DOD greenhouse gas emissions to non-standard operations. But to assume that all non-standard fuel use was for the major wars would yield an estimate that would be too high since the DOD performs other, non-post-9/11 war missions.

Another and arguably even better method would be to base the estimate of greenhouse gas emissions on the proportion of fuel use by Central Command. In FY2014 (see figure 4) this was about 24 percent of the total non-standard operational fuel consumption by the DOD. But because the US counterterror operations are underway all over the world (in about 80-90 countries) the Central Command is not the only war zone in the global war on terror. The estimate here is that the portion of all greenhouse gas emissions related to the Global War on Terror, in patrolling the Persian Gulf, and Central Command Overseas Contingency Operations is about 35 percent of total greenhouse gas emissions for non-standard and standard operations.

The estimates of greenhouse gas emissions by the DOD in this analysis are based calculations of US government data on fuel consumption from the US Department of Energy, Comprehensive Annual Energy Data and Sustainability Annual Reports. Data for standard and non-standard greenhouse gas emissions by Department is available on the Department of Energy website for FY2008, and FY2010-2017. In addition, the Department of Energy provides non-standard fuel consumption data for vehicle and equipment energy use for other years.

It is possible to calculate annual DOD vehicle and equipment caused greenhouse gas emissions for each fuel type based on fuel consumption rates. For example, a calculation of CO2 equivalent emissions of jet fuel makes the following assumptions: each gallon of jet fuel produces 0.135 HHV MMBtu/gallon. Using the standard emission factors for jet fuel — CO2 of 72.22 kg/MMBtu; for CH4 (methane) of .003 kg/MMBtu; and for N2O (nitrous oxide) of .0006 kg/MMBtu — one can calculate the greenhouse gas, CO2 equivalent, emissions for a given quantity of jet fuel. The Global Warming Potential 100 year values are the EPA and Department of Energy assumptions of 25 for methane and 298 for Nitrous Oxide.

Department of Energy provided consumption data, and the EPA Global Warming Potentials for CO2, CH4 and N2O were used to calculate greenhouse gas emissions for...
gasoline, diesel, LPG/propane, aviation gas, jet fuel, and Navy special fuel for the years where there is no published Department of Energy emissions data. For example, calculations of CO2e emissions for US DOD jet fuel consumption in 2017 are illustrated in Table 3.

<table>
<thead>
<tr>
<th>Jet Fuel</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Consumption GHG Non-Standard Operations</td>
<td>2,915,738.50</td>
</tr>
<tr>
<td>Total Energy Consumed</td>
<td>393,624,693.30</td>
</tr>
<tr>
<td>Cost</td>
<td>$6,681,061.20</td>
</tr>
<tr>
<td>Unit Cost</td>
<td>$2.29</td>
</tr>
<tr>
<td>Anthropogenic CO2 Emission Factor</td>
<td>72.2</td>
</tr>
<tr>
<td>CH4 Emission Factor</td>
<td>0.003</td>
</tr>
<tr>
<td>N2O Emission Factor</td>
<td>0.0006</td>
</tr>
<tr>
<td>Total Quantity Emitted Anthropogenic CO2</td>
<td>28,427,575,352.60</td>
</tr>
<tr>
<td>Total Quantity Emitted CH4</td>
<td>1,180,874.10</td>
</tr>
<tr>
<td>Total Quantity Emitted N2O</td>
<td>236,174.80</td>
</tr>
<tr>
<td>GWP Factor for CO2</td>
<td>1</td>
</tr>
<tr>
<td>GWP Factor for CH4</td>
<td>25</td>
</tr>
<tr>
<td>GWP Factor for N2O</td>
<td>298</td>
</tr>
<tr>
<td>Total Quantity Emitted (CO2e)</td>
<td>28,527,477,299.80</td>
</tr>
<tr>
<td>Total Quantity Emitted (MT CO2e)</td>
<td>28,527,477.30</td>
</tr>
</tbody>
</table>

Assuming that non-standard emissions from vehicle fuel consumption were very close to the total non-standard fuel consumption for the DOD, standard emissions were estimated for each year. During the years where there is Department of Energy data for DOD emissions, non-standard emissions were on average 63 percent of total emissions. Total and standard emissions were estimated assuming that the ratios were the same through the entire period. The results are graphed in the following figure and shown in Table 4.

