From the $Vis-Visa\ Integral$, an expression for the total energy of systems in celestial mechanics, it can be shown that, for a small object orbiting the Sun, the semi-major axis a of its orbital ellipse is given by

$$a = \frac{1}{\frac{2}{r} - \frac{v^2}{Gm_s}} \tag{1}$$

The variables can be expressed in any consistent system of units. Thus, if we choose the mks (meters-kilograms-seconds) system, we have for Mulge-Tab at the moment of "release":

r = distance from Sun to object = 450 x 10 9 m $v^{2}_{M-T} = v^{2}_{M-T,r} + v^{2}_{M-T,t}$ referring to the velocity components as provided on the main page, but expressed in m sec $^{-1}$ G = Gravitational Constant \sim 6.67 x 10 $^{-11}$ m 3 kg $^{-1}$ s $^{-2}$ m_{s} = mass of Sun = 1.99 x 10 30 kg

From the <u>Law of Areas</u>, the ellipticity of the solar orbit of a small object is:

$$e = \sqrt{1 - \frac{r^2 v_t^2}{G m_s a}} \tag{2}$$

For Mulge-Tab <u>at the moment of "release"</u> we use

 $\mathbf{v}_{M-T,t}$ = tangential velocity of Mulge-Tab provided on main page