Part II



  • Eugene Dubois and Pithecanthropus

  • The Selenka Expedition

  • Dubois Withdraws from the Battle

  • More Femurs

  • Are the Trinil Femurs Modern Human?

  • The Heidelberg Jaw

  • Further Java Man Discoveries by Von Koenigswald

  • The Role of the Carnegie Institution Back to Java

  • Later Discoveries in Java

  • Chemical and Radiometric Dating of the Java Finds

  • Misleading Presentations of the Java Man Evidence


At the end of the nineteenth century, a consensus was building within an influential portion of the scientific community that human beings of the modern type had existed as far back as the Pliocene and Miocene periods—and perhaps even earlier.
Anthropologist Frank Spencer stated in 1984:

"From accumulating skeletal evidence it appeared as if the modern human skeleton extended far back in time, an apparent fact which led many workers to either abandon or modify their views on human evolution. One such apostate was Alfred Russell Wallace (1823-1913)."

Wallace shares with Darwin the credit for having discovered evolution by natural selection.

Darwin thought Wallace was committing heresy of the worst sort. But Spencer noted that Wallace's challenge to evolutionary doctrine,

"lost some of its potency as well as a few of its supporters when news began circulating of the discovery of a remarkable hominid fossil in Java."

Considering the striking way in which the Java man fossils were employed in discrediting and suppressing evidence for the great antiquity of the modern human form, we shall now review their history.



Past the Javanese village of Trinil, a road ends on a high bank overlooking the Solo River. Here one encounters a small stone monument, marked with an arrow pointing toward a sand pit on the opposite bank. The monument also carries a cryptic German inscription, "P.e. 175 m ÖNÖ 1891/93," indicating that Pithecanthropus erectus was found 175 meters east northeast from this spot, during the years 1891-1893.

The discoverer of Pithecanthropus erectus was Eugene Dubois, born in Eijsden, Holland, in 1858, the year before Darwin published The Origin of the Species. Although the son of devout Dutch Catholics, he was fascinated by the idea of evolution, especially as it applied to the question of human origins.

After studying medicine and natural history at the University of Amsterdam, Dubois became a lecturer in anatomy at the Royal Normal School in 1886. But his real love remained evolution. Dubois knew that Darwin's opponents were constantly pointing out the almost complete lack of fossil evidence for human evolution. He carefully studied the principal evidence then available—the bones of Neanderthal specimens. These were regarded by most authorities (among them Thomas Huxley) as too close to the modern human type to be truly intermediate between fossil apes and modern humans.


The German scientist Ernst Haeckel had, however, predicted that the bones of a real missing link would eventually be found. Haeckel even commissioned a painting of the creature, whom he called Pithecanthropus (in Greek, pitheko means ape, and anthropus means man). Influenced by Haeckel's vision of Pithecanthropus, Dubois resolved to someday find the ape-man's bones.

Mindful of Darwin's suggestion that humanity's forbearers lived in "some warm, forest-clad land," Dubois became convinced Pithecanthropus would be found in Africa or the East Indies.


Because he could more easily reach the East Indies, then under Dutch rule, he decided to journey there and begin his quest. He applied first to private philanthropists and the government, requesting financing for a scientific expedition, but was turned down. He then accepted an appointment as an army surgeon in Sumatra. With his friends doubting his sanity, he gave up his comfortable post as a college lecturer and with his young wife set sail for the East Indies in December 1887 on the S. S. Princess Amalie.

In 1888, Dubois found himself stationed at a small military hospital in the interior of Sumatra. In his spare time, and using his own funds, Dubois investigated Sumatran caves, finding fossils of rhino and elephant, and the teeth of an orangutan, but no hominid remains.

In 1890, after suffering an attack of malaria, Dubois was placed on inactive duty and transferred from Sumatra to Java, where the climate was somewhat drier and healthier. He and his wife set up housekeeping in Tulungagung, on eastern Java's southern coast.

During the dry season of 1891, Dubois conducted excavations on the bank of the Solo River in central Java, near the village of Trinil. His laborers took out many fossil animal bones. In September, they turned up a particularly interesting item—a primate tooth, apparently a third upper-right molar, or wisdom tooth. Dubois, believing he had come upon the remains of an extinct giant chimpanzee, ordered his laborers to concentrate their work around the place where the tooth had turned up. In October, they found what appeared to be a turtle shell.


But when Dubois inspected it, he saw it was actually the top part of a cranium, heavily fossilized and having the same color as the volcanic soil. The fragment's most distinctive feature was the large, protruding ridge over the eye sockets, leading Dubois to suspect the cranium had belonged to an ape. The onset of the rainy season then brought an end to the year's digging. In a report published in the government mining bulletin, Dubois made no suggestion that his fossils belonged to a creature transitional to humans.


In August 1892, Dubois returned to Trinil and found there—among bones of deer, rhinoceroses, hyenas, crocodiles, pigs, tigers, and extinct elephants—a fossilized humanlike femur (thighbone). This femur was found about 45 feet from where the skullcap and molar were dug up. Later another molar was found about 10 feet from the skullcap. Dubois believed the molars, skull, and femur all came from the same animal, which he still considered to be an extinct giant chimpanzee.

In 1963, Richard Carrington stated in his book A Million Years of Man:

"Dubois was at first inclined to regard his skull cap and teeth as belonging to a chimpanzee, in spite of the fact that there is no known evidence that this ape or any of its ancestors ever lived in Asia. But on refection, and after corresponding with the great Ernst Haeckel, Professor of Zoology at the University of Jena, he declared them to belong to a creature which seemed admirably suited to the role of the missing link."