97 The Department of Energy has published emissions data for non-standard emissions for 2008, and 2010-2017. They have provided vehicle fuel consumption data for the years 1975-2017. Annual GHG CO2e emissions from fuel consumption data are calculated assuming that vehicle consumption was the majority of non-standard consumption.
Figure 12. Estimated DOD Greenhouse Gas Emissions, 1975-2017

![Graph showing estimated DOD greenhouse gas emissions from 1975 to 2017.](image)

Table 4. Estimated Annual Greenhouse Gas Emissions of the DOD, 1975-2017

<table>
<thead>
<tr>
<th>Year</th>
<th>Standard Emissions</th>
<th>Non-Standard Emissions</th>
<th>Total CO2e Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Millions of Metric Tons</td>
<td>Millions of Metric Tons</td>
<td>Millions of Metric Tons</td>
</tr>
<tr>
<td>1975</td>
<td>40</td>
<td>69</td>
<td>109</td>
</tr>
<tr>
<td>1976</td>
<td>35</td>
<td>59</td>
<td>93</td>
</tr>
<tr>
<td>1977</td>
<td>35</td>
<td>60</td>
<td>95</td>
</tr>
<tr>
<td>1978</td>
<td>34</td>
<td>58</td>
<td>92</td>
</tr>
<tr>
<td>1979</td>
<td>35</td>
<td>60</td>
<td>95</td>
</tr>
<tr>
<td>1980</td>
<td>36</td>
<td>61</td>
<td>97</td>
</tr>
<tr>
<td>1981</td>
<td>39</td>
<td>66</td>
<td>104</td>
</tr>
<tr>
<td>1982</td>
<td>39</td>
<td>67</td>
<td>107</td>
</tr>
<tr>
<td>1983</td>
<td>39</td>
<td>67</td>
<td>106</td>
</tr>
</tbody>
</table>

98 For FY2008 and FY2010-2017, this estimate uses the Department of Energy figures. The other years are estimates calculated from Department of Energy fuel consumption data.

99 Calculated from Department of Energy fuel consumption data. For FY2008 and FY2010-2017, using the Department of Energy reported figures.
<table>
<thead>
<tr>
<th>Year</th>
<th>1984</th>
<th>1988</th>
<th>1992</th>
<th>1996</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>68</td>
<td>55</td>
<td>46</td>
<td>1340</td>
</tr>
<tr>
<td>1985</td>
<td>39</td>
<td>67</td>
<td>55</td>
<td>46</td>
<td>1340</td>
</tr>
<tr>
<td>1986</td>
<td>39</td>
<td>66</td>
<td>51</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1987</td>
<td>40</td>
<td>69</td>
<td>51</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1988</td>
<td>35</td>
<td>60</td>
<td>55</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1989</td>
<td>40</td>
<td>68</td>
<td>55</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1990</td>
<td>39</td>
<td>66</td>
<td>55</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1991</td>
<td>41</td>
<td>69</td>
<td>55</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1992</td>
<td>32</td>
<td>55</td>
<td>55</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1993</td>
<td>32</td>
<td>51</td>
<td>55</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1994</td>
<td>30</td>
<td>51</td>
<td>51</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>1995</td>
<td>28</td>
<td>48</td>
<td>48</td>
<td>44</td>
<td>1340</td>
</tr>
<tr>
<td>1996</td>
<td>27</td>
<td>46</td>
<td>46</td>
<td>44</td>
<td>1340</td>
</tr>
<tr>
<td>1997</td>
<td>27</td>
<td>45</td>
<td>45</td>
<td>44</td>
<td>1340</td>
</tr>
<tr>
<td>1998</td>
<td>25</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>1340</td>
</tr>
<tr>
<td>1999</td>
<td>25</td>
<td>42</td>
<td>42</td>
<td>43</td>
<td>1340</td>
</tr>
<tr>
<td>2000</td>
<td>23</td>
<td>39</td>
<td>39</td>
<td>42</td>
<td>1340</td>
</tr>
<tr>
<td>2001</td>
<td>23</td>
<td>40</td>
<td>40</td>
<td>43</td>
<td>1340</td>
</tr>
<tr>
<td>2002</td>
<td>26</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>1340</td>
</tr>
<tr>
<td>2003</td>
<td>29</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>1340</td>
</tr>
<tr>
<td>2004</td>
<td>32</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>1340</td>
</tr>
<tr>
<td>2005</td>
<td>31</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>1340</td>
</tr>
<tr>
<td>2006</td>
<td>27</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>1340</td>
</tr>
<tr>
<td>2007</td>
<td>28</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>1340</td>
</tr>
<tr>
<td>2008</td>
<td>27</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>1340</td>
</tr>
<tr>
<td>2009</td>
<td>28</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>1340</td>
</tr>
<tr>
<td>2010</td>
<td>27</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>1340</td>
</tr>
<tr>
<td>2011</td>
<td>26</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>1340</td>
</tr>
<tr>
<td>2012</td>
<td>25</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>1340</td>
</tr>
<tr>
<td>2013</td>
<td>24</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>1340</td>
</tr>
<tr>
<td>2014</td>
<td>24</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>1340</td>
</tr>
<tr>
<td>2015</td>
<td>24</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>1340</td>
</tr>
<tr>
<td>2016</td>
<td>22</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>1340</td>
</tr>
<tr>
<td>2017</td>
<td>22</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>1340</td>
</tr>
<tr>
<td>Total</td>
<td>1,340</td>
<td>2,290</td>
<td>3,629</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
These estimates are likely conservative for three reasons.

