Potential Therapeutic Efficacy of Curcumin in Liver Cancer

Xin-Zheng Dai¹& Hai-Tao Yin²&, Ling-Fei Sun²&, Xiang Hu², Chong Zhou², Yun Zhou², Wei Zhang², Xin-En Huang³& Xiang-Cheng Li¹*

Abstract

Purpose: Liver cancer, one of the most common cancers in China, is reported to feature relatively high morbidity and mortality. Curcumin (Cum) is considered as a drug possessing anti-angiogenic, anti-inflammation and anti-oxidation effect. Previous research has demonstrated antitumor effects in a series of cancers. **Materials and Methods:** In this study the in vitro cytotoxicity of Cum was measured by MTT assay and pro-apoptotic effects were assessed by DAPI staining and measurement of caspase-3 activity. In vivo anti-hepatoma efficacy of Cum was assessed with HepG2 xenografts. **Results:** It is found that Cum dose-dependently inhibited cell growth in HepG2 cells with activation of apoptosis. Moreover, Cum delayed the growth of liver cancer in a dose-dependent manner in nude mice. **Conclusions:** Cum might be a promising phytomedicine in cancer therapy and further efforts are needed to explore this therapeutic strategy.

Keywords: Curcumin - apoptosis - liver cancer - in vitro - in vivo

Introduction

Liver cancer, one of the most common cancers in China, is reported with relatively high morbidity and mortality. Due to its resistance to chemotherapy, the response and survival of patients with liver cancer remains poor (Di et al., 2012; Kudo et al., 2012; Li et al., 2012; Ni et al., 2013). Recent studies focus on the potential of Traditional Chinese Medicine (TCM) in treating different kinds of cancers (Yin et al., 2011; Li et al., 2012).

Curcumin (Cum) is a phenolic pigment isolated from the root of Turmeric (Curcuma Longa) (Link et al., 2013; Yin et al., 2013). It is formerly considered as a drug possessing anti-angiogenic, anti-inflammation and anti-oxidation effect (Kwon et al., 2005; Suckow et al., 2006; EI-Azab et al., 2011; Wu et al., 2013). Previous researches in 2013 have demonstrated the antitumor effect of Cum in a series of cancers (Bayet-Robert et al., 2013; Du et al., 2013; Kumaravel et al., 2013; Masuelli et al., 2013; Ono et al., 2013; Sun et al., 2013; Wei et al., 2013; Yallapu et al., 2013; Zhang et al., 2013).

In the current study, we systematically evaluated the in vitro and in vivo anticancer efficiency of Cum in liver cancer. The cell inhibition effect of Cum was measured by MTT assay. Apoptosis of liver cancer cells was measured by DAPI and the activity of Caspase-3. The growth curve of tumor volume and bodyweight of the mice were measured every two days.

Materials and Methods

Materials

Curcumin, was purchased from Sigma Chem.Co., (St. Louis, USA). All other chemicals were of analytical grade and used without further purification. Human liver cancer cell line HepG2 was obtained from Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (Shanghai, China).

Male and female nude mice (nu/nu; 6–8 weeks old and weighing 18–22 g) were purchased from Model Animal Research Center of Nanjing University (Nanjing, China). The mice were housed and maintained in the animal facility of the Animal Center of Nanjing Medical University. The animal protocol was reviewed and approved by the Institutional Animal Care and Use Committee of Nanjing Medical University.

In vitro cytotoxicity

The half maximal inhibitory concentrations (IC50s) of HepG2 cells were determined by the MTT assay. Briefly, cells were seeded in 96-well plates (1×10⁴ cells per well) 24 h prior to the assay. Then cells were exposed to a series of doses of Cum. After 24, 36 and 48 hrs of incubation, 20 μl of 5 mg/mL MTT solution was added to each well and the plate was incubated for 4 h. Then, the media were removed and dimethylsulfoxide (DMSO) (150 μL) was added to each well. The optical density (OD) of each well

¹Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, ²Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, ³Department of Radiotherapy, the Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, China ⁴Equal contributors *For correspondence: huangxinen06@aliyun.com, xiangchenglinj@gmail.com

DOI:http://dx.doi.org/10.7314/APJCP.2013.14.6.3855

Potential Therapeutic Efficacy of Curcumin in Liver Cancer

Asian Pacific J Cancer Prev, 14 (6), 3855-3859
Effects of Cum on HepG2 Cell Proliferation. (A) HepG2 cells were treated with Cum at 2, 4, 8, 16, 32 and 64 μM for 24, 36 and 48 hours.

Cell viability was measured using a microplate reader at 560 nm (Bio-Rad, Hercules, USA). Cell viability was determined by following formula:

\[\text{Cell viability (\%)} = \frac{\text{OD (test well)}}{\text{OD (reference well)}} \times 100\% \]

The cells were treated with Cum at three doses (4, 8 and 16 μM) for 48 hrs, and then washed once in PBS followed by fixation in cold methanol : acetone (1:1) for 5 min. After washing thrice in PBS for 5 min, these cells were treated with 4 μg/ml DAPI for 10 min at routine temperature. The cells treated with the combination of the agents showed morphological changes of apoptosis, including a condensed and fragmented nuclear structure and decreased cell size (original magnification 200×).