We have not found any correspondence Dubois may have exchanged with Haeckel, but if further research were to turn it up, it would add considerably to our knowledge of the circumstances surrounding the birth of Pithecanthropus erectus. Obviously, both men had a substantial emotional and intellectual stake in finding an ape-man specimen.


Haeckel, on hearing from Dubois of his discovery, telegraphed this message:

"From the inventor of Pithecanthropus to his happy discoverer!"

It was only in 1894 that Dubois finally published a complete report of his discovery. Therein he wrote:

"Pithecanthropus is the transitional form which, in accordance with the doctrine of evolution, must have existed between man and the anthropoids."

Pithecanthropus erectus, we should carefully note, had itself undergone an evolutionary transition within the mind of Dubois, from fossil chimpanzee to transitional anthropoid.

What factors, other than Haeckel's influence, led Dubois to consider his specimen transitional between fossil apes and modern humans? Dubois found that the volume of the Pithecanthropus skull was in the range of 800-1000 cubic centimeters. Modern apes average 500 cubic centimeters, while modern human skulls average 1400 cubic centimeters, thus placing the Trinil skull midway between them.


To Dubois, this indicated an evolutionary relationship. But logically speaking, one could have creatures with different sizes of brains without having to posit an evolutionary progression from smaller to larger. Furthermore, in the Pleistocene many mammalian species were represented by forms much larger than today's. Thus the Pithecanthropus skull might belong not to a transitional anthropoid but to an exceptionally large Middle Pleistocene gibbon, with a skull bigger than that of modern gibbons.

Today, anthropologists still routinely describe an evolutionary progression of hominid skulls, increasing in size with the passage of time—from Early Pleistocene Australopithecus (first discovered in 1924), to Middle Pleistocene Java man (now known as Homo erectus), to Late Pleistocene Homo sapiens sapiens. But the sequence is preserved only at the cost of eliminating skulls that disrupt it. For example, the Castenedolo skull, discussed in Chapter 7, is older than that of Java man but is larger in cranial capacity. In fact, it is fully human in size and morphology. Even one such exception is sufficient to invalidate the whole proposed evolutionary sequence.

Dubois observed that although the Trinil skull was very apelike in some of its features, such as the prominent brow ridges, the thighbone was almost human. This indicated that Pithecanthropus had walked upright, hence the species designation erectus. It is important, however, to keep in mind that the femur of Pithecanthropus erectus was found fully 45 feet from the place where the skull was unearthed, in a stratum containing hundreds of other animal bones.


This circumstance makes doubtful the claim that both the thighbone and the skull actually belonged to the same creature or even the same species.

When Dubois's reports began reaching Europe, they received much attention.


Haeckel, of course, was among those celebrating Pithecanthropus as the strongest proof to date of human evolution.

"Now the state of affairs in this great battle for truth has been radically altered by Eugene Dubois's discovery of the fossil Pithecanthropus erectus," proclaimed the triumphant Haeckel.


"He has actually provided us with the bones of the ape-man I had postulated. This find is more important to anthropology than the much-lauded discovery of the X-ray was to physics."

There is an almost religious tone of prophecy and fulfillment in Haeckel's remarks. But Haeckel had a history of overstating physiological evidence to support the doctrine of evolution. An academic court at the University of Jena once found him guilty of falsifying drawings of embryos of various animals in order to demonstrate his particular view of the origin of species.

In 1895, Dubois decided to return to Europe to display his Pithecanthropus to what he was certain would be an admiring and supportive audience of scientists. Soon after arriving, he exhibited his specimens and presented reports at the Third International Congress of Zoology at Leyden, Holland. Although some of the scientists present at the Congress were, like Haeckel, anxious to support the discovery as a fossil ape-man, others thought it merely an ape, while still others challenged the idea that the bones belonged to the same individual.

Dubois exhibited his treasured bones at Paris, London, and Berlin. In December of 1895, experts from around the world gathered at the Berlin Society for Anthropology, Ethnology, and Prehistory to pass judgment on Dubois's Pithecanthropus specimens. The president of the Society, Dr. Virchow, refused to chair the meeting. In the controversy-ridden discussion that followed, the Swiss anatomist Kollman said the creature was an ape.


Virchow himself said the femur was fully human, and further stated:

"The skull has a deep suture between the low vault and the upper edge of the orbits. Such a suture is found only in apes, not in man. Thus the skull must belong to an ape. In my opinion this creature was an animal, a giant gibbon, in fact. The thigh-bone has not the slightest connection with the skull."

This opinion contrasted strikingly with that of Haeckel and others, who remained convinced that Dubois's Java man was a genuine human ancestor.



To resolve some of the questions surrounding the Pithecanthropus fossils and their discovery, Emil Selenka, professor of zoology at Munich University in Germany, prepared a full-fledged expedition to Java, but he died before it departed. His wife, Professor Lenore Selenka, took over the effort and conducted excavations at Trinil in the years 1907-1908, employing 75 laborers to hunt for more Pithecanthropus erectus fossils.


Altogether, Selenka's team of geologists and paleontologists sent back to Europe 43 boxes of fossils, but they included not a single new fragment of Pithecanthropus. The expedition did, however, find in the Trinil strata signs of a human presence—splintered animal bones, charcoal, and foundations of hearths. Signs like this led Lenore Selenka to conclude that humans and Pithecanthropus erectus were contemporary. The implications of all this for an evolutionary interpretation of Dubois's Pithecanthropus specimens were, and still are, unsettling.

Furthermore, in 1924 George Grant MacCurdy, a Yale professor of anthropology, wrote in his book Human Origins:

"The Selenka expedition of 1907- 1908 . . . secured a tooth which is said by Walkoff to be definitely human. It is a third molar from a neighboring stream bed and from deposits older (Pliocene) than those in which Pithecanthropus erectus was found."



