From the Vis-Visa Integral, an expression for the total energy of systems in celestial mechanics, it can be shown that, for a small object orbiting the Sun, the semi-major axis a of its orbital ellipse is given by

$$
\begin{equation*}
a=\frac{1}{\frac{2}{r}-\frac{v^{2}}{G m_{s}}} \tag{1}
\end{equation*}
$$

The variables can be expressed in any consistent system of units. Thus, if we choose the mks (meters-kilograms-seconds) system, we have for Mulge-Tab at the moment of "release":

```
\(r=\) distance from Sun to object \(=450 \times 10^{9} \mathrm{~m}\)
\(V^{2}{ }_{M-T}=V^{2}{ }_{M-T, r}+V^{2}{ }_{M-T, t}\) referring to the velocity components as provided
on the main page, but expressed in \(m \mathrm{sec}^{-1}\)
\(G=\) Gravitational Constant \(\sim 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\)
\(m_{s}=\underline{\text { mass of Sun }}=1.99 \times 10^{30} \mathrm{~kg}\)
```

From the Law of Areas, the ellipticity of the solar orbit of a small object is:

$$
\begin{equation*}
e=\sqrt{1-\frac{r^{2} v_{t}^{2}}{G m_{s} a}} \tag{2}
\end{equation*}
$$

For Mulge-Tab at the moment of "release" we use

$$
\mathrm{V}_{\mathrm{M}-\mathrm{T}, \mathrm{t}}=\text { tangential velocity of Mulge-Tab provided on main page }
$$