First, the impact of methane and nitrous oxide gases, their Global Warming Potentials (GWP) is not the same as CO2 but significantly higher. When calculating the total greenhouse gas emissions these other greenhouse gases are scaled into an equivalent relation to carbon dioxide, which has, by definition, a GWP of 1. The Department of Energy and the EPA use the US EPA 100 year Global Warming Potentials which scales the GWP of methane, CH4, at 25 and nitrous oxide, N2O, at 298 over 100 years. The Intergovernmental Panel on Climate Change Fifth Assessment Report uses different GWP of 34 for Methane's CO2 equivalent. If the IPCC global warming potentials were used, estimates of US DOD greenhouse gas emissions would be higher.

Second, recall that jet fuel is the major source of vehicle non-standard military greenhouse gas emissions. CO2 is the major product of jet fuel consumption but jet fuel combustion emissions at high altitude also contain the much more potent greenhouse release water vapor, a global warming gas, which itself causes the formation of cirrus clouds. The DOD puts additives in its jet fuels to ensure they perform according to military requirements. For instance, because military jets fly at much higher altitudes than commercial jets they use additives to ensure that the fuel lines do not freeze. Any emissions from those additives and water vapor are not counted. Scientists agree that even though CO2 is the major product of jet fuel consumption, the impact of these other greenhouse gases is significant. While the Department of Energy figures and the calculations here include nitrous oxide and methane, it is possible that the additional effects of high altitude water vapor and additives for jet fuel combustion, which are not included in these calculations, may be significant. “Non-CO2 impacts cannot be ignored as they potentially represent approximately 60% of total climate impacts that are important in the shorter term (excluding cloudiness impacts).” In sum, this means that the impact of aviation

emissions when all greenhouse gases are included may be higher than those estimated here.

Third, the focus is on the major emissions of the DOD. Specifically not included are estimates for what are called Scope 3 emissions from, for instance, employee air and ground business travel, wastewater treatment, and solid waste disposal. For example, US DOD Scope 3 emissions in 2008 were 7.6 million MT CO2e and in 2016, 7 million MT CO2e. Nor are biogenic emissions included. In 2017, US DOD biogenic emissions were .57 million MT CO2e.

Finally, international military bunker fuels are excluded from greenhouse gas emission accounting. As part of the Kyoto Protocol, signed in December 1997, the US insisted that fuel sold to ships and aircraft for international transport and for multilateral military operations, “bunker fuels” should not be counted against a country’s total emissions.103 As the US Undersecretary of State Stuart Eizenstat said in testimony to Congress, the Kyoto Protocol did not limit the US:

We took special pains, working with the Defense Department and with our uniformed military, both before and in Kyoto, to fully protect the unique position of the United States as the world’s only super power with global military responsibilities. We achieved everything they outlined as necessary to protect military operations and our national security.

At Kyoto, the parties . . . took a decision to exempt key overseas military activities from any emissions targets, including exemptions for bunker fuels used in international aviation and maritime transport and from emissions resulting from multilateral operations, such as self defense, peacekeeping, and humanitarian relief.