Meanwhile, the status of Dubois's ape-man remained controversial. Surveying the range of opinion about Pithecanthropus, Berlin zoologist Wilhelm Dames gathered statements from several scientists: three said Pithecanthropus was an ape, five said it was human, six said it was an ape-man, six said it was a missing link, and two said it was a link between the missing link and man.

But while many scientists maintained their doubts, others followed Haeckel in hailing Java man as stunning proof of Darwin's theory. Some used Java man to discredit evidence for a fully human presence in the Tertiary.


As we learned in Chapter 5, W. H. Holmes dismissed discoveries of stone tools in the Tertiary auriferous gravels of California because,

"they implied a human race older by at least one-half than Pithecanthropus erectus of Dubois, which may be regarded as an incipient form of human creature only."

At a certain point, Dubois became completely disappointed with the mixed reception the scientific community gave to his Pithecanthropus. He stopped showing his specimens. Some say that he kept them for some time beneath the floorboards in his home. In any case, they remained hidden from view for some 25 years, until 1932.

During and after the period of withdrawal, the controversies concerning Pithecanthropus continued. Marcellin Boule, director of the Institute of Human Paleontology in Paris, reported, as had other scientists, that the layer in which the Pithecanthropus skullcap and femur were said to have been found contained numerous fossil bones of fish, reptiles, and mammals. Why, therefore, should anyone believe the skullcap and femur came from the same individual or even the same species?


Boule, like Virchow, stated that the femur was identical to that of a modern human whereas the skullcap resembled that of an ape, possibly a large gibbon. In 1941, Dr. F. Weidenreich, director of the Cenozoic Research Laboratory at Beijing Union Medical College, also stated that there was no justification for attributing the femur and the skullcap to the same individual.


The femur, Weidenreich said, was very similar to that of a modern human, and its original position in the strata was not securely established.


Modern researchers have employed chemical dating techniques to determine whether or not the original Pithecanthropus skull and femur were both contemporary with the Middle Pleistocene Trinil fauna, but the results were inconclusive.



The belated revelation that more femurs had been discovered in Java further complicated the issue. In 1932, Dr. Bernsen and Eugene Dubois recovered three femurs from a box of fossil mammalian bones in the Leiden Museum in the Netherlands.


The box contained specimens said to have been excavated in 1900 by Dubois's assistant, Mr. Kriele, from the same Trinil deposits on the left bank of the Solo river that had yielded Dubois's first Java man finds. Dr. Bernsen died very shortly thereafter, without providing further information about the details of this museum discovery.

Dubois stated that he was not present when the femurs were taken out by Kriele. Therefore the exact location of the femurs in the excavation, which was 75 meters (246 feet) long by 6-14 meters (20-46 feet) wide, was unknown to him. According to standard paleontological procedures, this uncertainty greatly reduces the value of the bones as evidence of any sort. Nevertheless, authorities later assigned these femurs to a particular stratum without mentioning the dubious circumstances of their discovery in boxes of fossils over 30 years after they were originally excavated. In addition to the three femurs found by Kriele, two more femoral fragments turned up in the Leiden Museum.

The existence of the additional femurs has important implications for the original Pithecanthropus skull and femur found by Dubois in the 1890s. The apelike skull and humanlike femur were found at a great distance from each other, but Dubois assigned them to the same creature. He suggested that the bones were found separated because Pithecanthropus had been dismembered by a crocodile.


But if you throw in more humanlike femurs, that argument loses a great deal of its force.

  • Where were the other skulls?

  • Were they apelike skulls, like the one found?

  • And what about the skull that was found?

  • Does it really go with the femur that was found 45 feet away?

  • Or does it belong with one of the other femurs that later turned up?

  • Or maybe with a femur of an entirely different sort?



In 1973, M. H. Day and T. I. Molleson concluded that,

"the gross anatomy, radiological [X-ray] anatomy, and microscopical anatomy of the Trinil femora does not distinguish them significantly from modern human femora."

They also said that Homo erectus femurs from China and Africa are anatomically similar to each other, and distinct from those of Trinil.

In 1984, Richard Leakey and other scientists discovered an almost complete skeleton of Homo erectus in Kenya. Examining the leg bones, these scientists found that the femurs differed substantially from those of modern human beings.

About the Java discoveries, the scientists stated:

"From Trinil, Indonesia, there are several fragmentary and one complete (but pathological) femora. Despite the fact that it was these specimens that led to the species name [Pithecanthropus erectus], there are doubts as to whether they are H. erectus with the most recent consensus being that they probably are not."

In summary, modern researchers say the Trinil femurs are not like those of Homo erectus but are instead like those of modern Homo sapiens. What is to be made of these revelations? The Java thighbones have traditionally been taken as evidence of an ape-man (Pithecanthropus erectus, now called Homo erectus) existing around 800,000 years ago in the Middle Pleistocene. Now it appears we can accept them as evidence for anatomically modern humans existing 800,000 years ago.

Some have said that the femurs were mixed in from higher levels. Of course, if one insists that the humanlike Trinil femurs were mixed in from higher levels, then why not the Pithecanthropus skull as well? That would eliminate entirely the original Java man find, long advertised as solid proof of human evolution.

Indeed, late in his life Eugene Dubois himself concluded that the skullcap of his beloved Pithecanthropus belonged to a large gibbon, an ape not thought by evolutionists to be closely related to humans. But the heretofore-skeptical scientific community was not about to say good-bye to Java man, for by this time Pithecanthropus was firmly entrenched in the ancestry of modern Homo sapiens.


Dubois's denials were dismissed as the whims of a cantankerous old man. If anything, the scientific community wanted to remove any remaining doubts about the nature and authenticity of Java man. This, it was hoped, would fortify the whole concept of Darwinian evolution, of which human evolution was the most highly publicized and controversial aspect.