Caspase-3 activity analysis
HepG2 cells were treated with a series of doses of Cum for 48h. Determination of caspase-3 activity was performed by the caspase colorimetric protease assay kit (Keygen Biotech, Nanjing, China) by following the manufacturer’s instruction. The optical density was measure at 405 nm. The obtained values were expressed as folds of controls. In vivo antitumor efficacy
Nude mice implanted with HepG2 cell line were used to qualify the antitumor efficacy of Cum through intravenous administration. The mice were raised under specific pathogen-free (SPF) circumstances and all of the animal experiments were performed in full compliance with guidelines approved by the Animal Care Committee of Nanjing Medical University. The mice were subcutaneously injected at the left axillary space with 0.1 ml of cell suspension containing 4–6×106 HepG2 cells. Treatments were started after 7-8 days of implantation. The mice whose tumor reached a tumor volume of 100 mm³ were selected and this day was designated as “Day 0”.

On Day 0, the mice were randomly divided into four groups, with each group being composed of 6 mice. The mice were treated intravenously with saline and a series doses of Cum, respectively. Cum was administered at a equivalent dose of 20, 40, and 60 mg/kg. All mice were tagged, and tumors were measured every other day with calipers during the period of study. The tumor volume was calculated by the formula \((W^2 \times L)/2\), where W is the dimension at the widest point, and L is the tumor dimension at the longest point.

Each animal was weighed at the time of treatment so that dosages could be adjusted to achieve the mg/kg amounts reported. Animals also were weighed every other day throughout the experiments. After 15 days of injections, the mice were sacrificed for the detection of peripheral blood parameters as well as liver and kidney functions.

Statistical analysis and research experience
Results were presented as Mean±SD. Statistical comparisons were made by t test or ANOVA analysis. The accepted level of significance was \(P\) value < 0.05.

We have enough experience in conducting medical researches, including clinical researches, and have published some results elsewhere (Huang et al., 2004; Zhou et al., 2009; Jiang et al., 2010; Yan et al., 2010; Gao et al., 2011; Huang et al., 2011; Li et al., 2011; Li et al., 2011; Li et al., 2011; Xu et al., 2011; Xu et al., 2011; Xu et al., 2011; Yan et al., 2011; Zhang et al., 2011; Gong et al., 2012; Gong et al., 2012; Gu et al., 2012; Li et al., 2012; Yu et al., 2012; Zhan et al., 2012; Zhan et al., 2012; Deng et al., 2013; Huang et al., 2013; Liu et al., 2013; Liu et al., 2013; Lu et al., 2013; Wu et al., 2013; Yin et al., 2013; Yin et al., 2013).

Results and Discussion
In vitro cytotoxicity of Cum against HepG2 cells
It is shown in Figure 1 that Cum inhibits the proliferation of HepG2 cells in a dose and time dependant manner. The cell viability decreases steadily when the dose of Cum increases as well as the incubation time prolongs. As indicated in Table 1, the IC50 value of Cum against HepG2 cells for 24h is 45.7±3.2 μM, while the IC50 of Cum for 36h is nearly a half (23.9±1.7 μM). Moreover, the longest incubation time of 48h produces the strongest inhibition effect of Cum with an IC50 value of 8.0±0.5 μM.

Apoptotic staining
It is indicated in Figure 2 that escalated doses of Cum leads to the increase of the apoptosis of HepG2 cells. As shown in Figure 2A-D, cells in control group have rounded and intact nuclei with diffused 4′, 6-diamidine-2′-phenylindole dihydrochloride (DAPI) staining, while cells exposed to Cum have smaller and brighter stained nuclei with condensed chromatin forming crescent-shaped profiles around the periphery of the nucleus or separate globular structures (apoptotic bodies). Quantitative analysis demonstrates the dose-dependent pro-apoptotic effect in HepG2 cells (Figure 2E). Each dose of Cum led to significantly higher cellular apoptosis rate than that in control group (\(p<0.05\)). In detail, there was more

Table 1. IC50s of Cum Against HepG2 Cells at Different Incubation Time

<table>
<thead>
<tr>
<th>IC50s (μM)</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cum</td>
<td>45.7±3.2</td>
<td>23.9±1.7</td>
<td>8.0±0.5</td>
</tr>
</tbody>
</table>

Mean ± SD. * represents $p<0.05$ vs control group. ** means $p<0.01$ vs control group. * means $p<0.05$ vs 8 μM Cum
doses of Cum. Therefore, Cum effectively inhibits the growth of liver cancer in vivo and further efforts are needed to explore this therapeutic strategy.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 81170415 to XC Li). Dr. Xin-En Huang is supported in part by a grant from Jiangsu Provincial Administration of Traditional Chinese Medicine (LZ11091), and in part from a special research fund from Organization Department of Jiangsu Provincial Party Committee, Talent Work Leading Group of Jiangsu Province (333 High-level Personnel Training Project).

References

Xin-Zheng Dai et al