This exempts from our national targets not only multilateral operations expressly authorized by the U.N. Security Council, such as Desert Storm or Bosnia, but, importantly, also exempts multilateral operations that the U.S. initiates pursuant to the U.N. Charter without express authorization, such as Grenada.104

The Intergovernmental Panel on Climate Change continues to treat national military emissions, specifically international aircraft and naval bunker fuels, differently than other emission types.105

Appendix 2. Possible Next Steps for Congressional Action on the DOD and Climate Change

The Pentagon has made significant reductions in greenhouse gas emissions in recent years. By continuing to decrease fossil fuel consumption, the US military would reduce overall US greenhouse gas emissions and could perhaps promote carbon sequestration (taking carbon out of the atmosphere and fixing it in the soil and trees).

There is room for the DOD to continue reductions, using many more modest measures including increasing fuel economy and using alternative fuels. More significant reductions in greenhouse gas emissions will be gained by restructuring, including making training more efficient, reducing US military operations and installations worldwide, and closing bases in the US. Some base closures and restructuring will be necessitated by climate change itself. Base closures could also lead to significant carbon sequestration if those public lands are reforested.

This is a win-win-win strategy. Reductions in fuel use save money and make the US military less vulnerable to fuel shortages; in the long run, reductions in fuel use and conversion of bases by reforestation decrease climate change caused impacts including insecurity; and conversion to renewable energy sources and alternative fuels could significantly boost the renewable energy industry and electric car industry in the US.

Congress might become much more active in tracking and reducing greenhouse gas emissions by the DOD. Specifically, Congress might require the Pentagon to supply more information on fuel consumption and energy use and require the Pentagon to increase its analysis and planning for a transition to reductions in fossil fuel use and to immediately reduce fuel consumption. Some potential actions are outlined below.

1. Comprehensive reporting of DOD fuel consumption and energy usage.
 a. In all future years, the DOD should report fuel consumption to Congress in its budgetary submission and in a separate annual report on DOD fuel consumption. Consumption reports should be both aggregated and disaggregated (by fuel type e.g. jet, diesel, and other fuels) each year by named operation and war, and for other operations and installations, for each operational command and each service. Consumption information should also be added to the annual Defense Logistics Agency Energy Fact books.
 b. The DOD should report these same figures for the period from FY2000 through FY2019 in a separate report.
 c. The DOD should report fuel consumption for training missions and public displays such as fly-over events.

2. Comprehensive Analysis and Planning
 a. DARPA should work with the services to produce a study showing current DOD non-tactical vehicle fleet fuel consumption, and to identify ways to immediately reduce fuel consumption beyond levels already targeted.
 b. Each service should identify ways to reduce consumption of fuel by decreasing the fuel use and increasing the fuel efficiency of training exercises.
c. Each installation should inventory its environment to identify “heat islands” by the end of FY2020.

d. Each installation should produce plans to reduce overall energy consumption by 10 percent and 20 percent by the start of FY2022.

e. Identify installations that should be closed or reduced in size due to climate change impacts (such as rising sea levels or extreme weather). Develop a plan for converting these installations to sites for carbon sequestration.

a. Switching to alternative fuels for electricity generation at all US military installations so that all DOD installations are 90 percent reliant on renewable technologies, e.g. wind, solar, geothermal and hydropower and large storage capacity batteries through power purchase agreements or local generation by 2022.

b. Increase the rate of adoption of all electric, hybrid and plug in hybrid non-tactical fleet vehicles (NTV) based on the results of the DARPA study identified above. Move to 90 percent electric, or gas-electric hybrid by 2022. Prioritize for new purchases the most efficient vehicles made in the US that meet the Department of Energy NTV fuel economy standards.

c. To reduce the “heat island” effect of large expanses of concrete and asphalt, and thereby reduce the necessity for air conditioning on bases and other installations, each base shall inventory its percentage of tree cover and plant shade trees so that the percentage of shade tree coverage is increased by 10-20 percent by the end of FY2021.

4. Military and Installation Base Conversions and Closures

a. Designate which military and national guard bases and installations should be closed due to climate change impacts and which bases can be closed for other reasons, such as diminished threat.106

b. As bases and installations are cleared of toxic contamination (such as chemical waste and asbestos), change land use so that carbon sequestration is possible such as by planting trees or restoring wetlands.

c. Use closed DOD bases and installations as sites of alternative energy production — wind, solar, or geothermal as is most appropriate and efficient for that base or installation. Similarly, converted National Guard bases could become sites of alternative energy production and carbon sequestration.