Visitors to museums around the world still find models of the Trinil skullcap and femur portrayed as belonging to the same Middle Pleistocene Homo erectus individual.


In 1984, the much-advertised Ancestors exhibit, at the Museum of Natural History in New York, brought together from around the world the major fossil evidence for human evolution, including prominently displayed casts of the Trinil skullcap and femur.



In addition to Dubois's Java man discoveries, further evidence relating to human evolution turned up in the form of the Heidelberg jaw. On October 21, 1907, Daniel Hartmann, a workman at a sand pit at Mauer, near Heidelberg, Germany, discovered a large jawbone at the bottom of the excavation, at a depth of 82 feet.


The workmen were on the lookout for bones, and many other nonhuman fossils had already been found there and turned over to the geology department at the nearby University of Heidelberg. The workman then brought the jaw over to J. Rüsch, the owner of the pit, who sent a message to Dr. Otto Schoetensack:

"For twenty long years you have sought some trace of early man in my pit . . . yesterday we found it. A lower jaw belonging to early man has been found on the floor of the pit, in a very good state of preservation."

Professor Schoetensack designated the creature Homo heidelbergensis, dating it using the accompanying fossils to the Gunz-Mindel interglacial period. In 1972, David Pilbeam said the Heidelberg jaw "appears to date from the Mindel glaciation, and its age is somewhere between 250,000 and 450,000 years."

The German anthropologist Johannes Ranke, an opponent of evolution, wrote in the 1920s that the Heidelberg jaw belonged to a representative of Homo sapiens rather than an apelike predecessor. Even today, the Heidelberg jaw remains somewhat of a morphological mystery. The thickness of the mandible and the apparent lack of a chin are features common in Homo erectus. But mandibles of some modern Australian aboriginals are also massive compared to jaws of modern Europeans and have chins that are less well developed.

According to Frank E. Poirier (1977), the teeth in the Heidelberg jaw are closer in size to those of modern Homo sapiens than those of Asian Homo erectus (Java man and Beijing man). T. W. Phenice of Michigan State University wrote in 1972 that "the teeth are remarkably like those of modern man in almost every respect, including size and cusp patterns." Modern opinion thus confirms Ranke, who wrote in 1922: "The teeth are typically human."

Another European fossil generally attributed to Homo erectus is the Vertesszollos occipital fragment, from a Middle Pleistocene site in Hungary. The morphology of the Vertesszollos occipital is even more puzzling than that of the Heidelberg jaw.


David Pilbeam wrote in 1972:

"The occipital bone does not resemble that of H. erectus, or even archaic man, but instead that of earliest modern man. Such forms are dated elsewhere as no older than 100,000 years."

Pilbeam believed the Vertesszollos occipital to be approximately the same age as the Heidelberg jaw, between 250,000 and 450,000 years old. If the Vertesszollos occipital is modern in form, it helps confirm the genuineness of anatomically modern human skeletal remains of similar age found in England at Ipswich and Galley Hill (Chapter 7).

Returning to the Heidelberg jaw, we note that the circumstances of discovery were less than perfect. If an anatomically modern human jaw had been found by a workman in the same sand pit, it would have been subjected to merciless criticism and judged recent. After all, no scientists were present at the moment of discovery.


But the Heidelberg jaw, because it fits, however imperfectly, within the bounds of evolutionary expectations, has been granted a dispensation.



In 1929, another ancient human ancestor was discovered, this time in China. Eventually, scientists would group Java man, Heidelberg man, and Beijing man together as examples of Homo erectus, the direct ancestor of Homo sapiens. But initially, the common features and evolutionary status of the Indonesian, Chinese, and German fossils were not obvious, and paleoanthropologists felt it particularly necessary to clarify the status of Java man.

In 1930, Gustav Heinrich Ralph von Koenigswald of the Geological Survey of the Netherlands East Indies was dispatched to Java.


In his book Meeting Prehistoric Man, von Koenigswald wrote,

"Despite the discovery of Pekin [Beijing] man, it remained necessary to find a further Pithecanthropus sufficiently complete to prove the human character of this disputed fossil."

Von Koenigswald arrived in Java in January 1931. In August of that same year, one of von Koenigswald's colleagues found some hominid fossils at Ngandong on the River Solo. Von Koenigswald classified the Solo specimens as a Javanese variety of Neanderthal, appearing later in time than Pithecanthropus erectus.

Gradually, the history of human ancestors in Java seemed to be clearing up, but more work was needed. In 1934, von Koenigswald journeyed to Sangiran, a site west of Trinil on the Solo River. He took with him several Javanese workers, including his trained collector, Atma, who also served as von Koenigswald's cook and laundryman in the field.

Von Koenigswald wrote:

"There was great rejoicing in the kampong over our arrival. The men gathered all the jaws and teeth they could lay hands on and offered to sell them to us. Even the women and girls, who are generally so retiring, took part."

When one considers that most of the finds attributed to von Koenigswald were actually made by local villagers or native collectors, who were paid by the piece, the scene described cannot but cause some degree of uneasiness.

At the end of 1935, in the midst of the worldwide economic depression, von Koenigswald's position with the Geological Survey in Java was terminated. Undeterred, von Koenigswald kept his servant Atma and others working at Sangiran, financing their activities with contributions from his wife and colleagues in Java.

Uncovered during this period was what appeared to be the fossilized right half of the upper jaw of an adult Pithecanthropus erectus. An examination of many reports by von Koenigswald has failed to turn up any description by him of exactly how this specimen was found. But in 1975 the British researcher K. P. Oakley and his associates stated that the fossil was found in 1936 on the surface of exposed lake deposits east of Kalijoso in central Java by collectors employed by von Koenigswald. Because the jaw was found on the surface, its exact age is uncertain.

An anthropologist might say that this jaw fragment exhibits the features of Homo erectus, as Pithecanthropus erectus is now known. Hence it must have been deposited at least several hundred thousand years ago, despite the fact that it was found on the surface.


But what if there existed in geologically recent times, or even today, a rare species of hominid having physical features similar to those of Homo erectus! In that case one could not automatically assign a date to a given bone based on the physical features of that bone. In Chapter 11 can be found evidence suggesting that a creature like Homo erectus has lived in recent times and in fact may be alive today.

During the difficult year of 1936, in the course of which the fossil jaw discussed above was uncovered, the unemployed von Koenigswald received a remarkable visitor—Pierre Teilhard de Chardin, whom von Koenigswald himself had invited to come and inspect his discoveries in Java.


Teilhard de Chardin, a world-famous archeologist and Jesuit priest, had been working in Peking (now Beijing), where he had participated in the Peking man excavations at Choukoutien (now Zhoukoudian).

During his visit to Java, Teilhard de Chardin advised von Koenigswald to write to John C. Merriam, the president of the Carnegie Institution. Von Koenigswald did so, informing Merriam that he was on the verge of making important new Pithecanthropus finds.

Merriam responded positively to von Koenigswald's letter, inviting him to come to Philadelphia in March 1937 to attend the Symposium on Early Man, sponsored by the Carnegie Institution. There von Koenigswald joined many of the world's leading scientists working in the field of human prehistory.

One of the central purposes of the meeting was to form an executive committee for the Carnegie Institution's financing of paleoanthropological research. Suddenly, the impoverished von Koenigswald found himself appointed a research associate of the Carnegie Institution and in possession of a large budget.



Considering the critical role played by private foundations in the financing of research in human evolution, it might be valuable at this point to further consider the motives of the foundations and their executives. The Carnegie Institution and John C. Merriam provide an excellent case study. In Chapter 10, we will examine the Rockefeller Foundation's role in financing the excavation of Beijing man.

The Carnegie Institution was founded in January 1902 in Washington, D.C., and a revised charter approved by Congress became effective in 1904. The Institution was governed by a board of 24 trustees, with an executive committee meeting throughout the year, and was organized into 12 departments of scientific investigation, including experimental evolution.


The Institution also funded the Mt. Wilson Observatory, where the first systematic research leading to the idea that we live in an expanding universe was conducted. Thus the Carnegie Institution was actively involved in two areas, namely evolution and the big bang universe, that lie at the heart of the scientific cosmological vision that has replaced earlier religiously inspired cosmologies.

It is significant that for Andrew Carnegie and others like him, the impulse to charity, traditionally directed toward social welfare, religion, hospitals, and general education, was now being channeled into scientific research, laboratories, and observatories. This reflected the dominant position that science and its world view, including evolution, were coming to occupy in society, particularly within the minds of its wealthiest and most influential members, many of whom saw science as the best hope for human progress.

John C. Merriam, president of the Carnegie Institution, believed that science had "contributed very largely to the building of basic philosophies and beliefs," and his support for von Koenigswald's fossil-hunting expeditions in Java should be seen in this context.


A foundation like the Carnegie Institution had the means to use science to influence philosophy and belief by selectively funding certain areas of research and publicizing the results.

"The number of matters which might be investigated is infinite," wrote Merriam. "But it is expedient in each period to consider what questions may have largest use in furtherance of knowledge for the benefit to mankind at that particular time."

The question of human evolution satisfied this requirement.

"Having spent a considerable part of my life in advancing studies on the history of life," said Merriam, "I have been thoroughly saturated with the idea that evolution, or the principle of continuing growth and development, constitutes one of the most important truths obtained from all knowledge."

By training a paleontologist, Merriam was also by faith a Christian. But his Christianity definitely took a back seat to his science.

"My first contact with science," Merriam recalled in a 1931 speech, "was when I came home from grammar school to report to my mother that the teacher had talked to us for fifteen minutes about the idea that the days of creation described in Genesis were long periods of creation and not the days of twenty-four hours. My mother and I held a consultation—she being a Scotch Presbyterian—and agreed that this was rank heresy. But a seed had been sown. I have been backing away from that position through subsequent decades. I realize now that the elements of science, so far as creation is concerned, represent the uncontaminated and unmodified record of what the Creator did."

Having dispensed with scriptural accounts of creation, Merriam managed to turn Darwinian evolution into a kind of religion. At a convocation address at the George Washington University in 1924, Merriam said of evolution,

"There is nothing contributing to the support of our lives in a spiritual sense that seems so clearly indispensable as that which makes us look forward to continuing growth or improvement."

He held that science would give man the opportunity to take on a godlike role in guiding that future development. "Research is the means by which man will assist in his own further evolution," said Merriam in a 1925 address to the Carnegie Institution's Board of Trustees.


He went on to say:

"I believe that if he [man] had open to him a choice between further evolution directed by some Being distant from us, which would merely carry him along with the current; or as an alternative could choose a situation in which that outside power would fix the laws and permit him to use them, man would say, 'I prefer to assume some responsibility in this scheme.'"


"According to the ancient story," Merriam continued, "man was driven from the Garden of Eden lest he might learn too much; he was banished so that he might become master of himself. A flaming sword was placed at the east gate, and he was ordered to work, to till the ground, until he could come to know the value of his strength. He is now learning to plough the fields about him, shaping his life in accordance with the laws of nature."


In some distant age a book may be written in which it will be stated that man came at last to a stage where he returned to the Garden, and at the east gate seized the flaming sword, the sword that symbolized control, to carry it as a torch guiding him to the tree of life."

Seizing the flaming sword and marching to take control of the tree of life? One wonders if there would be enough room in Eden for both God and a hard-charging scientific super-achiever like Merriam.



Armed with Carnegie grant money, von Koenigswald returned to Java in June of 1937. Immediately upon his arrival, he hired hundreds of natives and sent them out in force to find more fossils. More fossils were found. But almost all of them were jaw and skull fragments that came from poorly specified locations on the surface near Sangiran. This makes it difficult to ascertain their correct ages.

During the course of most of the Sangiran finds, von Koenigswald remained at Bandung, about 200 miles away, although he would sometimes travel to the fossil beds after being notified of a discovery.

In the fall of 1937, one of von Koenigswald's collectors, Atma, mailed him a temporal bone that apparently belonged to a thick, fossilized, hominid cranium. This specimen was said to have been discovered near the bank of a river named the Kali Tjemoro, at the point where it breaks through the sandstone of the Kabuh formation at Sangiran.

Von Koenigswald took the night train to central Java and arrived at the site the next morning.

"We mobilized the maximum number of collectors," stated von Koenigswald. "I had brought the fragment back with me, showed it round, and promised 10 cents for every additional piece belonging to the skull. That was a lot of money, for an ordinary tooth brought in only 1/2 cent or 1 cent. We had to keep the price so low because we were compelled to pay cash for every find; for when a Javanese has found three teeth he just won't collect any more until these three teeth have been sold. Consequently we were forced to buy an enormous mass of broken and worthless dental remains and throw them away in Bandung—if we had left them at Sangiran they would have been offered to us for sale again and again."

The highly motivated crew quickly turned up the desired skull fragments. Von Koenigswald would later recall:

"There, on the banks of a small river, nearly dry at that season, lay the fragments of a skull, washed out of the sandstones and conglomerates that contained the Trinil fauna. With a whole bunch of excited natives, we crept up the hillside, collecting every bone fragment we could discover. I had promised the sum of ten cents for every fragment belonging to that human skull. But I had underestimated the 'big-business' ability of my brown collectors. The result was terrible! Behind my back they broke the larger fragments into pieces in order to increase the number of sales! . . . We collected about 40 fragments, of which 30 belonged to the skull. . . . They formed a fine, nearly complete Pithecanthropus skullcap. Now, at last, we had him!"

How did von Koenigswald know that the fragments found on the surface of a hill really belonged, as he claimed, to the Middle Pleistocene Kabuh formation? Perhaps the native collectors found a skull elsewhere and broke it apart, sending one piece to von Koenigswald and scattering the rest by the banks of the Kali Tjemoro.

Von Koenigswald constructed a skull from the 30 fragments he had collected, calling it Pithecanthropus II, and sent a preliminary report to Dubois. The skull was much more complete than the original skullcap found by Dubois at Trinil. Von Koenigswald had always thought that Dubois had reconstructed his Pithecanthropus skull with too low a profile, and believed the Pithecanthropus skull fragments he had just found allowed a more humanlike interpretation.


Dubois, who by this time had concluded his original Pithecanthropus was merely a fossil ape, disagreed with von Koenigswald's reconstruction and published an accusation that he had indulged in fakery. He later retracted this indictment and said that the mistakes he saw in von Koenigswald's reconstruction were probably not deliberate.

But von Koenigswald's position was gaining support. In 1938, Franz Weidenreich, supervisor of the Beijing man excavations at Zhoukoudian, stated in the prestigious journal Nature that von Koenigswald's new finds had definitely established Pithecanthropus as a human precursor and not a gibbon as claimed by Dubois.

In 1941, one of von Koenigswald's native collectors, at Sangiran, sent to him, at Bandung, a fragment of a gigantic lower jaw. According to von Koenigswald, it displayed the unmistakable features of a human ancestor's jaw. He named the jaw's owner Meganthropus palaeojavanicus (giant man of ancient Java) because the jaw was twice the size of a typical modern human jaw.

A careful search of original reports has not revealed a description of the exact location at which this jaw was found, or who discovered it. If von Koenigswald did report the exact circumstances of this find then it is a well-kept secret. He discussed Meganthropus in at least three reports; however, in none of these did he inform the reader of the details of the fossil's original location. All he said was that it came from the Putjangan formation, but no further information was supplied. Hence all we really know for certain is that some unnamed collector sent a jaw fragment to von Koenigswald. Its age, from a strictly scientific standpoint, remains a mystery.

Meganthropus, in the opinion of von Koenigswald, was a giant offshoot from the main line of human evolution. Von Koenigswald had also found some large humanlike fossil teeth, which he attributed to an even larger creature called Gigantopithecus. According to von Koenigswald, Gigantopithecus was a large and relatively recent ape. But Weidenreich, after examining the Meganthropus jaws and the Gigantopithecus teeth, came up with another theory.


He proposed that both creatures were direct human ancestors. According to Weidenreich, Homo sapiens evolved from Gigantopithecus by way of Meganthropus and Pithecanthropus. Each species was smaller than the next. Most modern authorities, however, consider Gigantopithecus to be a variety of ape, living in the Middle to Early Pleistocene, and not directly related to humans.


The Meganthropus jaws are now thought to be much more like those of Java man (Homo erectus) than von Koenigswald originally believed. In 1973, T. Jacob suggested that Meganthropus fossils might be classified as Australopithecus.


This is intriguing, because according to standard opinion, Australopithecus never left its African home.



Meganthropus was the last major discovery reported by von Koenigswald, but the search for more bones of Java man has continued up to the present. These later finds, reported by P. Marks, T. Jacob, S. Sartono, and others, are uniformly accepted as evidence for Homo erectus in the Javanese Middle and Early Pleistocene. Like the discoveries of von Koenigswald, these fossils were almost all found on the surface by native collectors or farmers.

For example, T. Jacob reported that in August 1963 an Indonesian farmer discovered fragments of a fossilized skull in the Sangiran area while working in a field. When assembled, these skull fragments formed what appeared to be a skull similar to the type that is designated as Homo erectus. Although Jacob asserted that this skullcap was from the Middle Pleistocene Kabuh formation, he did not state the exact position of the fragments when found. All we really know is that a farmer discovered some fossil skull fragments that were most likely on or close to the surface.

In 1973, Jacob made this interesting remark about Sangiran, where all of the later Java Homo erectus finds were made:

"The site seems to be still promising, but presents special problems. This is mainly due to the site being inhabited by people, many of whom are collectors who had been trained in identifying important fossils. Chief collectors always try to get the most out of the Primate fossils found accidentally by primary discoverers. In addition, they may not report the exact site of the find, lest they lose one potential source of income. Occasionally, they may not sell all the fragments found on the first purchase, but try to keep a few pieces to sell at a higher price at a later opportunity."

Nevertheless, the Sangiran fossils are accepted as genuine. If anomalously old human fossils were found in situations like this, they would be subjected to merciless criticism. As always, our point is that a double standard should not be employed in the evaluation of paleoanthropological evidence—an impossibly strict standard for anomalous evidence and an exceedingly lenient standard for acceptable evidence.

In order to clear up uncertainties, letters were written in 1985 to both S. Sartono and to T. Jacob for further information about discoveries reported by them from Java. No answers were received.



We shall now discuss issues related to the potassium-argon dating of the formations yielding hominid fossils in Java, as well as attempts to date the fossils themselves by various chemical and radiometric methods.

The Kabuh formation at Trinil, where Dubois made his original Java man finds, has been given a potassium-argon age of 800,000 years. Other finds in Java came from the Djetis beds of the Putjangan formation. According to T. Jacob, the Djetis beds of the Putjangan formation near Modjokerto yielded an Early Pleistocene potassium-argon date of about 1.9 million years. The date of 1.9 million years is significant for the following reasons.


As we have seen, many Homo erectus fossils (previously designated Pithecanthropus and Meganthropus) have been assigned to the Djetis beds. If these fossils are given an age of 1.9 million years, this makes them older than the oldest African Homo erectus finds, which are about 1.6 million years old. According to standard views, Homo erectus evolved in Africa and did not migrate out of Africa until about 1 million years ago.

Also, some researchers have suggested that von Koenigswald's Meganthropus might be classified as Australopithecus. If one accepts this opinion, this means that Javan representatives of Australopithecus arrived from Africa before 1.9 million years ago or that Australopithecus evolved separately in Java. Both hypotheses are in conflict with standard views on human evolution.

It should be kept in mind, however, that the potassium-argon technique that gave the 1.9-million-year date is not foolproof. T. Jacob and G. Curtis, who attempted to date most of the hominid sites in Java, found it difficult to obtain meaningful dates from most samples. In other words, dates were obtained, but they deviated so greatly from what was expected that Jacob and Curtis had to attribute the unsatisfactory results to contaminants. In 1978, G. J. Bartstra reported a potassium-argon age of less than 1 million years for the Djetis beds.

We have seen that the Trinil femurs are indistinguishable from those of modern humans and distinct from those of Homo erectus. This has led some to suggest that the Trinil femurs do not belong with the Pithecanthropus skull and were perhaps mixed into the early Middle Pleistocene Trinil bone bed from higher levels. Another possibility is that anatomically modern humans were living alongside ape-man-like creatures during the early Middle Pleistocene in Java. In light of the evidence presented in this book, this would not be out of the question.

The fluorine-content test has often been used to determine if bones from the same site are of the same age. Bones absorb fluorine from ground waters, and thus if bones contain similar percentages of fluorine (relative to the bones' phosphate content) this suggests such bones have been buried for the same amount of time.

In a 1973 report, M. H. Day and T. I. Molleson analyzed the Trinil skullcap and femurs and found they contained roughly the same ratio of fluorine to phosphate. Middle Pleistocene mammalian fossils at Trinil contained a fluorine-to-phosphate ratio similar to that of the skullcap and femurs. Day and Molleson stated that their results apparently indicated the contemporaneity of the calotte and femora with the Trinil fauna.

If the Trinil femurs are distinct from those of Homo erectus and identical to those of Homo sapiens sapiens, as Day and Molleson reported, then the fluorine content of the femurs is consistent with the view that anatomically modern humans existed in Java during the early Middle Pleistocene, about 800,000 years ago.

Day and Molleson suggested that Holocene (recent) bones from the Trinil site might, like the Java man fossils, also have fluorine-to-phosphate ratios similar to those of the Middle Pleistocene animal bones, making the fluorine test useless here. K. P. Oakley, the originator of the fluorine-content testing method, pointed out that the rate of fluorine absorption in volcanic areas, such as Java, tends to be quite erratic, allowing bones of widely differing ages to have similar fluorine contents. This could not be directly demonstrated at the Trinil site, because there only the Middle Pleistocene beds contain fossils.

Day and Molleson showed that Holocene and Late Pleistocene beds at other sites in Java contained bones with fluorine-to-phosphate ratios similar to those of the Trinil bones. But they admitted that the fluorine-to-phosphate ratios of bones from other sites "would not be directly comparable" with those of bones from the Trinil site. This is because the fluorine absorption rate of bone depends upon factors that can vary from site to site. Such factors include the groundwater's fluorine content, the groundwater's rate of flow, the nature of the sediments, and the type of bone.

Therefore, the fluorine-content test results reported by Day and Molleson remain consistent with (but are not proof of) an early Middle Pleistocene age of about 800,000 years for the anatomically modern human Trinil femurs.

A nitrogen-content test was also performed on the Trinil bones. Dubois had boiled the skullcap and the first femur in animal glue, the protein of which contains nitrogen. Day and Molleson attempted to correct for this by pre-treating the samples in order to remove soluble nitrogen before analysis. Results showed that the Trinil bones had very little nitrogen left in them.


This is consistent with all of the bones being of the same early Middle Pleistocene age, although Day and Molleson did report that nitrogen in bone is lost so rapidly in Java that even Holocene bones often have no nitrogen.



Most books dealing with the subject of human evolution present what appears at first glance to be an impressive weight of evidence for Homo erectus in Java between 0.5 and 2.0 million years ago. One such book is The Fossil Evidence for Human Evolution?,), by W. E. Le Gros Clark, professor of anatomy at Oxford University, and Bernard G. Campbell, adjunct professor of anthropology at the University of California at Los Angeles.


An impressive table showing discoveries of Homo erectus is presented in their book. These discoveries have been used widely to support the belief that man has evolved from an apelike being.

T3 is the femur found by Dubois at a distance of 45 feet from the original cranium, T2. We have already discussed how unjustified it is to assign these two bones to the same individual. Yet ignoring many important facts, Le Gros Clark and Campbell stated that "the accumulation of evidence speaks so strongly for their natural association that this has become generally accepted."

T6, T7, T8, and T9 are the femurs found in boxes of fossils in Holland over 30 years after they were originally excavated in Java. Le Gros Clark and Campbell apparently ignored Dubois's statement that he himself did not excavate them, and that the original location of the femurs was unknown. Furthermore, von Koenigswald stated that the femurs were from Dubois's general collection, which contained fossils from "various sites and various ages which are very inadequately distinguished because some of the labels got lost."


Nevertheless, Le Gros Clark and Campbell assumed that these femurs came from the Trinil beds of the Kabuh formation. But Day and Molleson observed:

"If the rigorous criteria that are demanded in modern excavations were applied to all of the Trinil material subsequent to the calotte and Femur I, it would all be rejected as of doubtful provenance and unknown stratigraphy."

Fossil M1 and fossils S1 through S6 are those discovered by Javanese native collectors employed by von Koenigswald. Only one of them (M1) was reported to have been discovered buried in the stratum to which it is assigned, and even this report is subject to question.


The remaining fossils of the S series are the ones reported by Marks, Sartono, and Jacob, and the majority of these were surface finds by villagers and farmers, who sold the fossils, perhaps by way of middlemen, to the scientists. One familiar with the way these specimens were found can only wonder at the intellectual dishonesty manifest in Table 8.1, which gives the impression that the fossils were all found in strata of definite age.

Le Gros Clark and Campbell noted that the real location of many of von Koenigswald's finds was unknown. Nevertheless, they said that the fossils must have come from Middle Pleistocene Trinil beds of the Kabuh formation (0.7-1.3 million years old) or the Early Pleistocene Djetis beds of the Putjangan formation (1.3-2.0 million years old).

The ages given by Le Gros Clark and Campbell, derived from the potassium-argon dates discussed previously, refer only to the age of the volcanic soils, and not to the bones themselves. Potassium-argon dates have meaning only if the bones were found securely in place within or beneath the layers of dated volcanic material. But the vast majority of fossils listed in Table 8.1 were surface finds, rendering their assigned potassium-argon dates meaningless.

Concerning the age of 1.3-2.0 million years given by Le Gros Clark and Campbell for the Djetis beds of the Putjangan formation, we note that this is based on the potassium-argon date of 1.9 million years reported by Jacob and Curtis in 1971. But in 1978 Bartstra reported a potassium-argon age of less than 1 million years. Other researchers have reported that the fauna of the Djetis and Trinil beds are quite similar and that the bones have similar fluorine-to-phosphate ratios.

Le Gros Clark and Campbell concluded that,

"at this early time there existed in Java hominids with a type of femur indistinguishable from that of Homo sapiens, though all the cranial remains so far found emphasize the extraordinarily primitive characters of the skull and dentition."

All in all, the presentation by Le Gros Clark and Campbell was quite misleading. They left the reader with the impression that cranial remains found in Java can be definitely associated with the femurs when such is not the case. Furthermore, discoveries in China and Africa have shown that Homo erectus femurs are different from those collected by Dubois in Java.

Judging strictly by the hominid fossil evidence from Java, all we can say is the following. As far as the surface finds are concerned, these are all cranial and dental remains, the morphology of which is primarily apelike with some humanlike features. Because their original stratigraphic position is unknown, these fossils simply indicate the presence in Java, at some unknown time in the past, of a creature with a head displaying some apelike and humanlike features.

The original Pithecanthropus skull (T2) and femur (T3) reported by Dubois were found in situ, and thus there is at least some basis for saying they are perhaps as old as the early Middle Pleistocene Trinil beds of the Kabuh formation. The original position of the other femurs is poorly documented, but they are said to have been excavated from the same Trinil beds as T2 and T3.


In any case, the original femur (T3), described as fully human, was not found in close connection with the primitive skull and displays anatomical features that distinguish it from the femur of Homo erectus.


There is, therefore, no good reason to connect the skull with the T3 femur or any of the other femurs, all of which are described as identical to those of anatomically modern humans.


Consequently, the T2 skull and T3 femur can be said to indicate the presence of two kinds of hominids in Java during the early Middle Pleistocene—one with an apelike head and the other with legs like those of anatomically modern humans. Following the typical practice of giving a species identification on the basis of partial skeletal remains, we can say that the T3 femur provides evidence for the presence of Homo sapiens sapiens in Java around 800,000 years ago.


Up to now, no creature except Homo sapiens sapiens is known to have possessed the kind of femur found in the early Middle Pleistocene Trinil beds of Java.


Back to Contents